
The GNU C Library:
Application Fundamentals

For GNU C Libraries version 2.3.x

by Sandra Loosemore
with Richard M. Stallman, Roland McGrath,
Andrew Oram, and Ulrich Drepper

This manual documents the GNU C Libraries version 2.3.x.
ISBN 1-882114-22-1, First Printing, March 2004.

Published by:

GNU Press Website: www.gnupress.org
a division of the General: press@gnu.org
Free Software Foundation Orders: sales@gnu.org
51 Franklin St, Fifth Floor Tel: 617-542-5942
Boston, MA 02110-1301 USA Fax: 617-542-2652

Copyright © 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation

Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.2, or any later version
published by the Free Software Foundation; with the Invariant Sections being “Free
Software and Free Manuals”, the “GNU Free Documentation License”," and the
“GNU Lesser General Public License”, with the Front Cover Texts being “A GNU
Manual”, and with the Back Cover Texts as in (a) below. A copy of the license is
included in the section entitled “GNU Free Documentation License”.
(a) The Back Cover Text is: You are free to copy and modify this GNU Manual.
Buying copies from GNU Press supports the FSF in developing GNU and promoting
software freedom.

Cover art by Etienne Suvasa. Cover design by Jonathan Richard. Printed in USA.

i

Short Contents

1 Introduction . 1
2 Error Reporting . 17
3 Virtual Memory Allocation and Paging . 39
4 Character Handling . 79
5 String and Array Utilities . 89
6 Character-Set Handling . 133
7 Locales and Internationalization . 181
8 Mathematics . 203
9 Arithmetic Functions . 243
10 Date and Time . 277
11 Message Translation . 315
12 Searching and Sorting . 343
13 Pattern Matching . 355
14 The Basic Program/System Interface . 379
15 Input/Output Overview . 429
16 Debugging Support . 435
17 Input/Output on Streams . 439
A Summary of Library Facilities . 521
B Contributors to the GNU C Library . 587
C Free Software Needs Free Documentation 591
D GNU Lesser General Public License . 593
E GNU Free Documentation License . 603
Concept Index . 611
Type Index . 617
Function and Macro Index . 619
Variable and Constant Macro Index . 629
Program and File Index . 635

ii The GNU C Library: Application Fundamentals

iii

Table of Contents

1 Introduction . 1
1.1 Getting Started . 1
1.2 Standards and Portability . 1

1.2.1 ISO C . 2
1.2.2 POSIX (The Portable Operating System Interface) 2
1.2.3 Berkeley Unix . 3
1.2.4 SVID (The System V Interface Description) 3
1.2.5 XPG (The X/Open Portability Guide) 4

1.3 Using the Library . 4
1.3.1 Header Files . 4
1.3.2 Macro Definitions of Functions . 5
1.3.3 Reserved Names . 6
1.3.4 Feature-Test Macros . 8

1.4 Road Map to the Manual . 12

2 Error Reporting . 17
2.1 Checking for Errors . 17
2.2 Error Codes . 18
2.3 Error Messages . 32

3 Virtual Memory Allocation and Paging 39
3.1 Process Memory Concepts . 39
3.2 Allocating Storage for Program Data . 41

3.2.1 Memory Allocation in C Programs 41
3.2.1.1 Dynamic Memory Allocation 41

3.2.2 Unconstrained Allocation . 42
3.2.2.1 Basic Memory Allocation 42
3.2.2.2 Examples of malloc . 43
3.2.2.3 Freeing Memory Allocated with malloc . . . 44
3.2.2.4 Changing the Size of a Block 45
3.2.2.5 Allocating Cleared Space 46
3.2.2.6 Efficiency Considerations for malloc 46
3.2.2.7 Allocating Aligned Memory Blocks 47
3.2.2.8 malloc Tunable Parameters 47
3.2.2.9 Heap Consistency Checking 48
3.2.2.10 Memory Allocation Hooks 50
3.2.2.11 Statistics for Memory Allocation with

malloc . 53
3.2.2.12 Summary of malloc-Related Functions . . 54

3.2.3 Allocation Debugging . 55
3.2.3.1 How to Install the Tracing Functionality 56

iv The GNU C Library: Application Fundamentals

3.2.3.2 Example Program Excerpts 56
3.2.3.3 Some More or Less Clever Ideas 57
3.2.3.4 Interpreting the Traces . 58

3.2.4 Obstacks . 59
3.2.4.1 Creating Obstacks . 60
3.2.4.2 Preparing for Using Obstacks 60
3.2.4.3 Allocation in an Obstack 61
3.2.4.4 Freeing Objects in an Obstack 63
3.2.4.5 Obstack Functions and Macros 63
3.2.4.6 Growing Objects . 64
3.2.4.7 Extra-Fast Growing Objects 66
3.2.4.8 Status of an Obstack . 67
3.2.4.9 Alignment of Data in Obstacks 68
3.2.4.10 Obstack Chunks . 69
3.2.4.11 Summary of Obstack Functions 69

3.2.5 Automatic Storage with Variable Size 71
3.2.5.1 alloca Example . 72
3.2.5.2 Advantages of alloca . 72
3.2.5.3 Disadvantages of alloca 73
3.2.5.4 GNU C Variable-Size Arrays 73

3.3 Resizing the Data Segment . 74
3.4 Locking Pages . 74

3.4.1 Why Lock Pages? . 75
3.4.2 Locked-Memory Details . 75
3.4.3 Functions to Lock and Unlock Pages 76

4 Character Handling . 79
4.1 Classification of Characters . 79
4.2 Case Conversion . 81
4.3 Character Class Determination for Wide Characters 82
4.4 Notes on Using the Wide-Character Classes . 86
4.5 Mapping of Wide Characters . 87

v

5 String and Array Utilities . 89
5.1 Representation of Strings . 89
5.2 String and Array Conventions . 91
5.3 String Length . 91
5.4 Copying and Concatenation . 93
5.5 String/Array Comparison . 105
5.6 Collation Functions . 109
5.7 Search Functions . 114

5.7.1 Compatibility String Search Functions 119
5.8 Finding Tokens in a String . 119
5.9 strfry . 124
5.10 Trivial Encryption . 124
5.11 Encode Binary Data . 125
5.12 Argz and Envz Vectors . 127

5.12.1 Argz Functions . 127
5.12.2 Envz Functions . 130

6 Character-Set Handling . 133
6.1 Introduction to Extended Characters . 133
6.2 Overview About Character-Handling Functions 137
6.3 Restartable Multibyte Conversion Functions 137

6.3.1 Selecting the Conversion and Its Properties 138
6.3.2 Representing the State of the Conversion 139
6.3.3 Converting Single Characters . 140
6.3.4 Converting Multibyte- and Wide-Character Strings . . . 147
6.3.5 A Complete Multibyte Conversion Example 150

6.4 Nonreentrant Conversion Function . 152
6.4.1 Nonreentrant Conversion of Single Characters 153
6.4.2 Nonreentrant Conversion of Strings 154
6.4.3 States in Nonreentrant Functions . 155

6.5 Generic Charset Conversion . 157
6.5.1 Generic Character-Set Conversion Interface 157
6.5.2 A Complete iconv Example . 161
6.5.3 Some Details About Other iconv Implementations

. 163
6.5.4 The iconv Implementation in the GNU C Library . . . 165

6.5.4.1 Format of ‘gconv-modules’ Files 166
6.5.4.2 Finding the Conversion Path in iconv 167
6.5.4.3 iconv Module Data Structures 168
6.5.4.4 iconv Module Interfaces 171

vi The GNU C Library: Application Fundamentals

7 Locales and Internationalization 181
7.1 What Effects a Locale Has . 181
7.2 Choosing a Locale . 182
7.3 Categories of Activities That Locales Affect 182
7.4 How Programs Set the Locale . 183
7.5 Standard Locales . 185
7.6 Accessing Locale Information . 186

7.6.1 localeconv: “It is portable, but . . . ” 186
7.6.1.1 Generic Numeric Formatting Parameters . . . 187
7.6.1.2 Printing the Currency Symbol 188
7.6.1.3 Printing the Sign of a Monetary Amount . . . 190

7.6.2 Pinpoint Access to Locale Data . 191
7.7 A Dedicated Function to Format Numbers . 197
7.8 Yes-or-No Questions . 200

8 Mathematics . 203
8.1 Predefined Mathematical Constants . 203
8.2 Trigonometric Functions . 204
8.3 Inverse Trigonometric Functions . 206
8.4 Exponentiation and Logarithms . 207
8.5 Hyperbolic Functions . 212
8.6 Special Functions . 214
8.7 Known Maximum Errors in Math Functions 216
8.8 Pseudorandom Numbers . 234

8.8.1 ISO C Random-Number Functions 235
8.8.2 BSD Random-Number Functions 235
8.8.3 SVID Random-Number Functions 237

8.9 Is Fast Code or Small Code Preferred? . 242

9 Arithmetic Functions . 243
9.1 Integers . 243
9.2 Integer Division . 244
9.3 Floating-Point Numbers . 246
9.4 Floating-Point Number Classification Functions 247
9.5 Errors in Floating-Point Calculations . 249

9.5.1 FP Exceptions . 249
9.5.2 Infinity and NaN . 250
9.5.3 Examining the FPU Status Word . 252
9.5.4 Error Reporting by Mathematical Functions 253

9.6 Rounding Modes . 254
9.7 Floating-Point Control Functions . 256
9.8 Arithmetic Functions . 258

9.8.1 Absolute Value . 258
9.8.2 Normalization Functions . 259
9.8.3 Rounding Functions . 260

vii

9.8.4 Remainder Functions . 262
9.8.5 Setting and Modifying Single Bits of FP Values 263
9.8.6 Floating-Point Comparison Functions 264
9.8.7 Miscellaneous FP Arithmetic Functions 265

9.9 Complex Numbers . 266
9.10 Projections, Conjugates and Decomposing of Complex Numbers

. 267
9.11 Parsing of Numbers . 268

9.11.1 Parsing of Integers . 268
9.11.2 Parsing of Floats . 273

9.12 Old-fashioned System V Number-to-String Functions 275

10 Date and Time . 277
10.1 Time Basics . 277
10.2 Elapsed Time . 277
10.3 Processor and CPU Time . 279

10.3.1 CPU Time Inquiry . 280
10.3.2 Processor Time Inquiry . 281

10.4 Calendar Time . 282
10.4.1 Simple Calendar Time . 282
10.4.2 High-Resolution Calendar . 283
10.4.3 Broken-Down Time . 285
10.4.4 High-Accuracy Clock . 288
10.4.5 Formatting Calendar Time . 291
10.4.6 Convert Textual Time and Date Information Back . . . 297

10.4.6.1 Interpret String According to Given Format
. 297

10.4.6.2 A More User-Friendly Way to Parse Times and
Dates . 303

10.4.7 Specifying the Time Zone with TZ 306
10.4.8 Functions and Variables for Time Zones 308
10.4.9 Time Functions Example . 309

10.5 Setting an Alarm . 310
10.6 Sleeping . 312

viii The GNU C Library: Application Fundamentals

11 Message Translation . 315
11.1 X/Open Message Catalog Handling . 315

11.1.1 The catgets Function Family 316
11.1.2 Format of the Message Catalog Files 319
11.1.3 Generate Message Catalogs Files 321
11.1.4 How to Use the catgets Interface 322

11.1.4.1 Not Using Symbolic Names 322
11.1.4.2 Using Symbolic Names 323
11.1.4.3 Using Symbolic Version Numbers 324

11.2 The Uniforum Approach to Message Translation 325
11.2.1 The gettext Family of Functions 326

11.2.1.1 What Has to Be Done to Translate a Message?
. 326

11.2.1.2 How to Determine Which Catalog to Use
. 328

11.2.1.3 Additional Functions for More Complicated
Situations . 330

11.2.1.4 How to Specify the Output Character Set That
gettext Uses . 335

11.2.1.5 How to Use gettext in GUI Programs . . 336
11.2.1.6 User Influence on gettext 338

11.2.2 Programs to Handle Message Catalogs for gettext
. 341

12 Searching and Sorting . 343
12.1 Defining the Comparison Function . 343
12.2 Array Search Function . 343
12.3 Array Sort Function . 344
12.4 Searching and Sorting Example . 345
12.5 The hsearch Function . 348
12.6 The tsearch Function . 351

13 Pattern Matching . 355
13.1 Wildcard Matching . 355
13.2 Globbing . 357

13.2.1 Calling glob . 357
13.2.2 Flags for Globbing . 361
13.2.3 More Flags for Globbing . 362

13.3 Regular Expression Matching . 364
13.3.1 POSIX Regular Expression Compilation 365
13.3.2 Flags for POSIX Regular Expressions 367
13.3.3 Matching a Compiled POSIX Regular Expression . . . 367
13.3.4 Match Results with Subexpressions 368
13.3.5 Complications in Subexpression Matching 369
13.3.6 POSIX Regexp Matching Clean-Up 369

ix

13.4 Shell-Style Word Expansion . 370
13.4.1 The Stages of Word Expansion . 371
13.4.2 Calling wordexp . 371
13.4.3 Flags for Word Expansion . 373
13.4.4 wordexp Example . 374
13.4.5 Details of Tilde Expansion . 375
13.4.6 Details of Variable Substitution . 375

14 The Basic Program/System Interface 379
14.1 Program Arguments . 379

14.1.1 Program Argument Syntax Conventions 380
14.1.2 Parsing Program Arguments . 381

14.2 Parsing Program Options Using getopt . 381
14.2.1 Using the getopt Function . 381
14.2.2 Example of Parsing Arguments with getopt 382
14.2.3 Parsing Long Options with getopt_long 385
14.2.4 Example of Parsing Long Options with getopt_long

. 386
14.3 Parsing Program Options with Argp . 389

14.3.1 The argp_parse Function . 389
14.3.2 Argp Global Variables . 390
14.3.3 Specifying Argp Parsers . 391
14.3.4 Specifying Options in an Argp Parser 392

14.3.4.1 Flags for Argp Options 393
14.3.5 Argp Parser Functions . 394

14.3.5.1 Special Keys for Argp Parser Functions . . . 395
14.3.5.2 Functions for Use in Argp Parsers 397
14.3.5.3 Argp Parsing State . 399

14.3.6 Combining Multiple Argp Parsers 400
14.3.7 Flags for argp_parse . 401
14.3.8 Customizing Argp Help Output . 402

14.3.8.1 Special Keys for Argp Help Filter Functions
. 403

14.3.9 The argp_help Function . 403
14.3.10 Flags for the argp_help Function 404
14.3.11 Argp Examples . 405

14.3.11.1 A Minimal Program Using Argp 405
14.3.11.2 A Program Using Argp with Only Default

Options . 406
14.3.11.3 A Program Using Argp with User Options

. 407
14.3.11.4 A Program Using Multiple Combined Argp

Parsers . 411
14.3.12 Argp User Customization . 415

14.3.12.1 Parsing of Suboptions 416
14.3.13 Parsing of Suboptions Example 416

x The GNU C Library: Application Fundamentals

14.4 Environment Variables . 418
14.4.1 Environment Access . 419
14.4.2 Standard Environment Variables 421

14.5 System Calls . 423
14.6 Program Termination . 425

14.6.1 Normal Termination . 425
14.6.2 Exit Status . 425
14.6.3 Clean-Ups on Exit . 426
14.6.4 Aborting a Program . 427
14.6.5 Termination Internals . 428

15 Input/Output Overview . 429
15.1 Input/Output Concepts . 429

15.1.1 Streams and File Descriptors . 429
15.1.2 File Position . 430

15.2 File Names . 431
15.2.1 Directories . 431
15.2.2 File-Name Resolution . 432
15.2.3 File-Name Errors . 433
15.2.4 Portability of File Names . 434

16 Debugging Support . 435
16.1 Backtraces . 435

17 Input/Output on Streams . 439
17.1 Streams . 439
17.2 Standard Streams . 439
17.3 Opening Streams . 440
17.4 Closing Streams . 444
17.5 Streams and Threads . 445
17.6 Streams in Internationalized Applications . 448
17.7 Simple Output by Characters or Lines . 450
17.8 Character Input . 453
17.9 Line-Oriented Input . 455
17.10 Unreading . 458

17.10.1 What Unreading Means . 458
17.10.2 Using ungetc to Do Unreading 458

17.11 Block Input/Output . 459
17.12 Formatted Output . 460

17.12.1 Formatted Output Basics . 461
17.12.2 Output Conversion Syntax . 462
17.12.3 Table of Output Conversions . 463
17.12.4 Integer Conversions . 465
17.12.5 Floating-Point Conversions . 467
17.12.6 Other Output Conversions . 469

xi

17.12.7 Formatted Output Functions . 470
17.12.8 Dynamically Allocating Formatted Output 473
17.12.9 Variable Arguments Output Functions 474
17.12.10 Parsing a Template String . 476
17.12.11 Example of Parsing a Template String 478

17.13 Customizing printf . 480
17.13.1 Registering New Conversions . 480
17.13.2 Conversion Specifier Options . 481
17.13.3 Defining the Output Handler . 482
17.13.4 printf Extension Example . 483
17.13.5 Predefined printf Handlers . 485

17.14 Formatted Input . 486
17.14.1 Formatted Input Basics . 486
17.14.2 Input Conversion Syntax . 488
17.14.3 Table of Input Conversions . 489
17.14.4 Numeric Input Conversions . 490
17.14.5 String Input Conversions . 492
17.14.6 Dynamically Allocating String Conversions 494
17.14.7 Other Input Conversions . 494
17.14.8 Formatted Input Functions . 495
17.14.9 Variable Arguments Input Functions 496

17.15 End-of-File and Errors . 497
17.16 Recovering from Errors . 498
17.17 Text and Binary Streams . 499
17.18 File Positioning . 500
17.19 Portable File-Position Functions . 502
17.20 Stream Buffering . 504

17.20.1 Buffering Concepts . 505
17.20.2 Flushing Buffers . 505
17.20.3 Controlling Which Kind of Buffering 506

17.21 Other Kinds of Streams . 509
17.21.1 String Streams . 509
17.21.2 Obstack Streams . 511
17.21.3 Programming Your Own Custom Streams 512

17.21.3.1 Custom Streams and Cookies 512
17.21.3.2 Custom Stream Hook Functions 513

17.22 Formatted Messages . 514
17.22.1 Printing Formatted Messages . 515
17.22.2 Adding Severity Classes . 518
17.22.3 How to Use fmtmsg and addseverity 518

Appendix A Summary of Library Facilities 521

Appendix B Contributors to the GNU C Library 587

xii The GNU C Library: Application Fundamentals

Appendix C Free Software Needs Free Documentation
. 591

Appendix D GNU Lesser General Public License 593
D.0.1 Preamble . 593
D.0.2 TERMS AND CONDITIONS FOR COPYING,

DISTRIBUTION AND MODIFICATION 595
D.0.3 How to Apply These Terms to Your New Libraries . . 602

Appendix E GNU Free Documentation License 603
E.0.1 ADDENDUM: How to Use This License for Your

Documents . 609

Concept Index . 611

Type Index . 617

Function and Macro Index . 619

Variable and Constant Macro Index 629

Program and File Index . 635

The GNU C Library: Application Fundamentals

Chapter 1: Introduction 1

1 Introduction
The C language provides no built-in facilities for performing such common op-

erations as input/output, memory management, string manipulation and the like.
Instead, these facilities are defined in a standard library, which you compile and
link with your programs.

The GNU C Library, described in this document, defines all of the library func-
tions that are specified by the ISO C standard, as well as additional features specific
to POSIX and other derivatives of the Unix operating system, and extensions spe-
cific to the GNU system.

The purpose of this manual is to tell you how to use the facilities of the GNU
library. We have mentioned which features belong to which standards to help you
identify things that are potentially nonportable. But the emphasis in this manual is
not on strict portability.

1.1 Getting Started
This manual is written with the assumption that you are at least somewhat fa-

miliar with the C programming language and basic programming concepts. Specif-
ically, familiarity with ISO standard C (see Section 1.2.1 [ISO C], page 2), rather
than “traditional” pre-ISO C dialects, is assumed.

The GNU C Library includes several header files, each of which provides def-
initions and declarations for a group of related facilities; this information is used
by the C compiler when processing your program. For example, the header file
‘stdio.h’ declares facilities for performing input and output, and the header file
‘string.h’ declares string-processing utilities. The organization of this manual
generally follows the same division as the header files.

If you are reading this manual for the first time, you should read all of the in-
troductory material and skim the remaining chapters. There are a lot of functions
in the GNU C Library and it is not realistic to expect that you will be able to re-
member exactly how to use each and every one of them. It is more important to
become generally familiar with the kinds of facilities that the library provides, so
that when you are writing your programs you can recognize when to make use of
library functions, and where in this manual you can find more specific information
about them.

1.2 Standards and Portability
This section discusses the various standards and other sources that the GNU C

Library is based upon. These sources include the ISO C and POSIX standards, and
the System V and Berkeley Unix implementations.

The primary focus of this manual is to tell you how to make effective use of
the GNU library facilities. But if you are concerned about making your programs
compatible with these standards, or portable to operating systems other than GNU,

2 The GNU C Library: Application Fundamentals

this can affect how you use the library. This section gives you an overview of these
standards, so that you will know what they are when they are mentioned in other
parts of the manual.

See Appendix A [Summary of Library Facilities], page 521, for an alphabetical
list of the functions and other symbols provided by the library. This list also states
which standards each function or symbol comes from.

1.2.1 ISO C

The GNU C Library is compatible with the C standard adopted by the Amer-
ican National Standards Institute (ANSI)as American National Standard X3.159-
1989—"ANSI C" and later by the International Standardization Organization (ISO)
as ISO/IEC 9899:1990, "Programming languages—C". In this manual, we refer to
the standard as ISO C since this is the more general standard with respect to rati-
fication. The header files and library facilities that make up the GNU library are a
superset of those specified by the ISO C standard.

If you are concerned about strict adherence to the ISO C standard, you should use
the ‘-ansi’ option when you compile your programs with the GNU C Compiler.
This tells the compiler to define only ISO standard features from the library header
files, unless you explicitly ask for additional features. See Section 1.3.4 [Feature-
Test Macros], page 8, for information on how to do this.

Being able to restrict the library to include only ISO C features is important be-
cause ISO C puts limitations on what names can be defined by the library imple-
mentation, and the GNU extensions don’t fit these limitations. See Section 1.3.3
[Reserved Names], page 6, for more information about these restrictions.

This manual does not attempt to give you complete details on the differences
between ISO C and older dialects. It gives advice on how to write programs to
work portably under multiple C dialects, but does not aim for completeness.

1.2.2 POSIX (The Portable Operating System Interface)

The GNU library is also compatible with the ISO POSIX family of standards,
known more formally as the Portable Operating System Interface for Computer
Environments (ISO/IEC 9945). They were also published as ANSI/IEEE Std 1003.
POSIX is derived mostly from various versions of the Unix operating system.

The library facilities specified by the POSIX standards are a superset of those
required by ISO C; POSIX specifies additional features for ISO C functions, as well
as specifying new additional functions. In general, the additional requirements and
functionality defined by the POSIX standards are aimed at providing lower-level
support for a particular kind of operating system environment, rather than general
programming language support that can run in many diverse operating system en-
vironments.

The GNU C Library implements all of the functions specified in ISO/IEC 9945-
1:1996, the POSIX System Application Program Interface, commonly referred to as
POSIX.1. The primary extensions to the ISO C facilities specified by this standard

Chapter 1: Introduction 3

include file-system interface primitives1, device-specific terminal control func-
tions2 and process control functions.3

Some facilities from ISO/IEC 9945-2:1993, the POSIX Shell and Utilities standard
(POSIX.2) are also implemented in the GNU library. These include utilities for deal-
ing with regular expressions and other pattern-matching facilities (see Chapter 13
[Pattern Matching], page 355).

1.2.3 Berkeley Unix

The GNU C Library defines facilities from some versions of Unix that are not
formally standardized, specifically from the 4.2 BSD, 4.3 BSD and 4.4 BSD Unix
systems (also known as Berkeley Unix) and from SunOS (a popular 4.2 BSD deriva-
tive that includes some Unix System V functionality). These systems support most
of the ISO C and POSIX facilities, and 4.4 BSD and newer releases of SunOS in fact
support them all.

The BSD facilities include symbolic links4, the select function5, the BSD sig-
nal functions6 and sockets.7

1.2.4 SVID (The System V Interface Description)

The System V Interface Description (SVID) is a document describing the AT&T
Unix System V operating system. It is to some extent a superset of the POSIX
standard.

The GNU C Library defines most of the facilities required by the SVID that are
not also required by the ISO C or POSIX standards, for compatibility with System
V Unix and other Unix systems (such as SunOS) that include these facilities. How-
ever, many of the more obscure and less generally useful facilities required by the
SVID are not included. (In fact, Unix System V itself does not provide them all.)

The supported facilities from System V include the methods for inter-process
communication and shared memory, the hsearch and drand48 families of func-
tions, fmtmsg and several of the mathematical functions.

1 See Sandra Loosemore et al., “File-System Interface”, GNU C Library: Systems & Network Appli-
cations (Boston: GNU Press, 2004), available online at http:// www.gnu.org/ manual/
manual.html.

2 Ibid., “Low-Level Terminal Interface”.
3 Ibid., “Processes”.
4 Ibid., “Symbolic Links”.
5 Ibid., “Waiting for Input or Output”.
6 Ibid., “BSD Signal Handling”.
7 Ibid., “Sockets”.

4 The GNU C Library: Application Fundamentals

1.2.5 XPG (The X/Open Portability Guide)

The X/Open Portability Guide8 is a more general standard than POSIX. X/Open
owns the Unix copyright and the XPG specifies the requirements for systems that
are intended to be Unix systems.

The GNU C Library complies with the X/Open Portability Guide, Issue 4.2, with
all extensions common to XSI (X/Open System Interface) compliant systems and
also all X/Open Unix extensions.

The additions on top of POSIX are mainly derived from functionality available in
System V and BSD systems, though some of the really bad mistakes in System V
systems were corrected. Since fulfilling the XPG standard with the Unix extensions
is a precondition for getting the Unix brand, chances are good that the functionality
is available on commercial systems.

1.3 Using the Library
This section describes some of the practical issues involved in using the GNU C

Library.

1.3.1 Header Files

Libraries for use by C programs really consist of two parts: header files that
define types and macros and declare variables and functions, and the actual library
or archive that contains the definitions of the variables and functions.

(Recall that in C, a declaration merely provides information that a function or
variable exists and gives its type. For a function declaration, information about the
types of its arguments might be provided as well. The purpose of declarations is
to allow the compiler to correctly process references to the declared variables and
functions. A definition, on the other hand, actually allocates storage for a variable
or says what a function does.)

In order to use the facilities in the GNU C Library, you should be sure that your
program source files include the appropriate header files. This is so that the com-
piler has declarations of these facilities available and can correctly process refer-
ences to them. Once your program has been compiled, the linker resolves these
references to the actual definitions provided in the archive file.

Header files are included into a program source file by the ‘#include’ prepro-
cessor directive. The C language supports two forms of this directive; the first,

#include "header"

is typically used to include a header file header that you write yourself; this would
contain definitions and declarations describing the interfaces between the different
parts of your particular application. By contrast,

8 X/Open Company, X/Open Portability Guide, Issue 4 (Reading, UK: X/Open Company, Ltd.,
1992).

Chapter 1: Introduction 5

#include <file.h>

is typically used to include a header file ‘file.h’ that contains definitions and
declarations for a standard library. This file would normally be installed in a stan-
dard place by your system administrator. You should use this second form for the
C library header files.

Typically, ‘#include’ directives are placed at the top of the C source file, be-
fore any other code.9 If you begin your source files with some comments explaining
what the code in the file does (a good idea), put the ‘#include’ directives im-
mediately afterward, following the feature-test macro definition (see Section 1.3.4
[Feature-Test Macros], page 8).

The GNU C Library provides several header files, each of which contains the type
and macro definitions and variable and function declarations for a group of related
facilities. This means that your programs may need to include several header files,
depending on exactly which facilities you are using.

Some library header files include other library header files automatically. How-
ever, as a matter of programming style, you should not rely on this; it is better to
explicitly include all the header files required for the library facilities you are using.
The GNU C Library header files have been written in such a way that it doesn’t mat-
ter if a header file is accidentally included more than once; including a header file
a second time has no effect. Likewise, if your program needs to include multiple
header files, the order in which they are included doesn’t matter.

Compatibility Note: Inclusion of standard header files in any order and any
number of times works in any ISO C implementation. However, this has tradition-
ally not been the case in many older C implementations.

Strictly speaking, you don’t have to include a header file to use a function it
declares; you could declare the function explicitly yourself, according to the spec-
ifications in this manual. But it is usually better to include the header file because
it may define types and macros that are not otherwise available and because it may
define more efficient macro replacements for some functions. It is also a sure way
to have the correct declaration.

1.3.2 Macro Definitions of Functions

If we describe something as a function in this manual, it may have a macro
definition as well. This normally has no effect on how your program runs—the
macro definition does the same thing as the function would. In particular, macro
equivalents for library functions evaluate arguments exactly once, in the same way
that a function call would. The main reason for these macro definitions is that
sometimes they can produce an in-line expansion that is considerably faster than an
actual function call.

9 For more information about the use of header files and ‘#include’ directives, see Richard M.
Stallman and the GCC Developer Community, “Header Files” in The GNU C Preprocessor Man-
ual (2003), http:// gcc.gnu.org/ onlinedocs/ gcc-3.3.2/ cpp/.

http:// gcc.gnu.org/ onlinedocs/ gcc-3.3.2/ cpp/

6 The GNU C Library: Application Fundamentals

Taking the address of a library function works even if it is also defined as a
macro. This is because, in this context, the name of the function isn’t followed by
the left parenthesis that is syntactically necessary to recognize a macro call.

You might occasionally want to avoid using the macro definition of a function—
perhaps to make your program easier to debug. There are two ways you can do
this:

1. You can avoid a macro definition in a specific use by enclosing the name of
the function in parentheses. This works because the name of the function does
not appear in a syntactic context where it is recognizable as a macro call.

2. You can suppress any macro definition for a whole source file by using the
‘#undef’ preprocessor directive, unless otherwise stated explicitly in the de-
scription of that facility.

For example, suppose the header file ‘stdlib.h’ declares a function named
abs with:

extern int abs (int);

and also provides a macro definition for abs. Then, in:
#include <stdlib.h>

int f (int *i) { return abs (++*i); }

the reference to abs might refer to either a macro or a function. On the other hand,
in each of the following examples, the reference is to a function and not a macro:

#include <stdlib.h>

int g (int *i) { return (abs) (++*i); }

#undef abs

int h (int *i) { return abs (++*i); }

Since macro definitions that double for a function behave in exactly the same way
as the actual function version, there is usually no need for any of these methods. In
fact, removing macro definitions usually just makes your program slower.

1.3.3 Reserved Names

The names of all library types, macros, variables and functions that come from
the ISO C standard are reserved unconditionally; your program may not redefine
these names. All other library names are reserved if your program explicitly in-
cludes the header file that defines or declares them. There are several reasons for
these restrictions:

• Other people reading your code could get very confused if, for example, you
were using a function named exit to do something completely different from
what the standard exit function does. Preventing this situation helps to make
your programs easier to understand and contributes to modularity and main-
tainability.

Chapter 1: Introduction 7

• It avoids the possibility of a user accidentally redefining a library function that
is called by other library functions. If redefinition were allowed, those other
functions would not work properly.

• It allows the compiler to do whatever special optimizations it pleases on calls
to these functions, without the possibility that they may have been redefined
by the user. Some library facilities, such as those for dealing with variadic
arguments10 and nonlocal exits11, actually require a considerable amount of
cooperation on the part of the C compiler, and with respect to the implemen-
tation, it might be easier for the compiler to treat these as built-in parts of the
language.

In addition to the names documented in this manual, reserved names include all
external identifiers (global functions and variables) that begin with an underscore
(‘_’) and all identifiers regardless of use that begin with either two underscores or
an underscore followed by a capital letter. This is so that the library and header
files can define functions, variables, and macros for internal purposes without risk
of conflict with names in user programs.

Some additional classes of identifier names are reserved for future extensions to
the C language or the POSIX.1 environment. While using these names for your own
purposes right now might not cause a problem, there is the possibility of conflict
with future versions of the C or POSIX standards, so you should avoid using them:

• Names beginning with a capital ‘E’ followed by a digit or uppercase letter
may be used for additional error-code names (see Chapter 2 [Error Reporting],
page 17).

• Names that begin with either ‘is’ or ‘to’ followed by a lowercase letter may
be used for additional character testing and conversion functions (see Chap-
ter 4 [Character Handling], page 79).

• Names that begin with ‘LC_’ followed by an uppercase letter may be used
for additional macros specifying locale attributes (see Chapter 7 [Locales and
Internationalization], page 181).

• Names of all existing mathematics functions (see Chapter 8 [Mathematics],
page 203) suffixed with ‘f’ or ‘l’ are reserved for corresponding functions
that operate on float and long double arguments, respectively.

• Names that begin with ‘SIG’ followed by an uppercase letter are reserved for
additional signal names.12

• Names that begin with ‘SIG_’ followed by an uppercase letter are reserved
for additional signal actions.13

• Names beginning with ‘str’, ‘mem’, or ‘wcs’ followed by a lowercase letter
are reserved for additional string and array functions (see Chapter 5 [String
and Array Utilities], page 89).

10 See Loosemore et al., “Variadic Functions”.
11 Ibid., “Nonlocal Exits”.
12 Ibid., “Standard Signals”.
13 Ibid., “Basic Signal Handling”.

8 The GNU C Library: Application Fundamentals

• Names that end with ‘_t’ are reserved for additional type names.

In addition, some individual header files reserve names beyond those that they
actually define. You only need to worry about these restrictions if your program
includes that particular header file.

• The header file ‘dirent.h’ reserves names prefixed with ‘d_’.
• The header file ‘fcntl.h’ reserves names prefixed with ‘l_’, ‘F_’, ‘O_’,

and ‘S_’.
• The header file ‘grp.h’ reserves names prefixed with ‘gr_’.
• The header file ‘limits.h’ reserves names suffixed with ‘_MAX’.
• The header file ‘pwd.h’ reserves names prefixed with ‘pw_’.
• The header file ‘signal.h’ reserves names prefixed with ‘sa_’ and ‘SA_’.
• The header file ‘sys/stat.h’ reserves names prefixed with ‘st_’ and ‘S_’.

• The header file ‘sys/times.h’ reserves names prefixed with ‘tms_’.
• The header file ‘termios.h’ reserves names prefixed with ‘c_’, ‘V’, ‘I’,

‘O’, and ‘TC’; and names prefixed with ‘B’ followed by a digit.

1.3.4 Feature-Test Macros

The exact set of features available when you compile a source file is controlled
by which feature-test macros you define.

If you compile your programs using ‘gcc -ansi’, you get only the ISO C li-
brary features, unless you explicitly request additional features by defining one or
more of the feature macros.14

You should define these macros by using ‘#define’ preprocessor directives
at the top of your source code files. These directives must come before any
#include of a system header file. It is best to make them the very first thing
in the file, preceded only by comments. You could also use the ‘-D’ option to
GCC, but it is better if you make the source files indicate their own meaning in a
self-contained way.

This system exists to allow the library to conform to multiple standards. Al-
though the different standards are often described as supersets of each other, they
are usually incompatible because larger standards require functions with names that
smaller ones reserve to the user program. This is not mere pedantry—it has been a
problem in practice. For instance, some non-GNU programs define functions named
getline that have nothing to do with this library’s getline. They would not
be compilable if all features were enabled indiscriminately.

14 See Richard M. Stallman and the GCC Developer Community, “Invoking GCC” in Using GCC:
The GNU Compiler Collection Reference Manual (Boston, MA: GNU Press, October 2003),
http:// gcc.gnu.org/ onlinedocs/ gcc-3.3.2/ gcc/, for more information about
GCC options.

http:// gcc.gnu.org/ onlinedocs/ gcc-3.3.2/ gcc/

Chapter 1: Introduction 9

This should not be used to verify that a program conforms to a limited standard.
It is insufficient for this purpose, as it will not protect you from including header
files outside the standard, or relying on semantics undefined within the standard.

MacroPOSIX SOURCE
If you define this macro, then the functionality from the POSIX.1 standard (IEEE
Standard 1003.1) is available, as well as all of the ISO C facilities.
The state of _POSIX_SOURCE is irrelevant if you define the macro _POSIX_
C_SOURCE to a positive integer.

MacroPOSIX C SOURCE
Define this macro to a positive integer to control which POSIX functionality is
made available. The greater the value of this macro, the more functionality is
made available.
If you define this macro to a value greater than or equal to 1, then the functional-
ity from the 1990 edition of the POSIX.1 standard (IEEE Standard 1003.1-1990)
is made available.
If you define this macro to a value greater than or equal to 2, then the functional-
ity from the 1992 edition of the POSIX.2 standard (IEEE Standard 1003.2-1992)
is made available.
If you define this macro to a value greater than or equal to 199309L, then the
functionality from the 1993 edition of the POSIX.1b standard (IEEE Standard
1003.1b-1993) is made available.
Greater values for _POSIX_C_SOURCE will enable future extensions. The
POSIX standards process will define these values as necessary, and the GNU C
Library should support them some time after they become standardized. The
1996 edition of POSIX.1 (ISO/IEC 9945-1: 1996) states that if you define _
POSIX_C_SOURCE to a value greater than or equal to 199506L, then the
functionality from the 1996 edition is made available.

MacroBSD SOURCE
If you define this macro, functionality derived from 4.3 BSD Unix is included as
well as the ISO C, POSIX.1, and POSIX.2 material.
Some of the features derived from 4.3 BSD Unix conflict with the corresponding
features specified by the POSIX.1 standard. If this macro is defined, the 4.3 BSD
definitions take precedence over the POSIX definitions.
Due to the nature of some of the conflicts between 4.3 BSD and POSIX.1, you
need to use a special BSD compatibility library when linking programs com-
piled for BSD compatibility. This is because some functions must be defined
in two different ways, one in the normal C library, and one in the compatibil-
ity library. If your program defines _BSD_SOURCE, you must give the option
‘-lbsd-compat’ to the compiler or linker when linking the program, to tell
it to find functions in this special compatibility library before looking for them
in the normal C library.

10 The GNU C Library: Application Fundamentals

MacroSVID SOURCE
If you define this macro, functionality derived from SVID is included as well as
the ISO C, POSIX.1, POSIX.2 and X/Open material.

MacroXOPEN SOURCE
MacroXOPEN SOURCE EXTENDED

If you define this macro, functionality described in the X/Open Portability
Guide15 is included. This is a superset of the POSIX.1 and POSIX.2 functional-
ity and in fact _POSIX_SOURCE and _POSIX_C_SOURCE are automatically
defined.
As the unification of all Unices, functionality only available in BSD and SVID is
also included.
If the macro _XOPEN_SOURCE_EXTENDED is also defined, even more func-
tionality is available. The extra functions will make all functions available that
are necessary for the X/Open Unix brand.
If the macro _XOPEN_SOURCE has the value 500, this includes all functionality
described so far plus some new definitions from the Single Unix Specification,
version 2.

MacroLARGEFILE SOURCE
If this macro is defined, some extra functions are available that rectify a few
shortcomings in all previous standards. Specifically, the functions fseeko
and ftello are available. Without these functions, the difference between the
ISO C interface (fseek, ftell) and the low-level POSIX interface (lseek)
would lead to problems.
This macro was introduced as part of the Large File Support extension (LFS).

MacroLARGEFILE64 SOURCE
If you define this macro, an additional set of functions is made available that
enables 32-bit systems to use files of sizes beyond the usual limit of 2GB. This
interface is not available if the system does not support files that large. On
systems where the natural file size limit is greater than 2GB (i.e., on 64-bit
systems), the new functions are identical to the replaced functions.
The new functionality is made available by a new set of types and functions that
replace the existing ones. The names of these new objects contain 64 to indicate
the intention, e.g., off_t vs. off64_t and fseeko vs. fseeko64.
This macro was introduced as part of the Large File Support extension (LFS). It
is a transition interface for the period when 64-bit offsets are not generally used
(see _FILE_OFFSET_BITS).

15 X/Open Company, X/Open Portability Guide, Issue 4, Version 2 (Reading, UK: X/Open Company,
Ltd., 1994).

Chapter 1: Introduction 11

MacroFILE OFFSET BITS
This macro determines which file-system interface will be used, one replac-
ing the other. Whereas _LARGEFILE64_SOURCE makes the 64-bit interface
available as an additional interface, _FILE_OFFSET_BITS allows the 64-bit
interface to replace the old interface.
If _FILE_OFFSET_BITS is undefined, or if it is defined to the value 32,
nothing changes. The 32-bit interface is used and types like off_t have a size
of 32 bits on 32-bit systems.
If the macro is defined to the value 64, the large file interface replaces the old
interface. The functions are not made available under different names (as they
are with _LARGEFILE64_SOURCE); instead, the old function names now ref-
erence the new functions, e.g., a call to fseeko now indeed calls fseeko64.
This macro should only be selected if the system provides mechanisms for han-
dling large files. On 64-bit systems this macro has no effect since the *64
functions are identical to the normal functions.
This macro was introduced as part of the Large File Support extension (LFS).

MacroISOC99 SOURCE
Until the revised ISO C standard is widely adopted the new features are not au-
tomatically enabled. The GNU libc nevertheless has a complete implementation
of the new standard. To enable the new features the macro _ISOC99_SOURCE
should be defined.

MacroGNU SOURCE
If you define this macro, everything is included: ISO C89, ISO C99, POSIX.1,
POSIX.2, BSD, SVID, X/Open, LFS, and GNU extensions. In the cases where
POSIX.1 conflicts with BSD, the POSIX definitions take precedence.
If you want to get the full effect of _GNU_SOURCE but make the BSD definitions
take precedence over the POSIX definitions, use this sequence of definitions:

#define _GNU_SOURCE

#define _BSD_SOURCE

#define _SVID_SOURCE

If you do this, you must link your program with the BSD compatibility library by
passing the ‘-lbsd-compat’ option to the compiler or linker. If you forget,
you may get very strange errors at run time.

MacroREENTRANT
MacroTHREAD SAFE

If you define one of these macros, reentrant versions of several functions get
declared. Some of the functions are specified in POSIX.1c, but many others are
only available on a few other systems or are unique to GNU libc. The problem
is the delay in the standardization of the thread safe C library interface.
Unlike on some other systems, no special version of the C library must be used
for linking. There is only one version—but while compiling this, it must have
been specified to compile as thread safe.

12 The GNU C Library: Application Fundamentals

We recommend you use _GNU_SOURCE in new programs. If you don’t specify
the ‘-ansi’ option to GCC and do not define any of these macros explicitly, the
effect is the same as defining _POSIX_C_SOURCE to 2 and _POSIX_SOURCE,
_SVID_SOURCE and _BSD_SOURCE to 1.

When you define a feature-test macro to request a larger class of features, it
is harmless to define, in addition, a feature-test macro for a subset of those fea-
tures. For example, if you define _POSIX_C_SOURCE, then defining _POSIX_
SOURCE as well has no effect. Likewise, if you define _GNU_SOURCE, defining
either _POSIX_SOURCE, _POSIX_C_SOURCE, or _SVID_SOURCE as well has
no effect.

Note, however, that the features of _BSD_SOURCE are not a subset of any of
the other feature-test macros supported. This is because it defines BSD features that
take precedence over the POSIX features that are requested by the other macros. For
this reason, defining _BSD_SOURCE in addition to the other feature-test macros
does have an effect—it causes the BSD features to take priority over the conflicting
POSIX features.

1.4 Road Map to the Manual
Here is an overview of the contents of the remaining chapters of this manual.
The following chapters are found in the first volume, Sandra Loosemore et al.,

GNU C Library: Application Fundamentals (Boston: GNU Press, 2004), available
online at http:// www.gnu.org/ manual/ manual.html.

• “Error Reporting” describes how errors detected by the library are reported.
• “Virtual Memory Allocation and Paging” describes the GNU library’s facilities

for managing and using virtual and real memory, including dynamic allocation
of virtual memory. If you do not know in advance how much memory your
program needs, you can allocate it dynamically instead, and manipulate it via
pointers.

• “Character Handling” contains information about character-classification
functions (such as isspace) and functions for performing case conversion.

• “String and Array Utilities” has descriptions of functions for manipulating
strings (null-terminated character arrays) and general byte arrays, including
operations such as copying and comparison.

• “Character-Set Handling” contains information about manipulating characters
and strings using character sets larger than will fit in the usual char data type.

• “Locales and Internationalization” describes how selecting a particular coun-
try or language affects the behavior of the library. For example, the locale
affects collation sequences for strings and how monetary values are formatted.

• “Mathematics” contains information about the math library functions. These
include things like random-number generators and remainder functions on in-
tegers as well as the usual trigonometric and exponential functions on floating-
point numbers.

Chapter 1: Introduction 13

• “Arithmetic Functions” describes functions for simple arithmetic, analysis of
floating-point values, and reading numbers from strings.

• “Date and Time” describes functions for measuring both calendar time and
CPU time, as well as functions for setting alarms and timers.

• “Message Translation” describes how to write programs that are capable of
delivering messages in whatever language the user selects without filling the
source code with sets of translations.

• “Searching and Sorting” contains information about functions for searching
and sorting arrays. You can use these functions on any kind of array by pro-
viding an appropriate comparison function.

• “Pattern Matching” presents functions for matching regular expressions and
shell file-name patterns, and for expanding words as the shell does.

• “The Basic Program/System Interface” tells how your programs can access
their command-line arguments and environment variables.

• “Input/Output Overview” gives an overall look at the input and output facili-
ties in the library, and contains information about basic concepts such as file
names.

• “Debugging Support” describes functions provided by the library to make the
debugging process easier, whether or not a dedicated debugger program is
being used.

• “Input/Output on Streams” describes I/O operations involving streams (or
FILE * objects). These are the normal C library functions from ‘stdio.h’.

• “Summary of Library Facilities” gives a summary of all the functions, vari-
ables, and macros in the library, with complete data types and function proto-
types, and says what standard or system each is derived from. This section is
also found in the second volume, for convenient reference.

The following chapters are found in the second volume, Sandra Loosemore et
al., GNU C Library: System & Network Applications (Boston: GNU Press, 2004),
available online at http:// www.gnu.org/ manual/ manual.html.

• “Low-Level Input/Output” contains information about I/O operations on file
descriptors. File descriptors are a lower-level mechanism specific to the Unix
family of operating systems.

• “File-System Interface” has descriptions of operations on entire files, such
as functions for deleting and renaming them and for creating new directories.
This chapter also contains information about how you can access the attributes
of a file, such as its owner and file-protection modes.

• “Pipes and FIFOs” contains information about simple interprocess-
communication mechanisms. Pipes allow communication between two
related processes (such as between a parent and child), while FIFOs allow
communication between processes sharing a common file-system on the same
machine.

• “Sockets” describes a more complicated interprocess-communication mech-
anism that allows processes running on different machines to communicate

14 The GNU C Library: Application Fundamentals

over a network. This chapter also contains information about Internet host-
addressing and how to use the system network databases.

• “Low-Level Terminal Interface” describes how you can change the attributes
of a terminal device. If you want to disable echo of characters typed by the
user, for example, read this chapter.

• “Processes” contains information about how to start new processes and run
programs.

• “Job Control” describes functions for manipulating process groups and the
controlling terminal. This material is probably only of interest if you are writ-
ing a shell or other program that handles job control specially.

• “System Databases and Name-Service Switch” describes the services that are
available for looking up names in the system databases, how to determine
which service is used for which database, and how these services are imple-
mented so that contributors can design their own services.

• “Users and Groups” tells you how to access the system user- and group-
databases.

• “System Management” describes functions for controlling and getting infor-
mation about the hardware and software configuration your program is exe-
cuting under.

• “System Configuration Parameters” tells you how you can get information
about various operating system limits. Most of these parameters are provided
for compatibility with POSIX.

• “DES Encryption and Password Handling” discusses the legal and technical
issues related to password encryption and security, as well as the functions
necessary to implement effective encryption.

• “Resource Usage and Limitation” tells you how to monitor the memory and
other resource usage totals of processes, and how to regulate this usage. It also
covers prioritization and scheduling.

• “Syslog” describes facilities for issuing and logging messages of system ad-
ministration interest.

• “Nonlocal Exits” contains descriptions of the setjmp and longjmp func-
tions. These functions provide a facility for goto-like jumps that can jump
from one function to another.

• “Signal Handling” tells you all about signals—what they are, how to establish
a handler that is called when a particular kind of signal is delivered, and how
to prevent signals from arriving during critical sections of your program.

• “POSIX Threads” describes the pthreads (POSIX threads) library. This library
provides support functions for multithreaded programs: thread primitives, syn-
chronization objects, etc. It also implements POSIX 1003.1b semaphores.

• “C Language Facilities in the Library” contains information about library sup-
port for standard parts of the C language, including things like the sizeof
operator and the symbolic constant NULL, how to write functions accepting
variable numbers of arguments, and constants describing the ranges and other

Chapter 1: Introduction 15

properties of the numerical types. There is also a simple debugging mecha-
nism that allows you to put assertions in your code and have diagnostic mes-
sages printed if the tests fail.

• “Installing the GNU C Library” provides a detailed reference for installing,
compiling and configuring the GNU C Library. Configuration and optimization
command-line options are covered here.

• “Library Maintenance” explains how to port and enhance the GNU C Library
and how to report any bugs you might find.

If you already know the name of the facility you are interested in, you can look
it up in Appendix A [Summary of Library Facilities], page 521. This gives you
a summary of its syntax and a pointer to where you can find a more detailed de-
scription. This appendix is particularly useful if you just want to verify the order
and type of arguments to a function, for example. It also tells you what standard or
system each function, variable, or macro is derived from.

16 The GNU C Library: Application Fundamentals

Chapter 2: Error Reporting 17

2 Error Reporting
Many functions in the GNU C Library detect and report error conditions, and

sometimes your programs need to check for these error conditions. For example,
when you open an input file, you should verify that the file was actually opened
correctly, and print an error message or take other appropriate action if the call to
the library function failed.

This chapter describes how the error-reporting facility works. Your program
should include the header file ‘errno.h’ to use this facility.

2.1 Checking for Errors
Most library functions return a special value to indicate that they have failed. The

special value is typically -1, a null pointer, or a constant such as EOF that is defined
for that purpose. But this return value tells you only that an error has occurred. To
find out what kind of error it was, you need to look at the error code stored in the
variable errno. This variable is declared in the header file ‘errno.h’.

Variablevolatile int errno
The variable errno contains the system error number. You can change the
value of errno.
Since errno is declared volatile, it might be changed asynchronously by
a signal handler.1 However, a properly written signal handler saves and restores
the value of errno, so you generally do not need to worry about this possibility
except when writing signal handlers.
The initial value of errno at program start-up is zero. Many library functions
are guaranteed to set it to certain nonzero values when they encounter certain
kinds of errors. These error conditions are listed for each function. These func-
tions do not change errno when they succeed; thus, the value of errno after
a successful call is not necessarily zero, and you should not use errno to de-
termine whether a call failed. The proper way to do that is documented for each
function. If the call failed, you can examine errno.
Many library functions can set errno to a nonzero value as a result of call-
ing other library functions that might fail. You should assume that any library
function might alter errno when the function returns an error.
Portability Note: ISO C specifies errno as a "modifiable lvalue" rather than
as a variable, permitting it to be implemented as a macro. For example, its
expansion might involve a function call, like *_errno (). In fact, that is what
it is on the GNU system itself. The GNU library, on non-GNU systems, does
whatever is right for the particular system.
There are a few library functions, like sqrt and atan, that return a perfectly
legitimate value in case of an error, but also set errno. For these functions, if

1 See Loosemore et al., “Defining Handlers” (see chap. 1, n. 1).

18 The GNU C Library: Application Fundamentals

you want to check to see whether an error occurred, the recommended method
is to set errno to zero before calling the function, and then check its value
afterward.

All the error codes have symbolic names; they are macros defined in
‘errno.h’. The names start with ‘E’ and an uppercase letter or digit; you should
consider names of this form to be reserved names (see Section 1.3.3 [Reserved
Names], page 6).

The error code values are all positive integers and are all distinct, with one excep-
tion: EWOULDBLOCK and EAGAIN are the same. Since the values are distinct, you
can use them as labels in a switch statement; just do not use both EWOULDBLOCK
and EAGAIN. Your program should not make any other assumptions about the spe-
cific values of these symbolic constants.

The value of errno doesn’t necessarily have to correspond to any of these
macros, since some library functions might return other error codes of their own
for other situations. The only values that are guaranteed to be meaningful for a
particular library function are the ones that this manual lists for that function.

On non-GNU systems, almost any system call can return EFAULT if it is given
an invalid pointer as an argument. Since this could only happen as a result of a bug
in your program, and since it will not happen on the GNU system, we have saved
space by not mentioning EFAULT in the descriptions of individual functions.

In some Unix systems, many system calls can also return EFAULT if given as
an argument a pointer into the stack, and the kernel for some obscure reason fails
in its attempt to extend the stack. If this ever happens, you should probably try
using statically or dynamically allocated memory instead of stack memory on that
system.

2.2 Error Codes
The error code macros are defined in the header file ‘errno.h’. All of them

expand into integer constant values. Some of these error codes cannot occur on the
GNU system, but they can occur using the GNU library on other systems.

Macroint EPERM
This means the operation is not permitted; only the owner of the file (or other
resource) or processes with special privileges can perform the operation.

Macroint ENOENT
This means there is no such file or directory. This is a file does not exist error for
ordinary files that are referenced in contexts where they are expected to already
exist.

Macroint ESRCH
This means no process matches the specified process ID.

Chapter 2: Error Reporting 19

Macroint EINTR
This indicates an interrupted function call; an asynchronous signal occurred and
prevented completion of the call. When this happens, you should try the call
again.
You can choose to have functions resume after a signal that is handled, rather
than failing with EINTR.2

Macroint EIO
This indicates an input/output error; usually used for physical read or write er-
rors.

Macroint ENXIO
This means there is no such device or address. The system tried to use the
device represented by a file you specified, and it could not find the device. This
can mean that the device file was installed incorrectly, or that the physical device
is missing or not correctly attached to the computer.

Macroint E2BIG
This means that the argument list is too long; it is used when the arguments
passed to a new program being executed with one of the exec functions3 oc-
cupy too much memory space. This condition never arises in the GNU system.

Macroint ENOEXEC
This indicates an invalid executable file format. This condition is detected by
the exec functions.4

Macroint EBADF
This indicates a bad file descriptor; for example, I/O on a descriptor that has
been closed or reading from a descriptor open only for writing (or vice versa).

Macroint ECHILD
There are no child processes. This error happens on operations that are supposed
to manipulate child processes when there are not any processes to manipulate.

Macroint EDEADLK
This means a deadlock was avoided; allocating a system resource would have
resulted in a deadlock situation. The system does not guarantee that it will notice
all such situations. This error means you got lucky and the system noticed; it
might just hang.5

2 Ibid., “Primitives Interrupted by Signals”.
3 Ibid., “Executing a File”.
4 Ibid.
5 For an example, see Loosemore et al., “File Locks”.

20 The GNU C Library: Application Fundamentals

Macroint ENOMEM
This means no memory is available. The system cannot allocate more virtual
memory because its capacity is full.

Macroint EACCES
This means that permission is denied; the file permissions do not allow the at-
tempted operation.

Macroint EFAULT
This indicates a bad address; an invalid pointer was detected. In the GNU system,
this error never happens; you get a signal instead.

Macroint ENOTBLK
A file that is not a block special file was given in a situation that requires one.
For example, trying to mount an ordinary file as a file system in Unix gives this
error.

Macroint EBUSY
This means that a resource is busy; a system resource that cannot be shared
is already in use. For example, if you try to delete a file that is the root of a
currently mounted file system, you get this error.

Macroint EEXIST
This means a file exists; an existing file was specified in a context where it only
makes sense to specify a new file.

Macroint EXDEV
An attempt to make an improper link across file systems was detected. This
happens not only when you use link,6 but also when you rename a file with
rename.7

Macroint ENODEV
The wrong type of device was given to a function that expects a particular sort
of device.

Macroint ENOTDIR
A file that is not a directory was specified when a directory is required.

Macroint EISDIR
A file is a directory; you cannot open a directory for writing, or create or remove
hard links to it.

6 Ibid., “Hard Links”.
7 Ibid., “Renaming Files”.

Chapter 2: Error Reporting 21

Macroint EINVAL
This indicates an invalid argument. This is used to indicate various kinds of
problems with passing the wrong argument to a library function.

Macroint EMFILE
The current process has too many files open and cannot open any more. Dupli-
cate descriptors do count toward this limit.
In BSD and GNU, the number of open files is controlled by a resource limit that
can usually be increased. If you get this error, you might want to increase the
RLIMIT_NOFILE limit or make it unlimited.8

Macroint ENFILE
There are too many distinct file openings in the entire system. Note that any
number of linked channels count as just one file opening.9 This error never
occurs in the GNU system.

Macroint ENOTTY
This indicates an inappropriate I/O control operation, such as trying to set ter-
minal modes on an ordinary file.

Macroint ETXTBSY
This indicates an attempt to execute a file that is currently open for writing, or
write to a file that is currently being executed. Often using a debugger to run a
program is considered having it open for writing and will cause this error. (The
name stands for text file busy.) This is not an error in the GNU system; the text
is copied as necessary.

Macroint EFBIG
A file is too big; the size of a file would be larger than allowed by the system.

Macroint ENOSPC
No space is left on device; a write operation on a file failed because the disk is
full.

Macroint ESPIPE
This indicates an invalid seek operation (such as on a pipe).

Macroint EROFS
An attempt was made to modify something on a read-only file system.

8 Ibid., “Limiting Resource Usage”.
9 Ibid., “Linked Channels”.

22 The GNU C Library: Application Fundamentals

Macroint EMLINK
There are too many links; the link count of a single file would become too large.
rename can cause this error if the file being renamed already has as many links
as it can take.10

Macroint EPIPE
This indicates a broken pipe; there is no process reading from the other end
of a pipe. Every library function that returns this error code also generates a
SIGPIPE signal; this signal terminates the program if not handled or blocked.
Thus, your program will never actually see EPIPE unless it has handled or
blocked SIGPIPE.

Macroint EDOM
This indicates a domain error; used by mathematical functions when an argu-
ment value does not fall into the domain over which the function is defined.

Macroint ERANGE
This indicates a range error; used by mathematical functions when the result
value is not representable because of overflow or underflow.

Macroint EAGAIN
Resource temporarily unavailable; the call might work if you try again later.
The macro EWOULDBLOCK is another name for EAGAIN; they are always the
same in the GNU C Library.
This error can happen in a few different situations:

• An operation that would block was attempted on an object that has non-
blocking mode selected. Trying the same operation again will block until
some external condition makes it possible to read, write, or connect (what-
ever the operation). You can use select to find out when the operation
will be possible.11

Portability Note: In many older Unix systems, this condition was indi-
cated by EWOULDBLOCK, which was a distinct error code different from
EAGAIN. To make your program portable, you should check for both codes
and treat them the same.

• A temporary resource shortage made an operation impossible. fork can
return this error. It indicates that the shortage is expected to pass, so your
program can try the call again later and it may succeed. It is probably
a good idea to delay for a few seconds before trying it again, to allow
time for other processes to release scarce resources. Such shortages are
usually fairly serious and affect the whole system, so usually an interactive
program should report the error to the user and return to its command loop.

10 Ibid., “Renaming Files”.
11 Ibid., “Waiting for Input or Output”.

Chapter 2: Error Reporting 23

Macroint EWOULDBLOCK
In the GNU C Library, this is another name for EAGAIN. The values are always
the same, on every operating system.
C libraries in many older Unix systems have EWOULDBLOCK as a separate error
code.

Macroint EINPROGRESS
An operation that cannot complete immediately was initiated on an object that
has nonblocking mode selected. Some functions that must always block (such
as connect12) never return EAGAIN. Instead, they return EINPROGRESS
to indicate that the operation has begun and will take some time. Attempts to
manipulate the object before the call completes return EALREADY. You can use
the select function to find out when the pending operation has completed.13

Macroint EALREADY
An operation is already in progress on an object that has nonblocking mode
selected.

Macroint ENOTSOCK
A file that isn’t a socket was specified when a socket is required.

Macroint EMSGSIZE
The size of a message sent on a socket was larger than the supported maximum
size.

Macroint EPROTOTYPE
The socket type does not support the requested communications protocol.

Macroint ENOPROTOOPT
You specified a socket option that doesn’t make sense for the particular protocol
being used by the socket.14

Macroint EPROTONOSUPPORT
The socket domain does not support the requested communications protocol
(perhaps because the requested protocol is completely invalid).15

Macroint ESOCKTNOSUPPORT
The socket type is not supported.

12 Ibid., “Connecting”.
13 Ibid., “Waiting for Input or Output”.
14 Ibid., “Socket Options”.
15 Ibid., “Creating a Socket”.

24 The GNU C Library: Application Fundamentals

Macroint EOPNOTSUPP
The operation you requested is not supported. Some socket functions don’t
make sense for all types of sockets, and others may not be implemented for all
communications protocols. In the GNU system, this error can happen for many
calls when the object does not support the particular operation; it is a generic
indication that the server knows nothing to do for that call.

Macroint EPFNOSUPPORT
The socket communications protocol family you requested is not supported.

Macroint EAFNOSUPPORT
The address family specified for a socket is not supported; it is inconsistent with
the protocol being used on the socket.16

Macroint EADDRINUSE
The requested socket address is already in use.17

Macroint EADDRNOTAVAIL
The requested socket address is not available; for example, you tried to give a
socket a name that doesn’t match the local host name.18

Macroint ENETDOWN
A socket operation failed because the network was down.

Macroint ENETUNREACH
A socket operation failed because the subnet containing the remote host was
unreachable.

Macroint ENETRESET
A network connection was reset because the remote host crashed.

Macroint ECONNABORTED
A network connection was aborted locally.

Macroint ECONNRESET
A network connection was closed for reasons outside the control of the local
host, such as by the remote machine rebooting or an unrecoverable protocol
violation.

Macroint ENOBUFS
The kernel’s buffers for I/O operations are all in use. In GNU, this error is
always synonymous with ENOMEM; you may get one or the other from network
operations.

16 Ibid., “Sockets”.
17 Ibid., “Socket Addresses”.
18 Ibid.

Chapter 2: Error Reporting 25

Macroint EISCONN
You tried to connect a socket that is already connected.19

Macroint ENOTCONN
The socket is not connected to anything. You get this error when you try to
transmit data over a socket, without first specifying a destination for the data.
For a connectionless socket (for datagram protocols, such as UDP), you get
EDESTADDRREQ instead.

Macroint EDESTADDRREQ
No default destination address was set for the socket. You get this error when
you try to transmit data over a connectionless socket, without first specifying a
destination for the data with connect.

Macroint ESHUTDOWN
The socket has already been shut down.

Macroint ETOOMANYREFS
There are too many references; cannot splice.

Macroint ETIMEDOUT
A socket operation with a specified time-out received no response during the
time-out period.

Macroint ECONNREFUSED
A remote host refused to allow the network connection (typically because it is
not running the requested service).

Macroint ELOOP
Too many levels of symbolic links were encountered in looking up a file name.
This often indicates a cycle of symbolic links.

Macroint ENAMETOOLONG
The file name is too long (longer than PATH_MAX20) or the host name is too
long (in gethostname or sethostname21).

Macroint EHOSTDOWN
The remote host for a requested network connection is down.

Macroint EHOSTUNREACH
The remote host for a requested network connection is not reachable.

19 Ibid., “Making a Connection”.
20 Ibid., “Limits on File-System Capacity”.
21 Ibid., “Host Identification”.

26 The GNU C Library: Application Fundamentals

Macroint ENOTEMPTY
A directory was not empty, where an empty directory was expected. Typically,
this error occurs when you are trying to delete a directory.

Macroint EPROCLIM
This means that the per-user limit on new processes would be exceeded by an
attempted fork.22

Macroint EUSERS
The file quota system is confused because there are too many users.

Macroint EDQUOT
The user’s disk quota was exceeded.

Macroint ESTALE
There is a stale NFS file handle. This indicates an internal confusion in the NFS
system which is due to file system rearrangements on the server host. Repairing
this condition usually requires unmounting and remounting the NFS file system
on the local host.

Macroint EREMOTE
An attempt was made to NFS-mount a remote file system with a file name that
already specifies an NFS-mounted file. (This is an error on some operating
systems, but we expect it to work properly on the GNU system, making this
error code impossible.)

Macroint EBADRPC
RPC struct is bad.

Macroint ERPCMISMATCH
RPC version is wrong.

Macroint EPROGUNAVAIL
RPC program is not available.

Macroint EPROGMISMATCH
RPC program version is wrong.

Macroint EPROCUNAVAIL
RPC procedure for program is bad.

22 For details on the RLIMIT_NPROC limit, see Loosemore et al., “Limiting Resource Usage”.

Chapter 2: Error Reporting 27

Macroint ENOLCK
No locks are available. This is used by the file-locking facilities.23 This error
is never generated by the GNU system, but it can result from an operation to an
NFS server running another operating system.

Macroint EFTYPE
This indicates an inappropriate file type or format. The file was the wrong type
for the operation, or a data file had the wrong format.
On some systems chmod returns this error if you try to set the sticky bit on a
nondirectory file.24

Macroint EAUTH
There was an authentication error.

Macroint ENEEDAUTH
An authenticator is needed.

Macroint ENOSYS
Function not implemented. This indicates that the function called is not imple-
mented at all, either in the C library itself or in the operating system. When
you get this error, you can be sure that this particular function will always fail
with ENOSYS unless you install a new version of the C library or the operating
system.

Macroint ENOTSUP
Not supported. A function returns this error when certain parameter values are
valid, but the functionality they request is not available. This can mean that the
function does not implement a particular command or option value or flag bit at
all. For functions that operate on some object given in a parameter, such as a
file descriptor or a port, it might instead mean that only that specific object (file
descriptor, port, etc.) is unable to support the other parameters given; different
file descriptors might support different ranges of parameter values.
If the entire function is not available at all in the implementation, it returns
ENOSYS instead.

Macroint EILSEQ
While decoding a multibyte character, the function came to an invalid or incom-
plete sequence of bytes, or the given wide character is invalid.

Macroint EBACKGROUND
In the GNU system, servers supporting the term protocol return this error for
certain operations when the caller is not in the foreground process group of the

23 Ibid., “File Locks”.
24 Ibid., “Assigning File Permissions”.

28 The GNU C Library: Application Fundamentals

terminal. Users do not usually see this error because functions such as read
and write translate it into a SIGTTIN or SIGTTOU signal.25

Macroint EDIED
In the GNU system, opening a file returns this error when the file is translated
by a program and the translator program dies while starting up, before it has
connected to the file.

Macroint ED
The experienced user will know what is wrong.

Macroint EGREGIOUS
You did what?

Macroint EIEIO
Go home and have a glass of warm, dairy-fresh milk.

Macroint EGRATUITOUS
This error code has no purpose.

Macroint EBADMSG
Message was bad.

Macroint EIDRM
An identifier was removed.

Macroint EMULTIHOP
A multihop was attempted.

Macroint ENODATA
No data was available.

Macroint ENOLINK
A link has been severed.

Macroint ENOMSG
There is no message of the desired type.

Macroint ENOSR
There are no more streams resources.

Macroint ENOSTR
The device is not a stream.

25 For information on process groups and these signals, see Loosemore et al., “Job Control”.

Chapter 2: Error Reporting 29

Macroint EOVERFLOW
The value is too large for the defined data type.

Macroint EPROTO
There was a protocol error.

Macroint ETIME
The timer expired.

Macroint ECANCELED
Operation canceled; an asynchronous operation was canceled before it com-
pleted.26 When you call aio_cancel, the normal result is for the operations
affected to complete with this error.27

The following error codes are defined by the Linux/i386 kernel. They are not yet
documented.

Macroint ERESTART

Macroint ECHRNG

Macroint EL2NSYNC

Macroint EL3HLT

Macroint EL3RST

Macroint ELNRNG

Macroint EUNATCH

Macroint ENOCSI

Macroint EL2HLT

26 Ibid., “Perform I/O Operations in Parallel”.
27 Ibid., “Cancellation of AIO Operations”.

30 The GNU C Library: Application Fundamentals

Macroint EBADE

Macroint EBADR

Macroint EXFULL

Macroint ENOANO

Macroint EBADRQC

Macroint EBADSLT

Macroint EDEADLOCK

Macroint EBFONT

Macroint ENONET

Macroint ENOPKG

Macroint EADV

Macroint ESRMNT

Macroint ECOMM

Macroint EDOTDOT

Macroint ENOTUNIQ

Chapter 2: Error Reporting 31

Macroint EBADFD

Macroint EREMCHG

Macroint ELIBACC

Macroint ELIBBAD

Macroint ELIBSCN

Macroint ELIBMAX

Macroint ELIBEXEC

Macroint ESTRPIPE

Macroint EUCLEAN

Macroint ENOTNAM

Macroint ENAVAIL

Macroint EISNAM

Macroint EREMOTEIO

Macroint ENOMEDIUM

Macroint EMEDIUMTYPE

32 The GNU C Library: Application Fundamentals

2.3 Error Messages
The library has functions and variables designed to make it easy for

your program to report informative error messages in the customary format
about the failure of a library call. The functions strerror and perror
give you the standard error message for a given error code; the variable
program_invocation_short_name gives you convenient access to the
name of the program that encountered the error.

Functionchar * strerror (int errnum)
The strerror function maps the error code (see Section 2.1 [Checking for Er-
rors], page 17) specified by the errnum argument to a descriptive error message
string. The return value is a pointer to this string.
The value errnum normally comes from the variable errno.
You should not modify the string returned by strerror. Also, if you make
subsequent calls to strerror, the string might be overwritten. (But it’s guar-
anteed that no library function ever calls strerror behind your back.)
The function strerror is declared in ‘string.h’.

Functionchar * strerror r (int errnum, char *buf, size_t n)
The strerror_r function works like strerror but instead of returning the
error message in a statically allocated buffer shared by all threads in the process,
it returns a private copy for the thread. This might be either some permanent
global data or a message string in the user-supplied buffer starting at buf with
the length of n bytes.
At most n characters are written (including the NUL byte), so it is up to the user
to select the buffer large enough.
This function should always be used in multithreaded programs since there is
no way to guarantee that the string returned by strerror really belongs to the
last call of the current thread.
This function strerror_r is a GNU extension and it is declared in
‘string.h’.

Functionvoid perror (const char *message)
This function prints an error message to the stream stderr (see Section 17.2
[Standard Streams], page 439). The orientation of stderr is not changed.
If you call perror with a message that is either a null pointer or an empty
string, perror just prints the error message corresponding to errno, adding
a trailing newline.
If you supply a nonnull message argument, then perror prefixes its output
with this string. It adds a colon and a space character to separate the message
from the error string corresponding to errno.
The function perror is declared in ‘stdio.h’.

Chapter 2: Error Reporting 33

strerror and perror produce the exact same message for any given error
code; the precise text varies from system to system. On the GNU system, the mes-
sages are fairly short; there are no multiline messages or embedded newlines. Each
error message begins with a capital letter and does not include any terminating
punctuation.

Compatibility Note: The strerror function was introduced in ISO C89.
Many older C systems do not support this function yet.

Many programs that don’t read input from the terminal are designed to exit if any
system call fails. By convention, the error message from such a program should
start with the program’s name, sans directories. You can find that name in the
variable program_invocation_short_name; the full file name is stored the
variable program_invocation_name.

Variablechar * program invocation name
This variable’s value is the name that was used to invoke the program running
in the current process. It is the same as argv[0]. This is not necessarily a
useful file name; often it contains no directory names (see Section 14.1 [Program
Arguments], page 379).

Variablechar * program invocation short name
This variable’s value is the name that was used to invoke the program run-
ning in the current process, with directory names removed—it is the same as
program_invocation_name minus everything up to the last slash, if any.

The library initialization code sets up both of these variables before calling
main.

Portability Note: These two variables are GNU extensions. If you want your
program to work with non-GNU libraries, you must save the value of argv[0] in
main, and then strip off the directory names yourself. We added these extensions
to make it possible to write self-contained error-reporting subroutines that require
no explicit cooperation from main.

Here is an example showing how to handle a failure to open a file correctly.
The function open_sesame tries to open the named file for reading and returns a
stream if successful. The fopen library function returns a null pointer if it couldn’t
open the file for some reason. In that situation, open_sesame constructs an ap-
propriate error message using the strerror function, and terminates the pro-
gram. If we were going to make some other library calls before passing the error
code to strerror, we would have to save it in a local variable instead, because
those other library functions might overwrite errno in the meantime.

#include <errno.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

FILE *

34 The GNU C Library: Application Fundamentals

open_sesame (char *name)

{

FILE *stream;

errno = 0;

stream = fopen (name, "r");

if (stream == NULL)

{

fprintf (stderr, "%s: Couldn’t open file %s; %s\n",

program_invocation_short_name, name, strerror (errno));

exit (EXIT_FAILURE);

}

else

return stream;

}

Using perror has the advantage that the function is portable and available
on all systems implementing ISO C. But often the text perror generates is not
what is wanted, and there is no way to extend or change what perror does.
The GNU coding standard, for instance, requires error messages to be preceded
by the program name, and programs that read some input files should provide in-
formation about the input file name and the line number in case an error is encoun-
tered while reading the file. For these occasions there are two functions available
which are widely used throughout the GNU project. These functions are declared
in ‘error.h’.

Functionvoid error (int status, int errnum, const char *format,
...)

The error function can be used to report general problems during program
execution. The format argument is a format string just like those given to the
printf family of functions. The arguments required for the format can follow
the format parameter. Just like perror, error also can report an error code
in textual form. But unlike perror the error value is explicitly passed to the
function in the errnum parameter. This eliminates the problem mentioned above
that the error-reporting function must be called immediately after the function
causing the error, since otherwise errno might have a different value.
The error prints first the program name. If the application defined a global
variable error_print_progname and points it to a function, this function
will be called to print the program name. Otherwise, the string from the global
variable program_name is used. The program name is followed by a colon
and a space, which in turn is followed by the output produced by the format
string. If the errnum parameter is nonzero, the format string output is followed
by a colon and a space, followed by the error message for the error code errnum.
In any case, the output is terminated with a newline.
The output is directed to the stderr stream. If the stderr wasn’t oriented
before the call, it will be narrow-oriented afterward.

Chapter 2: Error Reporting 35

The function will return unless the status parameter has a nonzero value. In
this case, the function will call exit with the status value for its parameter
and therefore never return. If error returns, the global variable error_
message_count is incremented by one to keep track of the number of errors
reported.

Functionvoid error at line (int status, int errnum, const char
*fname, unsigned int lineno, const char *format, ...)

The error_at_line function is very similar to the error function. The
only difference are the additional parameters fname and lineno. The handling
of the other parameters is identical to that of error except that between the
program name and the string generated by the format string additional text is
inserted.
Directly following the program name, a colon followed by the file name pointed
to by fname, another colon, and a value of lineno are printed.
This additional output of course is meant to be used to locate an error in an input
file (like a programming language source code file, for example).
If the global variable error_one_per_line is set to a nonzero value
error_at_line will avoid printing consecutive messages for the same file
anem line. Repetitions that are not directly following each other are not caught.
Just like error, this function only returns if status is zero. Otherwise, exit
is called with the nonzero value. If error returns, the global variable error_
message_count is incremented by one to keep track of the number of errors
reported.

As mentioned above the error and error_at_line functions can be cus-
tomized by defining a variable named error_print_progname.

Variablevoid (* error print progname) (void)
If the error_print_progname variable is defined to a nonzero value, the
function pointed to is called by error or error_at_line. It is expected to
print the program name or do something similarly useful.
The function is expected to be printed to the stderr stream, and must be able
to handle whatever orientation the stream has.
The variable is global and shared by all threads.

Variableunsigned int error message count
The error_message_count variable is incremented whenever one of the
functions error or error_at_line returns. The variable is global and
shared by all threads.

Variableint error one per line
The error_one_per_line variable influences only error_at_line.
Normally the error_at_line function creates output for every invocation.
If error_one_per_line is set to a nonzero value, error_at_line

36 The GNU C Library: Application Fundamentals

keeps track of the last file name and line number for which an error was re-
ported and avoids directly following messages for the same file and line. This
variable is global and shared by all threads.

A program that read an input file and reports errors in it could look like this:
{

char *line = NULL;

size_t len = 0;

unsigned int lineno = 0;

error_message_count = 0;

while (! feof_unlocked (fp))

{

ssize_t n = getline (&line, &len, fp);

if (n <= 0)

/* End of file or error. */

break;

++lineno;

/* Process the line. */

...

if (Detect error in line)

error_at_line (0, errval, filename, lineno,

"some error text %s", some_variable);

}

if (error_message_count != 0)

error (EXIT_FAILURE, 0, "%u errors found", error_message_count);

}

error and error_at_line are clearly the functions of choice and enable the
programmer to write applications that follow the GNU coding standard. The GNU
libc also contains functions that are used in BSD for the same purpose. These func-
tions are declared in ‘err.h’. It is generally advised to not use these functions.
They are included only for compatibility.

Functionvoid warn (const char *format, ...)
The warn function is roughly equivalent to a call like:

error (0, errno, format, the parameters)

except the global variables that error respects and modifies are not used.

Functionvoid vwarn (const char *format, va_list)
The vwarn function is just like warn except that the parameters for the han-
dling of the format string format are passed in as a value of type va_list.

Chapter 2: Error Reporting 37

Functionvoid warnx (const char *format, ...)
The warnx function is roughly equivalent to a call like:

error (0, 0, format, the parameters)

except the global variables that error respects and modifies are not used. The
difference with warn is that no error number string is printed.

Functionvoid vwarnx (const char *format, va_list)
The vwarnx function is just like warnx except that the parameters for the
handling of the format string format are passed in as a value of type va_list.

Functionvoid err (int status, const char *format, ...)
The err function is roughly equivalent to a call like:

error (status, errno, format, the parameters)

except that the global variables error respects and modifies are not used and
that the program is exited even if status is zero.

Functionvoid verr (int status, const char *format, va_list)
The verr function is just like err except that the parameters for the handling
of the format string format are passed in as a value of type va_list.

Functionvoid errx (int status, const char *format, ...)
The errx function is roughly equivalent to a call like:

error (status, 0, format, the parameters)

except that the global variables error respects and modifies are not used and
that the program is exited even if status is zero. The difference with err is that
no error number string is printed.

Functionvoid verrx (int status, const char *format, va_list)
The verrx function is just like errx except that the parameters for the han-
dling of the format string format are passed in as a value of type va_list.

38 The GNU C Library: Application Fundamentals

Chapter 3: Virtual Memory Allocation and Paging 39

3 Virtual Memory Allocation and Paging

This chapter describes how processes manage and use memory in a system that
uses the GNU C Library.

The GNU C Library has several functions for dynamically allocating virtual
memory in various ways. They vary in generality and in efficiency. The library
also provides functions for controlling paging and allocation of real memory.

Memory-mapped I/O is not discussed in this chapter.1

3.1 Process Memory Concepts
One of the most basic resources a process has available to it is memory. There are

many different ways systems organize memory, but in a typical one, each process
has one linear virtual address space, with addresses running from zero to some huge
maximum. It need not be contiguous; i.e. not all of these addresses actually can be
used to store data.

The virtual memory is divided into pages (4 kilobytes is typical). Backing each
page of virtual memory is a page of real memory (called a frame) or some sec-
ondary storage, usually disk space. The disk space might be swap space or just
some ordinary disk file. Actually, a page of all zeros sometimes has nothing at all
backing it—there’s just a flag saying it is all zeros.

The same frame of real memory or backing store can back multiple virtual pages
belonging to multiple processes. This is normally the case, for example, with vir-
tual memory occupied by GNU C Library code. The same real memory frame con-
taining the printf function backs a virtual memory page in each of the existing
processes that has a printf call in its program.

In order for a program to access any part of a virtual page, the page must at that
moment be backed by (connected to) a real frame. But because there is usually
a lot more virtual memory than real memory, the pages must move back and forth
between real memory and backing store regularly, coming into real memory when a
process needs to access them and then retreating to backing store when not needed
anymore. This movement is called paging.

When a program attempts to access a page which is not at that moment backed
by real memory, this is known as a page fault. When a page fault occurs, the kernel
suspends the process, places the page into a real page frame (this is called "paging
in" or "faulting in"), then resumes the process so that from the process’ point of
view, the page was in real memory all along. In fact, to the process, all pages always
seem to be in real memory. Except for one thing: the elapsed execution time of an
instruction that would normally be a few nanoseconds is suddenly much, much,
longer (because the kernel normally has to do I/O to complete the page-in). For
programs sensitive to that, the functions described in Section 3.4 [Locking Pages],
page 74 can control it.

1 See Loosemore et al., “Memory-Mapped I/O” (see chap. 1, n. 1).

40 The GNU C Library: Application Fundamentals

Within each virtual address space, a process has to keep track of what is at which
addresses, and that process is called memory allocation. Allocation usually brings
to mind meting out scarce resources, but in the case of virtual memory, that’s not a
major goal, because there is generally much more of it than anyone needs. Memory
allocation within a process is mainly just a matter of making sure that the same byte
of memory isn’t used to store two different things.

Processes allocate memory in two major ways: by exec and programmatically.
Actually, forking is a third way, but it’s not very interesting.2

Exec is the operation of creating a virtual address space for a process, loading
its basic program into it, and executing the program. It is done by the exec family
of functions (execl, for example). The operation takes a program file (an exe-
cutable), allocates space to load all the data in the executable, loads it, and transfers
control to it. The most notable data are the instructions of the program (the text),
but also literals and constants in the program and even some variables—C variables
with the static storage class (see Section 3.2.1 [Memory Allocation in C Programs],
page 41).

Once that program begins to execute, it uses programmatic allocation to gain
additional memory. In a C program with the GNU C Library, there are two kinds
of programmatic allocation: automatic and dynamic (see Section 3.2.1 [Memory
Allocation in C Programs], page 41).

Memory-mapped I/O is another form of dynamic virtual memory allocation.
Mapping memory to a file means declaring that the contents of certain range of
a process’ addresses shall be identical to the contents of a specified regular file.
The system makes the virtual memory initially contain the contents of the file, and
if you modify the memory, the system writes the same modification to the file. Note
that due to the magic of virtual memory and page faults, there is no reason for the
system to do I/O to read the file, or allocate real memory for its contents, until the
program accesses the virtual memory.3

Just as it programmatically allocates memory, the program can programmati-
cally deallocate (free) it. You can’t free the memory that was allocated by exec.
When the program exits or execs, you might say that all its memory gets freed, but
since in both cases the address space ceases to exist, the point is really moot (see
Section 14.6 [Program Termination], page 425).

A process’ virtual address space is divided into segments. A segment is a con-
tiguous range of virtual addresses. Three important segments are

• The text segment contains a program’s instructions and literals and static con-
stants. It is allocated by exec and stays the same size for the life of the virtual
address space.

• The data segment is working storage for the program. It can be preallocated
and preloaded by exec and the process can extend or shrink it by calling func-
tions as described in Section 3.3 [Resizing the Data Segment], page 74. Its
lower end is fixed.

2 Ibid., “Creating a Process”.
3 Ibid., “Memory-Mapped I/O”.

Chapter 3: Virtual Memory Allocation and Paging 41

• The stack segment contains a program stack. It grows as the stack grows, but
doesn’t shrink when the stack shrinks.

3.2 Allocating Storage for Program Data
This section covers how ordinary programs manage storage for their data, in-

cluding the famous malloc function and some fancier facilities that are special to
the GNU C Library and GNU Compiler.

3.2.1 Memory Allocation in C Programs

The C language supports two kinds of memory allocation through the variables
in C programs:

• Static allocation is what happens when you declare a static or global variable.
Each static or global variable defines one block of space, of a fixed size. The
space is allocated once, when your program is started (part of the exec opera-
tion), and is never freed.

• Automatic allocation happens when you declare an automatic variable, such as
a function argument or a local variable. The space for an automatic variable is
allocated when the compound statement containing the declaration is entered,
and is freed when that compound statement is exited.
In GNU C, the size of the automatic storage can be an expression that varies.
In other C implementations, it must be a constant.

A third important kind of memory allocation, dynamic allocation, is not sup-
ported by C variables but is available via GNU C Library functions.

3.2.1.1 Dynamic Memory Allocation

Dynamic memory allocation is a technique in which programs determine as they
are running where to store some information. You need dynamic allocation when
the amount of memory you need, or how long you continue to need it, depends on
factors that are not known before the program runs.

For example, you may need a block to store a line read from an input file; since
there is no limit to how long a line can be, you must allocate the memory dynami-
cally and make it dynamically larger as you read more of the line.

Or, you may need a block for each record or each definition in the input data;
since you can’t know in advance how many there will be, you must allocate a new
block for each record or definition as you read it.

When you use dynamic allocation, the allocation of a block of memory is an
action that the program requests explicitly. You call a function or macro when you
want to allocate space, and specify the size with an argument. If you want to free
the space, you do so by calling another function or macro. You can do these things
whenever you want, as often as you want.

42 The GNU C Library: Application Fundamentals

Dynamic allocation is not supported by C variables; there is no storage class
dynamic, and there can never be a C variable whose value is stored in dynamically
allocated space. The only way to get dynamically allocated memory is via a system
call (which is generally via a GNU C Library function call), and the only way to refer
to dynamically allocated space is through a pointer. Because it is less convenient,
and because the actual process of dynamic allocation requires more computation
time, programmers generally use dynamic allocation only when neither static nor
automatic allocation will serve.

For example, if you want to allocate dynamically some space to hold a struct
foobar, you cannot declare a variable of type struct foobar whose contents
are the dynamically allocated space. But you can declare a variable of pointer type
struct foobar * and assign it the address of the space. Then you can use the
operators ‘*’ and ‘->’ on this pointer variable to refer to the contents of the space:

{

struct foobar *ptr

= (struct foobar *) malloc (sizeof (struct foobar));

ptr->name = x;

ptr->next = current_foobar;

current_foobar = ptr;

}

3.2.2 Unconstrained Allocation

The most general dynamic allocation facility is malloc. It allows you to allo-
cate blocks of memory of any size at any time, make them bigger or smaller at any
time, and free the blocks individually at any time (or never).

3.2.2.1 Basic Memory Allocation

To allocate a block of memory, call malloc. The prototype for this function is
in ‘stdlib.h’.

Functionvoid * malloc (size_t size)
This function returns a pointer to a newly allocated block size bytes long, or a
null pointer if the block could not be allocated.

The contents of the block are undefined; you must initialize it yourself (or use
calloc instead; see Section 3.2.2.5 [Allocating Cleared Space], page 46). Nor-
mally you would cast the value as a pointer to the kind of object that you want to
store in the block. Here we show an example of doing so, and of initializing the
space with zeros using the library function memset (see Section 5.4 [Copying and
Concatenation], page 93):

struct foo *ptr;

...

ptr = (struct foo *) malloc (sizeof (struct foo));

Chapter 3: Virtual Memory Allocation and Paging 43

if (ptr == 0) abort ();

memset (ptr, 0, sizeof (struct foo));

You can store the result of malloc into any pointer variable without a cast,
because ISO C automatically converts the type void * to another type of pointer
when necessary. But the cast is necessary in contexts other than assignment opera-
tors or if you might want your code to run in traditional C.

Remember that when allocating space for a string, the argument to mallocmust
be one plus the length of the string. This is because a string is terminated with a
null character that doesn’t count in the "length" of the string but does need space.
For example:

char *ptr;

...

ptr = (char *) malloc (length + 1);

See Section 5.1 [Representation of Strings], page 89, for more information about
this.

3.2.2.2 Examples of malloc

If no more space is available, malloc returns a null pointer. You should check
the value of every call to malloc. It is useful to write a subroutine that calls
malloc and reports an error if the value is a null pointer, returning only if the
value is nonzero. This function is conventionally called xmalloc. Here it is:

void *

xmalloc (size_t size)

{

register void *value = malloc (size);

if (value == 0)

fatal ("virtual memory exhausted");

return value;

}

Here is a real example of using malloc (by way of xmalloc). The func-
tion savestring will copy a sequence of characters into a newly allocated null-
terminated string:

char *

savestring (const char *ptr, size_t len)

{

register char *value = (char *) xmalloc (len + 1);

value[len] = ’\0’;

return (char *) memcpy (value, ptr, len);

}

The block that malloc gives you is guaranteed to be aligned so that it can hold
any type of data. In the GNU system, the address is always a multiple of eight on
most systems, and a multiple of sixteen on 64-bit systems. Only rarely is any higher
boundary (such as a page boundary) necessary; for those cases, use memalign,

44 The GNU C Library: Application Fundamentals

posix_memalign or valloc (see Section 3.2.2.7 [Allocating Aligned Memory
Blocks], page 47).

Note that the memory located after the end of the block is likely to be in use for
something else; perhaps a block already allocated by another call to malloc. If
you attempt to treat the block as longer than you asked for it to be, you are liable to
destroy the data that malloc uses to keep track of its blocks, or you may destroy
the contents of another block. If you have already allocated a block and discover
you want it to be bigger, use realloc (see Section 3.2.2.4 [Changing the Size of
a Block], page 45).

3.2.2.3 Freeing Memory Allocated with malloc

When you no longer need a block that you got with malloc, use the function
free to make the block available to be allocated again. The prototype for this
function is in ‘stdlib.h’.

Functionvoid free (void *ptr)
The free function deallocates the block of memory pointed at by ptr.

Functionvoid cfree (void *ptr)
This function does the same thing as free. It’s provided for backward compat-
ibility with SunOS; you should use free instead.

Freeing a block alters the contents of the block. Do not expect to find any data
(such as a pointer to the next block in a chain of blocks) in the block after
freeing it. Copy whatever you need out of the block before freeing it! Here is an
example of the proper way to free all the blocks in a chain, and the strings that they
point to:

struct chain

{

struct chain *next;

char *name;

}

void

free_chain (struct chain *chain)

{

while (chain != 0)

{

struct chain *next = chain->next;

free (chain->name);

free (chain);

chain = next;

}

}

Chapter 3: Virtual Memory Allocation and Paging 45

Occasionally, free can actually return memory to the operating system and
make the process smaller. Usually, all it can do is allow a later call to malloc to
reuse the space. In the meantime, the space remains in your program as part of a
free-list used internally by malloc.

There is no point in freeing blocks at the end of a program, because all of the
program’s space is given back to the system when the process terminates.

3.2.2.4 Changing the Size of a Block

Often you do not know for certain how big a block you will ultimately need at
the time you must begin to use the block. For example, the block might be a buffer
that you use to hold a line being read from a file; no matter how long you make the
buffer initially, you may encounter a line that is longer.

You can make the block longer by calling realloc. This function is declared
in ‘stdlib.h’.

Functionvoid * realloc (void *ptr, size_t newsize)
The realloc function changes the size of the block whose address is ptr to be
newsize.
Since the space after the end of the block may be in use, realloc may find it
necessary to copy the block to a new address where more free space is available.
The value of realloc is the new address of the block. If the block needs to be
moved, realloc copies the old contents.
If you pass a null pointer for ptr, realloc behaves just like ‘malloc (new-
size)’. This can be convenient, but be aware that older implementations (before
ISO C) may not support this behavior, and will probably crash when realloc
is passed a null pointer.

Like malloc, realloc may return a null pointer if no memory space is avail-
able to make the block bigger. When this happens, the original block is untouched;
it has not been modified or relocated.

In most cases it makes no difference what happens to the original block when
realloc fails, because the application program cannot continue when it is out
of memory, and the only thing to do is to give a fatal error message. Often it is
convenient to write and use a subroutine, conventionally called xrealloc, that
takes care of the error message as xmalloc does for malloc:

void *

xrealloc (void *ptr, size_t size)

{

register void *value = realloc (ptr, size);

if (value == 0)

fatal ("Virtual memory exhausted");

return value;

}

46 The GNU C Library: Application Fundamentals

You can also use realloc to make a block smaller. The reason you would
do this is to avoid tying up a lot of memory space when only a little is needed. In
several allocation implementations, making a block smaller sometimes necessitates
copying it, so it can fail if no other space is available.

If the new size you specify is the same as the old size, realloc is guaranteed
to change nothing and return the same address that you gave.

3.2.2.5 Allocating Cleared Space

The function calloc allocates memory and clears it to zero. It is declared in
‘stdlib.h’.

Functionvoid * calloc (size_t count, size_t eltsize)
This function allocates a block long enough to contain a vector of count el-
ements, each of size eltsize. Its contents are cleared to zero before calloc
returns.

You could define calloc as follows:
void *

calloc (size_t count, size_t eltsize)

{

size_t size = count * eltsize;

void *value = malloc (size);

if (value != 0)

memset (value, 0, size);

return value;

}

But in general, it is not guaranteed that calloc calls malloc internally. There-
fore, if an application provides its own malloc/realloc/free outside the C
library, it should always define calloc, too.

3.2.2.6 Efficiency Considerations for malloc

As opposed to other versions, the malloc in the GNU C Library does not round
up block sizes to powers of two, either for large or small sizes. Neighboring chunks
can be coalesced on a free no matter what their size is. This makes the imple-
mentation suitable for all kinds of allocation patterns, without generally incurring
high memory waste through fragmentation.

Very large blocks (much larger than a page) are allocated with mmap (anonymous
or via /dev/zero) by this implementation. This has the great advantage that
these chunks are returned to the system immediately when they are freed. There-
fore, it cannot happen that a large chunk becomes locked between smaller ones and,
even after calling free, wastes memory. The size threshold for mmap to be used
can be adjusted with mallopt. The use of mmap can also be disabled completely.

Chapter 3: Virtual Memory Allocation and Paging 47

3.2.2.7 Allocating Aligned Memory Blocks

The address of a block returned by malloc or realloc in the GNU system
is always a multiple of eight (or sixteen on 64-bit systems). If you need a block
whose address is a multiple of a higher power of two than that, use memalign,
posix_memalign, or valloc. memalign is declared in ‘malloc.h’ and
posix_memalign is declared in ‘stdlib.h’.

With the GNU library, you can use free to free the blocks that memalign,
posix_memalign, and valloc return. That does not work in BSD, however—
BSD does not provide any way to free such blocks.

Functionvoid * memalign (size_t boundary, size_t size)
The memalign function allocates a block of size bytes whose address is a
multiple of boundary. The boundary must be a power of two! The function
memalign works by allocating a somewhat larger block, and then returning an
address within the block that is on the specified boundary.

Functionint posix memalign (void **memptr, size_t alignment,
size_t size)

The posix_memalign function is similar to the memalign function in that
it returns a buffer of size bytes aligned to a multiple of alignment. But it adds
one requirement to the parameter alignment : the value must be a power-of-two
multiple of sizeof (void *).
If the function succeeds in allocating memory, a pointer to the allocated memory
is returned in *memptr and the return value is zero. Otherwise, the function
returns an error value indicating the problem.
This function was introduced in POSIX 1003.1d.

Functionvoid * valloc (size_t size)
Using valloc is like using memalign and passing the page size as the value
of the second argument. It is implemented like this:4

void *

valloc (size_t size)

{

return memalign (getpagesize (), size);

}

3.2.2.8 malloc Tunable Parameters

You can adjust some parameters for dynamic memory allocation with the
mallopt function. This function is the general SVID/XPG interface, defined in
‘malloc.h’.

4 See Loosemore et al., “Query Memory Parameters”, for more information about the memory
subsystem.

48 The GNU C Library: Application Fundamentals

Functionint mallopt (int param, int value)
When calling mallopt, the param argument specifies the parameter to be set,
and value the new value to be set. Possible choices for param, as defined in
‘malloc.h’, are

M_TRIM_THRESHOLD
This is the minimum size (in bytes) of the topmost, releasable
chunk that will cause sbrk to be called with a negative argument
in order to return memory to the system.

M_TOP_PAD
This parameter determines the amount of extra memory to obtain
from the system when a call to sbrk is required. It also specifies
the number of bytes to retain when shrinking the heap by calling
sbrk with a negative argument. This provides the necessary hys-
teresis in heap size such that excessive amounts of system calls can
be avoided.

M_MMAP_THRESHOLD
All chunks larger than this value are allocated outside the normal
heap, using the mmap system call. This way it is guaranteed that
the memory for these chunks can be returned to the system on
free. Requests smaller than this threshold might still be allocated
via mmap.

M_MMAP_MAX
The maximum number of chunks to allocate with mmap. Setting
this to zero disables all use of mmap.

3.2.2.9 Heap Consistency Checking

You can ask malloc to check the consistency of dynamic memory by using the
mcheck function. This function is a GNU extension, declared in ‘mcheck.h’.

Functionint mcheck (void (*abortfn) (enum mcheck_status
status))

Calling mcheck tells malloc to perform occasional consistency checks.
These will catch things such as writing past the end of a block that was allo-
cated with malloc.
The abortfn argument is the function to call when an inconsistency is found.
If you supply a null pointer, then mcheck uses a default function that prints a
message and calls abort (see Section 14.6.4 [Aborting a Program], page 427).
The function you supply is called with one argument, which says what sort of
inconsistency was detected; its type is described below.
It is too late to begin allocation checking once you have allocated anything with
malloc, so mcheck does nothing in that case. The function returns -1 if you
call it too late, and 0 otherwise (when it is successful).

Chapter 3: Virtual Memory Allocation and Paging 49

The easiest way to arrange to call mcheck early enough is to use the option
‘-lmcheck’ when you link your program; then you don’t need to modify your
program source at all. Alternatively, you might use a debugger to insert a call to
mcheck whenever the program is started. For example, these gdb commands
will automatically call mcheck whenever the program starts:

(gdb) break main

Breakpoint 1, main (argc=2, argv=0xbffff964) at whatever.c:10

(gdb) command 1

Type commands for when breakpoint 1 is hit, one per line.

End with a line saying just "end".

>call mcheck(0)

>continue

>end

(gdb) ...

However, this will only work if no initialization function of any object involved
calls any of the malloc functions, since mcheck must be called before the
first such function.

Functionenum mcheck_status mprobe (void *pointer)
The mprobe function lets you explicitly check for inconsistencies in a particu-
lar allocated block. You must have already called mcheck at the beginning of
the program to do its occasional checks; calling mprobe requests an additional
consistency check to be done at the time of the call.
The argument pointer must be a pointer returned by malloc or realloc.
mprobe returns a value that says what inconsistency, if any, was found. The
values are described below.

Data Typeenum mcheck status
This enumerated type describes what kind of inconsistency was detected in an
allocated block, if any. Here are the possible values:

MCHECK_DISABLED
mcheck was not called before the first allocation. No consistency
checking can be done.

MCHECK_OK
No inconsistency was detected.

MCHECK_HEAD
The data immediately before the block were modified. This com-
monly happens when an array index or pointer is decremented too
far.

MCHECK_TAIL
The data immediately after the block were modified. This com-
monly happens when an array index or pointer is incremented too
far.

50 The GNU C Library: Application Fundamentals

MCHECK_FREE
The block was already freed.

Another way to check for and guard against bugs in the use of malloc,
realloc and free is to set the environment variable MALLOC_CHECK_. When
MALLOC_CHECK_ is set, a special (less efficient) implementation is used, which is
designed to be tolerant against simple errors, such as double calls of free with the
same argument, or overruns of a single byte (off-by-one bugs). Not all such errors
can be protected against, however, and memory leaks can result. If MALLOC_
CHECK_ is set to 0, any detected heap corruption is silently ignored; if set to 1, a
diagnostic is printed on stderr; if set to 2, abort is called immediately. This
can be useful because otherwise a crash may happen much later, and the true cause
for the problem is then very hard to track down.

There is one problem with MALLOC_CHECK_; in SUID or SGID binaries, it could
possibly be exploited since, diverging from the normal program behavior, it now
writes something to the standard error descriptor. Therefore, the use of MALLOC_
CHECK_ is disabled by default for SUID and SGID binaries. It can be enabled again
by the system administrator by adding a file ‘/etc/suid-debug’ (the content
is not important—it could be empty).

So, what is the difference between using MALLOC_CHECK_ and linking with
‘-lmcheck’? MALLOC_CHECK_ is orthogonal with respect to ‘-lmcheck’.
‘-lmcheck’ has been added for backward compatibility. Both MALLOC_CHECK_
and ‘-lmcheck’ should uncover the same bugs—but using MALLOC_CHECK_,

you don’t need to recompile your application.

3.2.2.10 Memory Allocation Hooks

The GNU C Library lets you modify the behavior of malloc, realloc, and
free by specifying appropriate hook functions. You can use these hooks to help
you debug programs that use dynamic memory allocation, for example.

The hook variables are declared in ‘malloc.h’.

Variablemalloc hook
The value of this variable is a pointer to the function that malloc uses when-
ever it is called. You should define this function to look like malloc:

void *function (size_t size, const void *caller)

The value of caller is the return address found on the stack when the malloc
function was called. This value allows you to trace the memory consumption of
the program.

Variablerealloc hook
The value of this variable is a pointer to the function that realloc uses when-
ever it is called. You should define this function to look like realloc:

void *function (void *ptr, size_t size, const void *caller)

Chapter 3: Virtual Memory Allocation and Paging 51

The value of caller is the return address found on the stack when the realloc
function was called. This value allows you to trace the memory consumption of
the program.

Variablefree hook
The value of this variable is a pointer to the function that free uses whenever
it is called. You should define this function to look like free:

void function (void *ptr, const void *caller)

The value of caller is the return address found on the stack when the free
function was called. This value allows you to trace the memory consumption of
the program.

Variablememalign hook
The value of this variable is a pointer to the function that memalign uses when-
ever it is called. You should define this function to look like memalign:

void *function (size_t alignment, size_t size, const void *caller)

The value of caller is the return address found on the stack when the memalign
function was called. This value allows you to trace the memory consumption of
the program.

You must make sure that the function you install as a hook for one of these
functions does not call that function recursively without restoring the old value of
the hook first! Otherwise, your program will get stuck in an infinite recursion.
Before calling the function recursively, you should make sure to restore all the
hooks to their previous value. When coming back from the recursive call, all the
hooks should be resaved, since a hook might modify itself.

Variablemalloc initialize hook
The value of this variable is a pointer to a function that is called once when
the malloc implementation is initialized. This is a weak variable, so it can be
overridden in the application with a definition like the following:

void (* malloc initialize hook) (void) = my_init_hook;

An issue to look out for is the time at which the malloc hook functions can
be safely installed. If the hook functions call the malloc-related functions recur-
sively, it is necessary that malloc already have properly initialized itself when the
function (__malloc_hook, for example) is assigned to. On the other hand, if the
hook functions provide a complete malloc implementation of their own, it is vital
that the hooks are assigned to before the very first malloc call has completed, be-
cause otherwise a chunk obtained from the ordinary, unhooked malloc may later
be handed to, for example, __free_hook.

In both cases, the problem can be solved by setting up the hooks from within a
user-defined function pointed to by __malloc_initialize_hook—then the
hooks will be set up safely at the right time.

52 The GNU C Library: Application Fundamentals

Here is an example showing how to use __malloc_hook and __free_hook
properly. It installs a function that prints out information every time malloc or
free is called. We just assume here that realloc and memalign are not used
in our program.

/* Prototypes for __malloc_hook, __free_hook */

#include <malloc.h>

/* Prototypes for our hooks. */

static void *my_init_hook (void);

static void *my_malloc_hook (size_t, const void *);

static void my_free_hook (void*, const void *);

/* Override initializing hook from the C library. */

void (*__malloc_initialize_hook) (void) = my_init_hook;

static void

my_init_hook (void)

{

old_malloc_hook = __malloc_hook;

old_free_hook = __free_hook;

__malloc_hook = my_malloc_hook;

__free_hook = my_free_hook;

}

static void *

my_malloc_hook (size_t size, const void *caller)

{

void *result;

/* Restore all old hooks */

__malloc_hook = old_malloc_hook;

__free_hook = old_free_hook;

/* Call recursively */

result = malloc (size);

/* Save underlying hooks */

old_malloc_hook = __malloc_hook;

old_free_hook = __free_hook;

/* printf might call malloc, so protect it too. */

printf ("malloc (%u) returns %p\n", (unsigned int) size, result);

/* Restore our own hooks */

__malloc_hook = my_malloc_hook;

__free_hook = my_free_hook;

return result;

}

Chapter 3: Virtual Memory Allocation and Paging 53

static void *

my_free_hook (void *ptr, const void *caller)

{

/* Restore all old hooks */

__malloc_hook = old_malloc_hook;

__free_hook = old_free_hook;

/* Call recursively */

free (ptr);

/* Save underlying hooks */

old_malloc_hook = __malloc_hook;

old_free_hook = __free_hook;

/* printf might call free, so protect it too. */

printf ("freed pointer %p\n", ptr);

/* Restore our own hooks */

__malloc_hook = my_malloc_hook;

__free_hook = my_free_hook;

}

main ()

{

...

}

The mcheck function (see Section 3.2.2.9 [Heap Consistency Checking],
page 48) works by installing such hooks.

3.2.2.11 Statistics for Memory Allocation with malloc

You can get information about dynamic memory allocation by calling the
mallinfo function. This function and its associated data type are declared in
‘malloc.h’; they are an extension of the standard SVID/XPG version.

Data Typestruct mallinfo
This structure type is used to return information about the dynamic memory
allocator. It contains the following members:

int arena
This is the total size of memory allocated with sbrk by malloc,
in bytes.

int ordblks
This is the number of chunks not in use. (The memory allocator
internally gets chunks of memory from the operating system, and
then carves them up to satisfy individual malloc requests; see
Section 3.2.2.6 [Efficiency Considerations for malloc], page 46.)

int smblks
This field is unused.

54 The GNU C Library: Application Fundamentals

int hblks
This is the total number of chunks allocated with mmap.

int hblkhd
This is the total size of memory allocated with mmap, in bytes.

int usmblks
This field is unused.

int fsmblks
This field is unused.

int uordblks
This is the total size of memory occupied by chunks handed out by
malloc.

int fordblks
This is the total size of memory occupied by free (not in use)
chunks.

int keepcost
This is the size of the topmost releasable chunk that normally bor-
ders the end of the heap (i.e., the high end of the virtual address
space’s data segment).

Functionstruct mallinfo mallinfo (void)
This function returns information about the current dynamic memory usage in a
structure of type struct mallinfo.

3.2.2.12 Summary of malloc-Related Functions

Here is a summary of the functions that work with malloc:

void *malloc (size_t size)
Allocate a block of size bytes (see Section 3.2.2.1 [Basic Memory
Allocation], page 42).

void free (void *addr)
Free a block previously allocated by malloc (see Section 3.2.2.3
[Freeing Memory Allocated with malloc], page 44).

void *realloc (void *addr, size_t size)
Make a block previously allocated by malloc larger or smaller, pos-
sibly by copying it to a new location (see Section 3.2.2.4 [Changing
the Size of a Block], page 45).

void *calloc (size_t count, size_t eltsize)
Allocate a block of count * eltsize bytes using malloc, and set
its contents to zero (see Section 3.2.2.5 [Allocating Cleared Space],
page 46).

Chapter 3: Virtual Memory Allocation and Paging 55

void *valloc (size_t size)
Allocate a block of size bytes, starting on a page boundary (see Sec-
tion 3.2.2.7 [Allocating Aligned Memory Blocks], page 47).

void *memalign (size_t size, size_t boundary)
Allocate a block of size bytes, starting on an address that is a mul-
tiple of boundary (see Section 3.2.2.7 [Allocating Aligned Memory
Blocks], page 47).

int mallopt (int param, int value)
Adjust a tunable parameter (see Section 3.2.2.8 [malloc Tunable
Parameters], page 47).

int mcheck (void (*abortfn) (void))
Tell malloc to perform occasional consistency checks on dynami-
cally allocated memory, and to call abortfn when an inconsistency is
found (see Section 3.2.2.9 [Heap Consistency Checking], page 48).

void *(*__malloc_hook) (size_t size, const void *caller)
This is a pointer to a function that malloc uses whenever it is called.

void *(*__realloc_hook) (void *ptr, size_t size, const void
*caller)

This is a pointer to a function that realloc uses whenever it is
called.

void (*__free_hook) (void *ptr, const void *caller)
This is a pointer to a function that free uses whenever it is called.

void (*__memalign_hook) (size_t size, size_t alignment, const
void *caller)

This is a pointer to a function that memalign uses whenever it is
called.

struct mallinfo mallinfo (void)
Return information about the current dynamic memory usage (see
Section 3.2.2.11 [Statistics for Memory Allocation with malloc],
page 53).

3.2.3 Allocation Debugging

A complicated task when programming with languages that do not use garbage-
collected dynamic memory allocation is to find memory leaks. Long running pro-
grams must assure that dynamically allocated objects are freed at the end of their
lifetime. If this does not happen, the system runs out of memory, sooner or later.

The malloc implementation in the GNU C Library provides some simple means
to detect such leaks and obtain some information on their location. To do this the
application must be started in a special mode, which is enabled by an environment
variable. There are no speed penalties for the program if the debugging mode is not
enabled.

56 The GNU C Library: Application Fundamentals

3.2.3.1 How to Install the Tracing Functionality

Functionvoid mtrace (void)
When the mtrace function is called, it looks for an environment variable
named MALLOC_TRACE. This variable is supposed to contain a valid file name.
The user must have write access. If the file already exists, it is truncated. If the
environment variable is not set or it does not name a valid file that can be opened
for writing, nothing is done. The behavior of, for example, malloc, is not
changed. For obvious reasons, this also happens if the application is installed
with the SUID or SGID bit set.
If the named file is successfully opened, mtrace installs special handlers for
the functions malloc, realloc and free (see Section 3.2.2.10 [Memory
Allocation Hooks], page 50). From then on, all uses of these functions are
traced and protocolled into the file. There is now of course a speed penalty for
all calls to the traced functions, so tracing should not be enabled during normal
use.
This function is a GNU extension and generally not available on other systems.
The prototype can be found in ‘mcheck.h’.

Functionvoid muntrace (void)
The muntrace function can be called after mtracewas used to enable tracing
the malloc calls. If no (successful) call of mtrace was made, muntrace
does nothing.
Otherwise, it deinstalls the handlers for malloc, realloc and free, then
closes the protocol file. No calls are protocolled anymore and the program runs
again at full speed.
This function is a GNU extension and generally not available on other systems.
The prototype can be found in ‘mcheck.h’.

3.2.3.2 Example Program Excerpts

Even though the tracing functionality does not influence the run-time behavior of
the program, it is not a good idea to call mtrace in all programs. Just imagine that
you debug a program using mtrace and all other programs used in the debugging
session also trace their malloc calls. The output file would be the same for all
programs and thus unusable. Therefore, one should call mtrace only if compiled
for debugging. A program could therefore start like this:

#include <mcheck.h>

int

main (int argc, char *argv[])

{

#ifdef DEBUGGING

mtrace ();

#endif

Chapter 3: Virtual Memory Allocation and Paging 57

...

}

This is all that is needed if you want to trace the calls during the whole run-
time of the program. Alternatively, you can stop the tracing at any time with a
call to muntrace. It is even possible to restart the tracing again with a new call
to mtrace. But this can cause unreliable results, since there may be calls of the
functions that are not called. Please note that not only the application uses the
traced functions—libraries (including the C library itself) also use these functions.

This last point is also why it is not a good idea to call muntrace before the
program terminates. The libraries are informed about the termination of the pro-
gram only after the program returns from main or calls exit and so cannot free
the memory they use before this time.

So the best thing you can do is to call mtrace as the very first function in
the program and never call muntrace. So the program traces almost all uses of
the malloc functions (except those calls that are executed by constructors of the
program or used libraries).

3.2.3.3 Some More or Less Clever Ideas

You know the situation. The program is prepared for debugging and in all de-
bugging sessions it runs well. But once it is started without debugging the error
shows up. A typical example is a memory leak that becomes visible only when we
turn off the debugging. If you foresee such situations you can still win. Simply use
something equivalent to the following little program:

#include <mcheck.h>

#include <signal.h>

static void

enable (int sig)

{

mtrace ();

signal (SIGUSR1, enable);

}

static void

disable (int sig)

{

muntrace ();

signal (SIGUSR2, disable);

}

int

main (int argc, char *argv[])

{

58 The GNU C Library: Application Fundamentals

...

signal (SIGUSR1, enable);

signal (SIGUSR2, disable);

...

}

The user can start the memory debugger any time she wants if the program was
started with MALLOC_TRACE set in the environment. The output will of course not
show the allocations that happened before the first signal, but if there is a memory
leak, this will nevertheless show up.

3.2.3.4 Interpreting the Traces

If you take a look at the output it will look similar to this:
= Start

[0x8048209] - 0x8064cc8

[0x8048209] - 0x8064ce0

[0x8048209] - 0x8064cf8

[0x80481eb] + 0x8064c48 0x14

[0x80481eb] + 0x8064c60 0x14

[0x80481eb] + 0x8064c78 0x14

[0x80481eb] + 0x8064c90 0x14

= End

What this all means is not really important since the trace file is not meant to be
read by a human. Therefore no attention is given to readability. Instead there is a
program that comes with the GNU C library that interprets the traces and outputs a
summary in a user-friendly way. The program is called mtrace (it is in fact a Perl
script) and it takes one or two arguments. In any case, the name of the file with the
trace output must be specified. If an optional argument precedes the name of the
trace file, this must be the name of the program that generated the trace.

drepper$ mtrace tst-mtrace log

No memory leaks.

In this case, the program tst-mtrace was run and it produced a trace file
‘log’. The message printed by mtrace shows there are no problems with the
code—all allocated memory was freed afterwards.

If we call mtrace on the example trace given above, we would get a different
output:

drepper$ mtrace errlog

- 0x08064cc8 Free 2 was never alloc’d 0x8048209

- 0x08064ce0 Free 3 was never alloc’d 0x8048209

- 0x08064cf8 Free 4 was never alloc’d 0x8048209

Memory not freed:

Chapter 3: Virtual Memory Allocation and Paging 59

Address Size Caller

0x08064c48 0x14 at 0x80481eb

0x08064c60 0x14 at 0x80481eb

0x08064c78 0x14 at 0x80481eb

0x08064c90 0x14 at 0x80481eb

We have called mtrace with only one argument, so the script has no chance to
find out what is meant with the addresses given in the trace. We can do better:

drepper$ mtrace tst errlog

- 0x08064cc8 Free 2 was never alloc’d /home/drepper/tst.c:39

- 0x08064ce0 Free 3 was never alloc’d /home/drepper/tst.c:39

- 0x08064cf8 Free 4 was never alloc’d /home/drepper/tst.c:39

Memory not freed:

Address Size Caller

0x08064c48 0x14 at /home/drepper/tst.c:33

0x08064c60 0x14 at /home/drepper/tst.c:33

0x08064c78 0x14 at /home/drepper/tst.c:33

0x08064c90 0x14 at /home/drepper/tst.c:33

Suddenly the output makes much more sense and the user can see immediately
where the function calls causing the trouble can be found.

Interpreting this output is not complicated. There are at most two different situ-
ations being detected. First, free was called for pointers that were never returned
by one of the allocation functions. This is usually a very bad problem and what this
looks like is shown in the first three lines of the output. Situations like this are quite
rare and if they appear show up drastically—the program normally crashes.

The other situation, which is much harder to detect, is memory leaks. As you
can see in the output, the mtrace function collects all this information and so
can say that the program calls an allocation function from line 33 in the source
file ‘/home/drepper/tst-mtrace.c’ four times without freeing this mem-
ory before the program terminates. Whether this is a real problem remains to be
investigated.

3.2.4 Obstacks

An obstack is a pool of memory containing a stack of objects. You can create
any number of separate obstacks, and then allocate objects in specified obstacks.
Within each obstack, the last object allocated must always be the first one freed,
but distinct obstacks are independent of each other.

Aside from this one constraint on the order of freeing, obstacks are totally
general—an obstack can contain any number of objects of any size. They are im-
plemented with macros, so allocation is usually very fast as long as the objects are

60 The GNU C Library: Application Fundamentals

usually small. And the only space overhead per object is the padding needed to
start each object on a suitable boundary.

3.2.4.1 Creating Obstacks

The utilities for manipulating obstacks are declared in the header file
‘obstack.h’.

Data Typestruct obstack
An obstack is represented by a data structure of type struct obstack. This
structure has a small fixed size; it records the status of the obstack and how to
find the space in which objects are allocated. It does not contain any of the
objects themselves. You should not try to access the contents of the structure
directly; use only the functions described in this chapter.

You can declare variables of type struct obstack and use them as obstacks,
or you can allocate obstacks dynamically like any other kind of object. Dynamic
allocation of obstacks allows your program to have a variable number of different
stacks. (You can even allocate an obstack structure in another obstack, but this is
rarely useful.)

All the functions that work with obstacks require you to specify which obstack to
use. You do this with a pointer of type struct obstack *. In the following, we
often say "an obstack" when, strictly speaking, the object at hand is such a pointer.

The objects in the obstack are packed into large blocks called chunks. The
struct obstack structure points to a chain of the chunks currently in use.

The obstack library obtains a new chunk whenever you allocate an object that
won’t fit in the previous chunk. Since the obstack library manages chunks auto-
matically, you don’t need to pay much attention to them, but you do need to supply
a function that the obstack library should use to get a chunk. Usually you supply a
function that uses malloc directly or indirectly. You must also supply a function
to free a chunk. These matters are described in the following section.

3.2.4.2 Preparing for Using Obstacks

Each source file in which you plan to use the obstack functions must include the
header file ‘obstack.h’, like this:

#include <obstack.h>

Also, if the source file uses the macro obstack_init, it must declare or define
two functions or macros that will be called by the obstack library. One, obstack_
chunk_alloc, is used to allocate the chunks of memory into which objects are
packed. The other, obstack_chunk_free, is used to return chunks when the
objects in them are freed. These macros should appear before any use of obstacks
in the source file.

Usually these are defined to use malloc via the intermediary xmalloc (see
Section 3.2.2 [Unconstrained Allocation], page 42). This is done with the following
pair of macro definitions:

Chapter 3: Virtual Memory Allocation and Paging 61

#define obstack_chunk_alloc xmalloc

#define obstack_chunk_free free

Though the memory you get using obstacks really comes from malloc, using
obstacks is faster because malloc is called less often, for larger blocks of memory
(see Section 3.2.4.10 [Obstack Chunks], page 69, for full details).

At run time, before the program can use a struct obstack object as an ob-
stack, it must initialize the obstack by calling obstack_init.

Functionint obstack init (struct obstack *obstack-ptr)
Initialize obstack obstack-ptr for allocation of objects. This function calls the
obstack’s obstack_chunk_alloc function. If allocation of memory fails,
the function pointed to by obstack_alloc_failed_handler is called.
The obstack_init function always returns 1. Compatibility Note: Former
versions of obstack returned 0 if allocation failed.)

Here are two examples of how to allocate the space for an obstack and initialize
it; first, an obstack that is a static variable:

static struct obstack myobstack;

...

obstack_init (&myobstack);

second, an obstack that is itself dynamically allocated:
struct obstack *myobstack_ptr

= (struct obstack *) xmalloc (sizeof (struct obstack));

obstack_init (myobstack_ptr);

Variableobstack alloc failed handler
The value of this variable is a pointer to a function that obstack uses when
obstack_chunk_alloc fails to allocate memory. The default action is to
print a message and abort. You should supply a function that either calls exit
(see Section 14.6 [Program Termination], page 425) or longjmp5 and doesn’t
return.

void my_obstack_alloc_failed (void)

...

obstack_alloc_failed_handler = &my_obstack_alloc_failed;

3.2.4.3 Allocation in an Obstack

The most direct way to allocate an object in an obstack is with obstack_
alloc, which is invoked almost like malloc.

5 Ibid., “Nonlocal Exits”.

62 The GNU C Library: Application Fundamentals

Functionvoid * obstack alloc (struct obstack *obstack-ptr, int
size)

This allocates an uninitialized block of size bytes in an obstack and returns its
address. Here obstack-ptr specifies which obstack to allocate the block in; it is
the address of the struct obstack object that represents the obstack. Each
obstack function or macro requires you to specify an obstack-ptr as the first
argument.
This function calls the obstack’s obstack_chunk_alloc function if
it needs to allocate a new chunk of memory; it calls obstack_alloc_
failed_handler if allocation of memory by obstack_chunk_alloc
failed.

For example, here is a function that allocates a copy of a string str in a specific
obstack, which is in the variable string_obstack:

struct obstack string_obstack;

char *

copystring (char *string)

{

size_t len = strlen (string) + 1;

char *s = (char *) obstack_alloc (&string_obstack, len);

memcpy (s, string, len);

return s;

}

To allocate a block with specified contents, use the function obstack_copy,
declared like this:

Functionvoid * obstack copy (struct obstack *obstack-ptr, void
*address, int size)

This allocates a block and initializes it by copying size bytes of data starting
at address. It calls obstack_alloc_failed_handler if allocation of
memory by obstack_chunk_alloc failed.

Functionvoid * obstack copy0 (struct obstack *obstack-ptr,
void *address, int size)

Like obstack_copy, but appends an extra byte containing a null character.
This extra byte is not counted in the argument size.

The obstack_copy0 function is convenient for copying a sequence of char-
acters into an obstack as a null-terminated string. Here is an example of its use:

char *

obstack_savestring (char *addr, int size)

{

return obstack_copy0 (&myobstack, addr, size);

}

Chapter 3: Virtual Memory Allocation and Paging 63

Contrast this with the previous example of savestring using malloc (see Sec-
tion 3.2.2.1 [Basic Memory Allocation], page 42).

3.2.4.4 Freeing Objects in an Obstack

To free an object allocated in an obstack, use the function obstack_free.
Since the obstack is a stack of objects, freeing one object automatically frees all
other objects allocated more recently in the same obstack.

Functionvoid obstack free (struct obstack *obstack-ptr, void
*object)

If object is a null pointer, everything allocated in the obstack is freed. Other-
wise, object must be the address of an object allocated in the obstack. Then
object is freed, along with everything allocated in obstack since object.

Note that if object is a null pointer, the result is an uninitialized obstack. To free
all memory in an obstack but leave it valid for further allocation, call obstack_
free with the address of the first object allocated on the obstack:

obstack_free (obstack_ptr, first_object_allocated_ptr);

Recall that the objects in an obstack are grouped into chunks. When all the
objects in a chunk become free, the obstack library automatically frees the chunk
(see Section 3.2.4.2 [Preparing for Using Obstacks], page 60). Then other obstacks,
or non-obstack allocation, can reuse the space of the chunk.

3.2.4.5 Obstack Functions and Macros

The interfaces for using obstacks may be defined either as functions or as macros,
depending on the compiler. The obstack facility works with all C compilers, includ-
ing both ISO C and traditional C, but there are precautions you must take if you plan
to use compilers other than GNU C.

If you are using an old-fashioned non-ISO C compiler, all the obstack "func-
tions" are actually defined only as macros. You can call these macros like func-
tions, but you cannot use them in any other way (for example, you cannot take their
address).

Calling the macros requires a special precaution—the first operand (the obstack
pointer) may not contain any side effects, because it may be computed more than
once. For example, if you write this:

obstack_alloc (get_obstack (), 4);

you will find that get_obstack may be called several times. If you use
*obstack_list_ptr++ as the obstack pointer argument, you will get very
strange results, since the incrementation may occur several times.

In ISO C, each function has both a macro definition and a function definition. The
function definition is used if you take the address of the function without calling
it. An ordinary call uses the macro definition by default, but you can request the

64 The GNU C Library: Application Fundamentals

function definition instead by writing the function name in parentheses, as shown
here:

char *x;

void *(*funcp) ();

/* Use the macro. */

x = (char *) obstack_alloc (obptr, size);

/* Call the function. */

x = (char *) (obstack_alloc) (obptr, size);

/* Take the address of the function. */

funcp = obstack_alloc;

This is the same situation that exists in ISO C for the standard library functions (see
Section 1.3.2 [Macro Definitions of Functions], page 5).

Warning: When you do use the macros, you must observe the precaution of
avoiding side effects in the first operand, even in ISO C.

If you use the GNU C Compiler, this precaution is not necessary, because various
language extensions in GNU C permit defining the macros so as to compute each
argument only once.

3.2.4.6 Growing Objects

Because memory in obstack chunks is used sequentially, it is possible to build
up an object step-by-step, adding one or more bytes at a time to the end of the
object. With this technique, you do not need to know how much data you will put
in the object until you come to the end of it. We call this the technique of growing
objects. The special functions for adding data to the growing object are described
in this section.

You don’t need to do anything special when you start to grow an object. Using
one of the functions to add data to the object automatically starts it. However, it
is necessary to say explicitly when the object is finished. This is done with the
function obstack_finish.

The actual address of the object thus built up is not known until the object is
finished. Until then, it always remains possible that you will add so much data that
the object must be copied into a new chunk.

While the obstack is in use for a growing object, you cannot use it for ordinary
allocation of another object. If you try to do so, the space already added to the
growing object will become part of the other object.

Functionvoid obstack blank (struct obstack *obstack-ptr, int
size)

The most basic function for adding to a growing object is obstack_blank,
which adds space without initializing it.

Chapter 3: Virtual Memory Allocation and Paging 65

Functionvoid obstack grow (struct obstack *obstack-ptr, void
*data, int size)

To add a block of initialized space, use obstack_grow, which is the growing-
object analogue of obstack_copy. It adds size bytes of data to the growing
object, copying the contents from data.

Functionvoid obstack grow0 (struct obstack *obstack-ptr, void
*data, int size)

This is the growing-object analogue of obstack_copy0. It adds size bytes
copied from data, followed by an additional null character.

Functionvoid obstack 1grow (struct obstack *obstack-ptr, char
c)

To add one character at a time, use the function obstack_1grow. It adds a
single byte containing c to the growing object.

Functionvoid obstack ptr grow (struct obstack *obstack-ptr,
void *data)

Adding the value of a pointer one can use the function obstack_ptr_grow.
It adds sizeof (void *) bytes containing the value of data.

Functionvoid obstack int grow (struct obstack *obstack-ptr, int
data)

A single value of type int can be added by using the obstack_int_grow
function. It adds sizeof (int) bytes to the growing object and initializes
them with the value of data.

Functionvoid * obstack finish (struct obstack *obstack-ptr)
When you are finished growing the object, use the function obstack_finish
to close it off and return its final address.
Once you have finished the object, the obstack is available for ordinary alloca-
tion or for growing another object.
This function can return a null pointer under the same conditions as obstack_
alloc (see Section 3.2.4.3 [Allocation in an Obstack], page 61).

When you build an object by growing it, you will probably need to know after-
ward how long it became. You need not keep track of this as you grow the object,
because you can find out the length from the obstack just before finishing the object
with the function obstack_object_size, declared as follows:

Functionint obstack object size (struct obstack *obstack-ptr)
This function returns the current size of the growing object, in bytes. Remember
to call this function before finishing the object. After it is finished, obstack_
object_size will return zero.

66 The GNU C Library: Application Fundamentals

If you have started growing an object and wish to cancel it, you should finish it
and then free it, like this:

obstack_free (obstack_ptr, obstack_finish (obstack_ptr));

This has no effect if no object was growing.
You can use obstack_blank with a negative size argument to make the cur-

rent object smaller. Just don’t try to shrink it beyond zero length—there’s no telling
what will happen if you do that.

3.2.4.7 Extra-Fast Growing Objects

The usual functions for growing objects incur overhead for checking whether
there is room for the new growth in the current chunk. If you are frequently con-
structing objects in small steps of growth, this overhead can be significant.

You can reduce the overhead by using special "fast growth" functions that grow
the object without checking. In order to have a robust program, you must do the
checking yourself. If you do this checking in the simplest way each time you are
about to add data to the object, you have not saved anything, because that is what
the ordinary growth functions do. But if you can arrange to check less often, or
check more efficiently, then you make the program faster.

The function obstack_room returns the amount of room available in the cur-
rent chunk. It is declared as follows:

Functionint obstack room (struct obstack *obstack-ptr)
This returns the number of bytes that can be added safely to the current growing
object (or to an object about to be started) in obstack obstack using the fast-
growth functions.

While you know there is room, you can use these fast-growth functions for
adding data to a growing object:

Functionvoid obstack 1grow fast (struct obstack *obstack-ptr,
char c)

The function obstack_1grow_fast adds one byte containing the character
c to the growing object in obstack obstack-ptr.

Functionvoid obstack ptr grow fast (struct obstack
*obstack-ptr, void *data)

The function obstack_ptr_grow_fast adds sizeof (void *) bytes
containing the value of data to the growing object in obstack obstack-ptr.

Functionvoid obstack int grow fast (struct obstack
*obstack-ptr, int data)

The function obstack_int_grow_fast adds sizeof (int) bytes con-
taining the value of data to the growing object in obstack obstack-ptr.

Chapter 3: Virtual Memory Allocation and Paging 67

Functionvoid obstack blank fast (struct obstack *obstack-ptr,
int size)

The function obstack_blank_fast adds size bytes to the growing object
in obstack obstack-ptr without initializing them.

When you check for space using obstack_room and there is not enough room
for what you want to add, the fast-growth functions are not safe. In this case, simply
use the corresponding ordinary growth function instead. Very soon this will copy
the object to a new chunk; then there will be lots of room available again.

So, each time you use an ordinary growth function, check afterward for sufficient
space using obstack_room. Once the object is copied to a new chunk, there will
be plenty of space again, so the program will start using the fast-growth functions
again.

Here is an example:
void

add_string (struct obstack *obstack, const char *ptr, int len)

{

while (len > 0)

{

int room = obstack_room (obstack);

if (room == 0)

{

/* Not enough room. Add one character slowly,

which may copy to a new chunk and make room. */

obstack_1grow (obstack, *ptr++);

len--;

}

else

{

if (room > len)

room = len;

/* Add fast as much as we have room for. */

len -= room;

while (room-- > 0)

obstack_1grow_fast (obstack, *ptr++);

}

}

}

3.2.4.8 Status of an Obstack

Here are functions that provide information on the current status of allocation in
an obstack. You can use them to learn about an object while still growing it.

68 The GNU C Library: Application Fundamentals

Functionvoid * obstack base (struct obstack *obstack-ptr)
This function returns the tentative address of the beginning of the currently
growing object in obstack-ptr. If you finish the object immediately, it will have
that address. If you make it larger first, it may outgrow the current chunk—then
its address will change!
If no object is growing, this value says where the next object you allocate will
start (once again assuming it fits in the current chunk).

Functionvoid * obstack next free (struct obstack *obstack-ptr)
This function returns the address of the first free byte in the current chunk of ob-
stack obstack-ptr. This is the end of the currently growing object. If no object is
growing, obstack_next_free returns the same value as obstack_base.

Functionint obstack object size (struct obstack *obstack-ptr)
This function returns the size in bytes of the currently growing object. This is
equivalent to:

obstack_next_free (obstack-ptr) - obstack_base (obstack-ptr)

3.2.4.9 Alignment of Data in Obstacks

Each obstack has an alignment boundary; each object allocated in the obstack
automatically starts on an address that is a multiple of the specified boundary. By
default, this boundary is 4 bytes.

To access an obstack’s alignment boundary, use the macro obstack_
alignment_mask, whose function prototype looks like this:

Macroint obstack alignment mask (struct obstack *obstack-ptr)
The value is a bit mask; a bit that is 1 indicates that the corresponding bit in
the address of an object should be 0. The mask value should be one less than
a power of 2; the effect is that all object addresses are multiples of that power
of 2. The default value of the mask is 3, so that addresses are multiples of 4.
A mask value of 0 means an object can start on any multiple of 1 (that is, no
alignment is required).
The expansion of the macro obstack_alignment_mask is an lvalue, so
you can alter the mask by assignment. For example, this statement:

obstack_alignment_mask (obstack_ptr) = 0;

has the effect of turning off alignment processing in the specified obstack.

Note that a change in alignment mask does not take effect until after the next
time an object is allocated or finished in the obstack. If you are not growing an
object, you can make the new alignment mask take effect immediately by call-
ing obstack_finish. This will finish a zero-length object and then do proper
alignment for the next object.

Chapter 3: Virtual Memory Allocation and Paging 69

3.2.4.10 Obstack Chunks

Obstacks work by allocating space for themselves in large chunks, and then
parceling out space in the chunks to satisfy your requests. Chunks are normally
4096 bytes long unless you specify a different chunk size. The chunk size includes
8 bytes of overhead that are not actually used for storing objects. Regardless of the
specified size, longer chunks will be allocated when necessary for long objects.

The obstack library allocates chunks by calling the function obstack_chunk_
alloc, which you must define. When a chunk is no longer needed because
you have freed all the objects in it, the obstack library frees the chunk by calling
obstack_chunk_free, which you must also define.

These two must be defined (as macros) or declared (as functions) in each source
file that uses obstack_init (see Section 3.2.4.1 [Creating Obstacks], page 60).
Most often they are defined as macros like this:

#define obstack_chunk_alloc malloc

#define obstack_chunk_free free

Note that these are simple macros (no arguments). Macro definitions with
arguments will not work! It is necessary that obstack_chunk_alloc or
obstack_chunk_free, alone, expand into a function name if it is not itself
a function name.

If you allocate chunks with malloc, the chunk size should be a power of 2.
The default chunk size, 4096, was chosen because it is long enough to satisfy many
typical requests on the obstack yet short enough not to waste too much memory in
the portion of the last chunk not yet used.

Macroint obstack chunk size (struct obstack *obstack-ptr)
This returns the chunk size of the given obstack.

Since this macro expands to an lvalue, you can specify a new chunk size by
assigning it a new value. Doing so does not affect the chunks already allocated, but
will change the size of chunks allocated for that particular obstack in the future. It
is unlikely to be useful to make the chunk size smaller, but making it larger might
improve efficiency if you are allocating many objects whose size is comparable to
the chunk size. Here is how to do so cleanly:

if (obstack_chunk_size (obstack_ptr) < new-chunk-size)

obstack_chunk_size (obstack_ptr) = new-chunk-size;

3.2.4.11 Summary of Obstack Functions

Here is a summary of all the functions associated with obstacks. Each takes the
address of an obstack (struct obstack *) as its first argument.

void obstack_init (struct obstack *obstack-ptr)
Initialize use of an obstack (see Section 3.2.4.1 [Creating Obstacks],
page 60).

70 The GNU C Library: Application Fundamentals

void *obstack_alloc (struct obstack *obstack-ptr, int size)
Allocate an object of size uninitialized bytes (see Section 3.2.4.3 [Al-
location in an Obstack], page 61).

void *obstack_copy (struct obstack *obstack-ptr, void *address,
int size)

Allocate an object of size bytes, with contents copied from address
(see Section 3.2.4.3 [Allocation in an Obstack], page 61).

void *obstack_copy0 (struct obstack *obstack-ptr, void *address,
int size)

Allocate an object of size+1 bytes, with size of them copied from
address, followed by a null character at the end (see Section 3.2.4.3
[Allocation in an Obstack], page 61).

void obstack_free (struct obstack *obstack-ptr, void *object)
Free object and everything allocated in the specified obstack more
recently than object (see Section 3.2.4.4 [Freeing Objects in an Ob-
stack], page 63).

void obstack_blank (struct obstack *obstack-ptr, int size)
Add size uninitialized bytes to a growing object (see Section 3.2.4.6
[Growing Objects], page 64).

void obstack_grow (struct obstack *obstack-ptr, void *address,
int size)

Add size bytes, copied from address, to a growing object (see Sec-
tion 3.2.4.6 [Growing Objects], page 64).

void obstack_grow0 (struct obstack *obstack-ptr, void *address,
int size)

Add size bytes, copied from address, to a growing object, and then add
another byte containing a null character (see Section 3.2.4.6 [Growing
Objects], page 64).

void obstack_1grow (struct obstack *obstack-ptr, char data-char)
Add one byte containing data-char to a growing object (see Sec-
tion 3.2.4.6 [Growing Objects], page 64).

void *obstack_finish (struct obstack *obstack-ptr)
Finalize the object that is growing and return its permanent address
(see Section 3.2.4.6 [Growing Objects], page 64).

int obstack_object_size (struct obstack *obstack-ptr)
Get the current size of the currently growing object (see
Section 3.2.4.6 [Growing Objects], page 64).

void obstack_blank_fast (struct obstack *obstack-ptr, int size)
Add size uninitialized bytes to a growing object without checking that
there is enough room (see Section 3.2.4.7 [Extra-Fast Growing Ob-
jects], page 66).

Chapter 3: Virtual Memory Allocation and Paging 71

void obstack_1grow_fast (struct obstack *obstack-ptr, char
data-char)

Add one byte containing data-char to a growing object without check-
ing that there is enough room (see Section 3.2.4.7 [Extra-Fast Grow-
ing Objects], page 66).

int obstack_room (struct obstack *obstack-ptr)
Get the amount of room now available for growing the current object
(see Section 3.2.4.7 [Extra-Fast Growing Objects], page 66).

int obstack_alignment_mask (struct obstack *obstack-ptr)
The mask used for aligning the beginning of an object. This is an
lvalue (see Section 3.2.4.9 [Alignment of Data in Obstacks], page 68).

int obstack_chunk_size (struct obstack *obstack-ptr)
The size for allocating chunks. This is an lvalue (see Section 3.2.4.10
[Obstack Chunks], page 69).

void *obstack_base (struct obstack *obstack-ptr)
Tentative starting address of the currently growing object (see Sec-
tion 3.2.4.8 [Status of an Obstack], page 67).

void *obstack_next_free (struct obstack *obstack-ptr)
Address just after the end of the currently growing object (see Sec-
tion 3.2.4.8 [Status of an Obstack], page 67).

3.2.5 Automatic Storage with Variable Size

The function alloca supports a kind of half-dynamic allocation in which
blocks are allocated dynamically but freed automatically.

Allocating a block with alloca is an explicit action; you can allocate as many
blocks as you wish, and compute the size at run time. But all the blocks are freed
when you exit the function that alloca was called from, just as if they were
automatic variables declared in that function. There is no way to free the space
explicitly.

The prototype for alloca is in ‘stdlib.h’. This function is a BSD extension.

Functionvoid * alloca (size_t size);
The return value of alloca is the address of a block of size bytes of memory,
allocated in the stack frame of the calling function.

Do not use alloca inside the arguments of a function call—you will get un-
predictable results, because the stack space for the alloca would appear on the
stack in the middle of the space for the function arguments. An example of what to
avoid is foo (x, alloca (4), y).

72 The GNU C Library: Application Fundamentals

3.2.5.1 alloca Example

As an example of the use of alloca, here is a function that opens a file name
made from concatenating two argument strings, and returns a file descriptor or
minus one, signifying failure:

int

open2 (char *str1, char *str2, int flags, int mode)

{

char *name = (char *) alloca (strlen (str1) + strlen (str2) + 1);

stpcpy (stpcpy (name, str1), str2);

return open (name, flags, mode);

}

Here is how you would get the same results with malloc and free:
int

open2 (char *str1, char *str2, int flags, int mode)

{

char *name = (char *) malloc (strlen (str1) + strlen (str2) + 1);

int desc;

if (name == 0)

fatal ("virtual memory exceeded");

stpcpy (stpcpy (name, str1), str2);

desc = open (name, flags, mode);

free (name);

return desc;

}

As you can see, it is simpler with alloca. But alloca has other, more im-
portant advantages, and some disadvantages.

3.2.5.2 Advantages of alloca

Here are the reasons why alloca may be preferable to malloc:
• Using alloca wastes very little space and is very fast. (It is open coded by

the GNU C Compiler.)
• Since alloca does not have separate pools for different sizes of block, space

used for any size block can be reused for any other size. alloca does not
cause memory fragmentation.

• Nonlocal exits done with longjmp6 automatically free the space allocated
with alloca when they exit through the function that called alloca. This
is the most important reason to use alloca.
To illustrate this, suppose you have a function open_or_report_error
that returns a descriptor, like open, if it succeeds, but does not return to its
caller if it fails. If the file cannot be opened, it prints an error message and

6 Ibid., “Nonlocal Exits”.

Chapter 3: Virtual Memory Allocation and Paging 73

jumps out to the command level of your program using longjmp. Let’s
change open2 (see Section 3.2.5.1 [alloca Example], page 72) to use this
subroutine:

int

open2 (char *str1, char *str2, int flags, int mode)

{

char *name = (char *) alloca (strlen (str1) + strlen (str2) + 1);

stpcpy (stpcpy (name, str1), str2);

return open_or_report_error (name, flags, mode);

}

Because of the way alloca works, the memory it allocates is freed even
when an error occurs, with no special effort required.
By contrast, the previous definition of open2 (which uses malloc and
free) would develop a memory leak if it were changed in this way. Even
if you are willing to make more changes to fix it, there is no easy way to do
so.

3.2.5.3 Disadvantages of alloca

These are the disadvantages of alloca in comparison with malloc:
• If you try to allocate more memory than the machine can provide, you don’t

get a clean error message. Instead you get a fatal signal like the one you would
get from an infinite recursion; probably a segmentation violation.7

• Some non-GNU systems fail to support alloca, so it is less portable. How-
ever, a slower emulation of alloca written in C is available for use on sys-
tems with this deficiency.

3.2.5.4 GNU C Variable-Size Arrays

In GNU C, you can replace most uses of alloca with an array of variable size.
Here is how open2 would look then:

int open2 (char *str1, char *str2, int flags, int mode)

{

char name[strlen (str1) + strlen (str2) + 1];

stpcpy (stpcpy (name, str1), str2);

return open (name, flags, mode);

}

But alloca is not always equivalent to a variable-size array, for several reasons:
• A variable-size array’s space is freed at the end of the scope of the name of the

array. The space allocated with alloca remains until the end of the function.
• It is possible to use alloca within a loop, allocating an additional block on

each iteration. This is impossible with variable-size arrays.

7 Ibid., “Program-Error Signals”.

74 The GNU C Library: Application Fundamentals

Note: If you mix use of alloca and variable-size arrays within one function,
exiting a scope in which a variable-size array was declared frees all blocks allocated
with alloca during the execution of that scope.

3.3 Resizing the Data Segment
The symbols in this section are declared in ‘unistd.h’.
You will not normally use the functions in this section, because the functions

described in Section 3.2 [Allocating Storage for Program Data], page 41 are easier
to use. Those are interfaces to a GNU C Library memory allocator that uses the
functions below itself. The functions below are simple interfaces to system calls.

Functionint brk (void *addr)
brk sets the high end of the calling process’ data segment to addr.
The address of the end of a segment is defined to be the address of the last byte
in the segment plus 1.
The function has no effect if addr is lower than the low end of the data segment.
(This is considered success.)
The function fails if it would cause the data segment to overlap another segment
or exceed the process’ data storage limit.8

The function is named for a common historical case where data storage and the
stack are in the same segment. Data storage allocation grows upward from the
bottom of the segment while the stack grows downward toward it from the top
of the segment and the curtain between them is called the break.
The return value is zero on success. On failure, the return value is -1 and
errno is set accordingly. The following errno values are specific to this
function:

ENOMEM The request would cause the data segment to overlap another seg-
ment or exceed the process’ data storage limit.

Functionint sbrk (ptrdiff_t delta)
This function is the same as brk except that you specify the new end of the data
segment as an offset delta from the current end and on success the return value
is the address of the resulting end of the data segment instead of zero.
This means you can use ‘sbrk(0)’ to find out what the current end of the data
segment is.

3.4 Locking Pages
You can tell the system to associate a particular virtual memory page with a real

page frame and keep it that way—i.e., cause the page to be paged in if it isn’t

8 Ibid., “Limiting Resource Usage”.

Chapter 3: Virtual Memory Allocation and Paging 75

already and mark it so it will never be paged out and consequently will never cause
a page fault. This is called locking a page.

The functions in this chapter lock and unlock the calling process’ pages.

3.4.1 Why Lock Pages?

Because page faults cause paged out pages to be paged in transparently, a process
rarely needs to be concerned about locking pages. However, there are two reasons
people sometimes are:

• Speed. A page fault is transparent only insofar as the process is not sensitive
to how long it takes to do a simple memory access. Time-critical processes,
especially real-time processes, may not be able to wait or may not be able to
tolerate variance in execution speed.
A process that needs to lock pages for this reason probably also needs priority
among other processes for use of the CPU.9

In some cases, the programmer knows better than the system’s demand pag-
ing allocator which pages should remain in real memory to optimize system
performance. In this case, locking pages can help.

• Privacy. If you keep secrets in virtual memory and that virtual memory gets
paged out, that increases the chance that the secrets will get out. If a password
gets written out to disk swap space, for example, it might still be there long
after virtual and real memory have been wiped clean.

Be aware that when you lock a page, that is one fewer page frame that can be
used to back other virtual memory (by the same or other processes), which can
mean more page faults, which means the system runs more slowly. In fact, if you
lock enough memory, some programs may not be able to run at all for lack of real
memory.

3.4.2 Locked-Memory Details

A memory lock is associated with a virtual page, not a real frame. The paging
rule is: If a frame backs at least one locked page, don’t page it out.

Memory locks do not stack—you can’t lock a particular page twice so that it has
to be unlocked twice before it is truly unlocked. It is either locked or it isn’t.

A memory lock persists until the process that owns the memory explicitly un-
locks it. (But process termination and exec cause the virtual memory to cease to
exist, which you might say means it isn’t locked any more.)

Memory locks are not inherited by child processes (but note that on a modern
Unix system, immediately after a fork, the parent’s and the child’s virtual address
space are backed by the same real page frames, so the child enjoys the parent’s
locks).10

9 Ibid., “Process CPU Priority and Scheduling”.
10 Ibid., “Creating a Process”.

76 The GNU C Library: Application Fundamentals

Because of its ability to impact other processes, only the superuser can lock a
page. Any process can unlock its own page.

The system sets limits on the amount of memory a process can have locked and
the amount of real memory it can have dedicated to it.11

In Linux, locked pages aren’t as locked as you might think. Two virtual pages
that are not shared memory can nonetheless be backed by the same real frame. The
kernel does this in the name of efficiency when it knows both virtual pages contain
identical data, and does it even if one or both of the virtual pages are locked.

But when a process modifies one of those pages, the kernel must get it a separate
frame and fill it with the page’s data. This is known as a copy-on-write page fault.
It takes a small amount of time and in a pathological case, getting that frame may
require I/O.

To make sure this doesn’t happen to your program, don’t just lock the pages.
Write to them as well, unless you know you won’t ever write to them ever. And to
make sure you have preallocated frames for your stack, enter a scope that declares
a C automatic variable larger than the maximum stack size you will need, set it to
something, then return from its scope.

3.4.3 Functions to Lock and Unlock Pages

The symbols in this section are declared in ‘sys/mman.h’. These functions are
defined by POSIX.1b, but their availability depends on your kernel. If your kernel
doesn’t allow these functions, they exist but always fail. They are available with a
Linux kernel.

Portability Note: POSIX.1b requires that when the mlock and munlock
functions are available, the file ‘unistd.h’ define the macro _POSIX_
MEMLOCK_RANGE and the file limits.h define the macro PAGESIZE to be
the size of a memory page in bytes. It requires that when the mlockall and
munlockall functions are available, the ‘unistd.h’ file define the macro
_POSIX_MEMLOCK. The GNU C Library conforms to this requirement.

Functionint mlock (const void *addr, size_t len)
mlock locks a range of the calling process’ virtual pages.
The range of memory starts at address addr and is len bytes long. Actually,
since you must lock whole pages, it is the range of pages that include any part
of the specified range.
When the function returns successfully, each of those pages is backed by (con-
nected to) a real frame (is resident) and is marked to stay that way. This means
the function may cause page-ins and have to wait for them.
When the function fails, it does not affect the lock status of any pages.
The return value is zero if the function succeeds. Otherwise, it is -1 and errno
is set accordingly. errno values specific to this function are

11 Ibid., “Limiting Resource Usage”.

Chapter 3: Virtual Memory Allocation and Paging 77

ENOMEM

• At least some of the specified address range does not exist in
the calling process’ virtual-address space.

• The locking would cause the process to exceed its locked page
limit.

EPERM The calling process is not superuser.

EINVAL len is not positive.

ENOSYS The kernel does not provide mlock capability.

You can lock all a process’ memory with mlockall. You unlock memory with
munlock or munlockall.
To avoid all page faults in a C program, you have to use mlockall, because
some of the memory a program uses is hidden from the C code, e.g., the stack
and automatic variables, and you wouldn’t know what address to tell mlock.

Functionint munlock (const void *addr, size_t len)
mlock unlocks a range of the calling process’ virtual pages.
munlock is the inverse of mlock and functions completely analogously to
mlock, except that there is no EPERM failure.

Functionint mlockall (int flags)
mlockall locks all the pages in a process’ virtual-memory address space,
and/or any that are added to it in the future. This includes the pages of the
code, data and stack segment, as well as shared libraries, user-space kernel data,
shared memory, and memory-mapped files.
flags is a string of single-bit flags represented by the following macros. They
tell mlockall which of its functions you want. All other bits must be zero.

MCL_CURRENT
Lock all pages that currently exist in the calling process’ virtual-
address space.

MCL_FUTURE
Set a mode such that any pages added to the process’ virtual-
address space in the future will be locked from birth. This mode
does not affect future address spaces owned by the same process,
so exec, which replaces a process’ address space, wipes out MCL_
FUTURE.12

When the function returns successfully, and you specified MCL_CURRENT, all
of the process’ pages are backed by (connected to) real frames (they are resident)
and are marked to stay that way. This means the function may cause page-ins
and have to wait for them.

12 Ibid., “Executing a File”.

78 The GNU C Library: Application Fundamentals

When the process is in MCL_FUTURE mode because it successfully executed
this function and specified MCL_CURRENT, any system call by the process that
requires space be added to its virtual address space fails with errno = ENOMEM
if locking the additional space would cause the process to exceed its locked page
limit. In the case that the address space addition that can’t be accommodated
is stack expansion, the stack expansion fails and the kernel sends a SIGSEGV
signal to the process.
When the function fails, it does not affect the lock status of any pages or the
future locking mode.
The return value is zero if the function succeeds. Otherwise, it is -1 and errno
is set accordingly. errno values specific to this function are

ENOMEM

• At least some of the specified address range does not exist in
the calling process’ virtual-address space.

• The locking would cause the process to exceed its locked page
limit.

EPERM The calling process is not superuser.

EINVAL Undefined bits in flags are not zero.

ENOSYS The kernel does not provide mlockall capability.

You can lock just specific pages with mlock. You unlock pages with
munlockall and munlock.

Functionint munlockall (void)
munlockall unlocks every page in the calling process’ virtual-address space
and turn off MCL_FUTURE future locking mode.
The return value is zero if the function succeeds. Otherwise, it is -1 and errno
is set accordingly. The only way this function can fail is for generic reasons that
all functions and system calls can fail, so there are no specific errno values.

Chapter 4: Character Handling 79

4 Character Handling
Programs that work with characters and strings often need to classify a charac-

ter as alphabetic, digit, white space, etc., and perform case conversion operations
on characters. The functions in the header file ‘ctype.h’ are provided for this
purpose.

Since the choice of locale and character set can alter the classifications of par-
ticular character codes, all of these functions are affected by the current locale.
(More precisely, they are affected by the locale currently selected for character
classification—the LC_CTYPE category; see Section 7.3 [Categories of Activities
That Locales Affect], page 182.)

The ISO C standard specifies two different sets of functions. The one set works
on char type characters, the other one on wchar_t wide characters (see Sec-
tion 6.1 [Introduction to Extended Characters], page 133).

4.1 Classification of Characters
This section explains the library functions for classifying characters. For ex-

ample, isalpha is the function to test for an alphabetic character. It takes one
argument, the character to test, and returns a nonzero integer if the character is
alphabetic, and zero otherwise. You would use it like this:

if (isalpha (c))

printf ("The character ‘%c’ is alphabetic.\n", c);

Each of the functions in this section tests for membership in a particular class of
characters; each has a name starting with ‘is’. Each of them takes one argument,
which is a character to test, and returns an int which is treated as a Boolean value.
The character argument is passed as an int, and it may be the constant value EOF
instead of a real character.

The attributes of any given character can vary between locales. See Chapter 7
[Locales and Internationalization], page 181, for more information on locales.

These functions are declared in the header file ‘ctype.h’.

Functionint islower (int c)
Returns true if c is a lowercase letter. The letter need not be from the Latin
alphabet—any representable alphabet is valid.

Functionint isupper (int c)
Returns true if c is an uppercase letter. The letter need not be from the Latin
alphabet—any representable alphabet is valid.

Functionint isalpha (int c)
Returns true if c is an alphabetic character (a letter). If islower or isupper
is true of a character, then isalpha is also true.

80 The GNU C Library: Application Fundamentals

In some locales, there may be additional characters for which isalpha is
true—letters that are neither uppercase nor lowercase. But in the standard "C"
locale, there are no such additional characters.

Functionint isdigit (int c)
Returns true if c is a decimal digit (‘0’ through ‘9’).

Functionint isalnum (int c)
Returns true if c is an alphanumeric character (a letter or number); in other
words, if either isalpha or isdigit is true of a character, then isalnum
is also true.

Functionint isxdigit (int c)
Returns true if c is a hexadecimal digit. Hexadecimal digits include the normal
decimal digits ‘0’ through ‘9’ and the letters ‘A’ through ‘F’ and ‘a’ through
‘f’.

Functionint ispunct (int c)
Returns true if c is a punctuation character. This means any printing character
that is not alphanumeric or a space character.

Functionint isspace (int c)
Returns true if c is a white-space character. In the standard "C" locale,
isspace returns true for only the standard white-space characters:

’ ’ space

’\f’ formfeed

’\n’ newline

’\r’ carriage return

’\t’ horizontal tab

’\v’ vertical tab

Functionint isblank (int c)
Returns true if c is a blank character; that is, a space or a tab. This function is a
GNU extension.

Chapter 4: Character Handling 81

Functionint isgraph (int c)
Returns true if c is a graphic character; that is, a character that has a glyph
associated with it. The white-space characters are not considered graphic.

Functionint isprint (int c)
Returns true if c is a printing character. Printing characters include all the
graphic characters, plus the space (‘ ’) character.

Functionint iscntrl (int c)
Returns true if c is a control character; that is, a character that is not a printing
character.

Functionint isascii (int c)
Returns true if c is a 7-bit unsigned char value that fits into the US/UK
ASCII character set. This function is a BSD extension and is also an SVID exten-
sion.

4.2 Case Conversion
This section explains the library functions for performing conversions such as

case mappings on characters. For example, toupper converts any character to
upper case if possible. If the character can’t be converted, toupper returns it
unchanged.

These functions take one argument of type int, which is the character to con-
vert, and return the converted character as an int. If the conversion is not applica-
ble to the argument given, the argument is returned unchanged.

Compatibility Note: In pre-ISO C dialects, instead of returning the argu-
ment unchanged, these functions may fail when the argument is not suitable for
the conversion. Thus for portability, you may need to write islower(c) ?
toupper(c) : c rather than just toupper(c).

These functions are declared in the header file ‘ctype.h’.

Functionint tolower (int c)
If c is an uppercase letter, tolower returns the corresponding lowercase letter.
If c is not an uppercase letter, c is returned unchanged.

Functionint toupper (int c)
If c is a lowercase letter, toupper returns the corresponding uppercase letter.
Otherwise c is returned unchanged.

82 The GNU C Library: Application Fundamentals

Functionint toascii (int c)
This function converts c to a 7-bit unsigned char value that fits into the
US/UK ASCII character set, by clearing the high-order bits. This function is a
BSD extension and is also an SVID extension.

Functionint tolower (int c)
This is identical to tolower, and is provided for compatibility with the SVID
(see Section 1.2.4 [SVID (The System V Interface Description)], page 3).

Functionint toupper (int c)
This is identical to toupper, and is provided for compatibility with the SVID.

4.3 Character Class Determination for Wide Characters
Amendment 1 to ISO C90 defines functions to classify wide characters. Al-

though the original ISO C90 standard already defined the type wchar_t, no func-
tions operating on them were defined.

The general design of the classification functions for wide characters is more
general. It allows extensions to the set of available classifications, beyond those
that are always available. The POSIX standard specifies how extensions can be
made, and this is already implemented in the GNU C Library implementation of the
localedef program.

The character class functions are normally implemented with bitsets, with a bitset
per character. For a given character, the appropriate bitset is read from a table and
a test is performed as to whether a certain bit is set. Which bit is tested for is
determined by the class.

For the wide-character classification functions this is made visible. There is a
type classification type defined, a function to retrieve this value for a given class,
and a function to test whether a given character is in this class, using the classifica-
tion value. On top of this the normal character classification functions as used for
char objects can be defined.

Data typewctype t
The wctype_t can hold a value which represents a character class. The only
defined way to generate such a value is by using the wctype function.
This type is defined in ‘wctype.h’.

Functionwctype_t wctype (const char *property)
The wctype returns a value representing a class of wide characters that is iden-
tified by the string property. Besides some standard properties, each locale can
define its own ones. In case no property with the given name is known for the
current locale selected for the LC_CTYPE category, the function returns zero.
The properties known in every locale are
"alnum" "alpha" "cntrl" "digit"

Chapter 4: Character Handling 83

"graph" "lower" "print" "punct"
"space" "upper" "xdigit"
This function is declared in ‘wctype.h’.

To test the membership of a character to one of the nonstandard classes, the
ISO C standard defines a completely new function.

Functionint iswctype (wint_t wc, wctype_t desc)
This function returns a nonzero value if wc is in the character class specified by
desc. desc must previously be returned by a successful call to wctype.
This function is declared in ‘wctype.h’.

To make it easier to use the commonly used classification functions, they are
defined in the C library. There is no need to use wctype if the property string is
one of the known character classes. In some situations it is desirable to construct the
property strings, and then it is important that wctype can also handle the standard
classes.

Functionint iswalnum (wint_t wc)
This function returns a nonzero value if wc is an alphanumeric character (a
letter or number). In other words, if either iswalpha or iswdigit is true of
a character, then iswalnum is also true.
This function can be implemented using:

iswctype (wc, wctype ("alnum"))

It is declared in ‘wctype.h’.

Functionint iswalpha (wint_t wc)
Returns true if wc is an alphabetic character (a letter). If iswlower or
iswupper is true of a character, then iswalpha is also true.
In some locales, there may be additional characters for which iswalpha is
true—letters that are neither uppercase nor lowercase. But in the standard "C"
locale, there are no such additional characters.
This function can be implemented using:

iswctype (wc, wctype ("alpha"))

It is declared in ‘wctype.h’.

Functionint iswcntrl (wint_t wc)
Returns true if wc is a control character; that is, a character that is not a printing
character.
This function can be implemented using:

iswctype (wc, wctype ("cntrl"))

It is declared in ‘wctype.h’.

84 The GNU C Library: Application Fundamentals

Functionint iswdigit (wint_t wc)
Returns true if wc is a digit (e.g., ‘0’ through ‘9’). Please note that this function
does not only return a nonzero value for decimal digits, but for all kinds of digits.
A consequence is that code like the following will not work unconditionally for
wide characters:

n = 0;

while (iswdigit (*wc))

{

n *= 10;

n += *wc++ - L’0’;

}

This function can be implemented using:
iswctype (wc, wctype ("digit"))

It is declared in ‘wctype.h’.

Functionint iswgraph (wint_t wc)
Returns true if wc is a graphic character; that is, a character that has a glyph
associated with it. The white-space characters are not considered graphic.
This function can be implemented using:

iswctype (wc, wctype ("graph"))

It is declared in ‘wctype.h’.

Functionint iswlower (wint_t wc)
Returns true if wc is a lowercase letter. The letter need not be from the Latin
alphabet—any representable alphabet is valid.
This function can be implemented using:

iswctype (wc, wctype ("lower"))

It is declared in ‘wctype.h’.

Functionint iswprint (wint_t wc)
Returns true if wc is a printing character. Printing characters include all the
graphic characters, plus the space (‘ ’) character.
This function can be implemented using:

iswctype (wc, wctype ("print"))

It is declared in ‘wctype.h’.

Functionint iswpunct (wint_t wc)
Returns true if wc is a punctuation character. This means any printing character
that is not alphanumeric or a space character.
This function can be implemented using:

Chapter 4: Character Handling 85

iswctype (wc, wctype ("punct"))

It is declared in ‘wctype.h’.

Functionint iswspace (wint_t wc)
Returns true if wc is a white-space character. In the standard "C" locale,
iswspace returns true for only the standard white-space characters:

L’ ’ space

L’\f’ formfeed

L’\n’ newline

L’\r’ carriage return

L’\t’ horizontal tab

L’\v’ vertical tab

This function can be implemented using:
iswctype (wc, wctype ("space"))

It is declared in ‘wctype.h’.

Functionint iswupper (wint_t wc)
Returns true if wc is an uppercase letter. The letter need not be from the Latin
alphabet—any representable alphabet is valid.
This function can be implemented using:

iswctype (wc, wctype ("upper"))

It is declared in ‘wctype.h’.

Functionint iswxdigit (wint_t wc)
Returns true if wc is a hexadecimal digit. Hexadecimal digits include the normal
decimal digits ‘0’ through ‘9’ and the letters ‘A’ through ‘F’ and ‘a’ through
‘f’.
This function can be implemented using:

iswctype (wc, wctype ("xdigit"))

It is declared in ‘wctype.h’.

The GNU C Library also provides a function that is not defined in the ISO C
standard but that is available as a version for single-byte characters as well.

Functionint iswblank (wint_t wc)
Returns true if wc is a blank character; that is, a space or a tab. This function is
a GNU extension. It is declared in ‘wchar.h’.

86 The GNU C Library: Application Fundamentals

4.4 Notes on Using the Wide-Character Classes
The first note is probably not astonishing but still occasionally a cause of prob-

lems. The iswXXX functions can be implemented using macros and in fact, the
GNU C Library does this. They are still available as real functions, but when the
‘wctype.h’ header is included the macros will be used. This is the same as the
char type versions of these functions.

The second note covers something new. It can be best illustrated by a (real-
world) example. The first piece of code is an excerpt from the original code. It is
truncated a bit but the intention should be clear:

int

is_in_class (int c, const char *class)

{

if (strcmp (class, "alnum") == 0)

return isalnum (c);

if (strcmp (class, "alpha") == 0)

return isalpha (c);

if (strcmp (class, "cntrl") == 0)

return iscntrl (c);

...

return 0;

}

Now, with the wctype and iswctype you can avoid the if cascades, but
rewriting the code as follows is wrong:

int

is_in_class (int c, const char *class)

{

wctype_t desc = wctype (class);

return desc ? iswctype ((wint_t) c, desc) : 0;

}

The problem is that there is no guarantee that the wide-character representation
of a single-byte character can be found using casting. In fact, usually this fails
miserably. The correct solution to this problem is to write the code as follows:

int

is_in_class (int c, const char *class)

{

wctype_t desc = wctype (class);

return desc ? iswctype (btowc (c), desc) : 0;

}

See Section 6.3.3 [Converting Single Characters], page 140, for more informa-
tion on btowc. Note that this change probably does not improve the performance
of the program a lot since the wctype function still has to make the string com-
parisons. It gets really interesting if the is_in_class function is called more
than once for the same class name. In this case, the variable desc could be com-

Chapter 4: Character Handling 87

puted once and reused for all the calls. Therefore, the above form of the function is
probably not the final one.

4.5 Mapping of Wide Characters
The classification functions are also generalized by the ISO C standard. Instead

of just allowing the two standard mappings, a locale can contain others. Again, the
localedef program already supports generating such locale data files.

Data Typewctrans t
This data type is defined as a scalar type that can hold a value representing the
locale-dependent character mapping. There is no way to construct such a value
apart from using the return value of the wctrans function.
This type is defined in ‘wctype.h’.

Functionwctrans_t wctrans (const char *property)
The wctrans function has to be used to find out whether a named mapping is
defined in the current locale selected for the LC_CTYPE category. If the return
value is nonzero, you can use it afterwards in calls to towctrans. If the return
value is zero, no such mapping is known in the current locale.
Besides locale-specific mappings, there are two mappings that are guaranteed to
be available in every locale: "tolower" and "toupper".
These functions are declared in ‘wctype.h’.

Functionwint_t towctrans (wint_t wc, wctrans_t desc)
towctrans maps the input character wc according to the rules of the mapping
for which desc is a descriptor, and returns the value it finds. desc must be
obtained by a successful call to wctrans.
This function is declared in ‘wctype.h’.

For the generally available mappings, the ISO C standard defines convenient
shortcuts so that it is not necessary to call wctrans for them.

Functionwint_t towlower (wint_t wc)
If wc is an uppercase letter, towlower returns the corresponding lowercase
letter. If wc is not an uppercase letter, wc is returned unchanged.
towlower can be implemented using:

towctrans (wc, wctrans ("tolower"))

This function is declared in ‘wctype.h’.

Functionwint_t towupper (wint_t wc)
If wc is a lowercase letter, towupper returns the corresponding uppercase
letter. Otherwise wc is returned unchanged.
towupper can be implemented using:

88 The GNU C Library: Application Fundamentals

towctrans (wc, wctrans ("toupper"))

This function is declared in ‘wctype.h’.

The same warnings given in the last section for the use of the wide-character
classification functions apply here. It is not possible to simply cast a char type
value to a wint_t and use it as an argument to towctrans calls.

Chapter 5: String and Array Utilities 89

5 String and Array Utilities
Operations on strings (or arrays of characters) are an important part of many

programs. The GNU C Library provides an extensive set of string utility functions,
including functions for copying, concatenating, comparing and searching strings.
Many of these functions can also operate on arbitrary regions of storage; for exam-
ple, the memcpy function can be used to copy the contents of any kind of array.

It’s fairly common for beginning C programmers to “reinvent the wheel” by du-
plicating this functionality in their own code, but it pays to become familiar with the
library functions and to make use of them, since this offers benefits in maintenance,
efficiency, and portability.

For instance, you could easily compare one string to another in two lines of C
code, but if you use the built-in strcmp function, you’re less likely to make a
mistake. And, since these library functions are typically highly optimized, your
program may run faster too.

5.1 Representation of Strings
This section is a quick summary of string concepts for beginning C programmers.

It describes how character strings are represented in C and some common pitfalls.
If you are already familiar with this material, you can skip this section.

A string is an array of char objects. But string-valued variables are usually
declared to be pointers of type char *. Such variables do not include space for the
text of a string; that has to be stored somewhere else—in an array variable, a string
constant, or dynamically allocated memory (see Section 3.2 [Allocating Storage
for Program Data], page 41). It’s up to you to store the address of the chosen
memory space into the pointer variable. Alternatively, you can store a null pointer
in the pointer variable. The null pointer does not point anywhere, so attempting to
reference the string it points to gets an error.

string normally refers to multibyte-character strings as opposed to wide-
character strings. Wide-character strings are arrays of type wchar_t and, as for
multibyte-character strings, usually pointers of type wchar_t * are used.

By convention, a null character, ’\0’, marks the end of a multibyte-character
string and the null wide character, L’\0’, marks the end of a wide-character string.
For example, in testing to see whether the char * variable p points to a null char-
acter marking the end of a string, you can write !*p or *p == ’\0’.

A null character is quite different conceptually from a null pointer, although both
are represented by the integer 0.

String literals appear in C program source as strings of characters between
double-quote characters (‘"’) where the initial double-quote character is imme-
diately preceded by a capital ‘L’ (ell) character (as in L"foo"). In ISO C, string
literals can also be formed by string concatenation: "a" "b" is the same as "ab".
For wide-character strings one can either use L"a" L"b" or L"a" "b". Modifi-
cation of string literals is not allowed by the GNU C Compiler, because literals are
placed in read-only storage.

90 The GNU C Library: Application Fundamentals

Character arrays that are declared const cannot be modified either. It’s gener-
ally good style to declare nonmodifiable string pointers to be of type const char
*, since this often allows the C compiler to detect accidental modifications as well
as providing some amount of documentation about what your program intends to
do with the string.

The amount of memory allocated for the character array may extend past the
null character that normally marks the end of the string. In this document, the term
allocated size is always used to refer to the total amount of memory allocated for
the string, while the term length refers to the number of characters up to (but not
including) the terminating null character.

A notorious source of program bugs is trying to put more characters in a string
than fit in its allocated size. When writing code that extends strings or moves
characters into a preallocated array, you should be very careful to keep track of the
length of the text and make explicit checks for overflowing the array. Many of the
library functions do not do this for you! Remember also that you need to allocate
an extra byte to hold the null character that marks the end of the string.

Originally strings were sequences of bytes where each byte represents a single
character. This is still true today if the strings are encoded using a single-byte char-
acter encoding. Things are different if the strings are encoded using a multibyte
encoding (for more information on encodings see Section 6.1 [Introduction to Ex-
tended Characters], page 133). There is no difference in the programming interface
for these two kind of strings; the programmer has to be aware of this and interpret
the byte sequences accordingly.

But since there is no separate interface taking care of these differences the byte-
based string functions are sometimes hard to use. Since the count parameters of
these functions specify bytes, a call to strncpy could cut a multibyte character
in the middle and put an incomplete (and therefore unusable) byte-sequence in the
target buffer.

To avoid these problems, later versions of the ISO C standard introduce a sec-
ond set of functions that operate on wide characters (see Section 6.1 [Introduction
to Extended Characters], page 133). These functions don’t have the problems the
single-byte versions have, since every wide character is a legal, interpretable value.
This does not mean that cutting wide-character strings at arbitrary points is without
problems. It normally is for alphabet-based languages (except for nonnormalized
text) but languages based on syllables still have the problem that more than one
wide character is necessary to complete a logical unit. This is a higher-level prob-
lem that the C library functions are not designed to solve. But it is at least good
that no invalid byte-sequences can be created. Also, the higher-level functions can
also operate more easily on wide characters than on multibyte characters, so that in
general, it is advisable to use wide characters internally whenever text is more than
simply copied.

The remainder of this chapter will discuss the functions for handling wide-
character strings in parallel with the discussion of the multibyte-character strings,
since there is almost always an exact equivalent available.

Chapter 5: String and Array Utilities 91

5.2 String and Array Conventions
This chapter describes both functions that work on arbitrary arrays or blocks of

memory, and functions that are specific to null-terminated arrays of characters and
wide characters.

Functions that operate on arbitrary blocks of memory have names beginning with
‘mem’ and ‘wmem’ (such as memcpy and wmemcpy) and invariably take an argu-
ment that specifies the size (in bytes and wide characters respectively) of the block
of memory to operate on. The array arguments and return values for these functions
have type void * or wchar_t. As a matter of style, the elements of the arrays
used with the ‘mem’ functions are referred to as bytes. You can pass any kind of
pointer to these functions, and the sizeof operator is useful in computing the
value for the size argument. Parameters to the ‘wmem’ functions must be of type
wchar_t *. These functions are not really usable with anything but arrays of this
type.

In contrast, functions that operate specifically on strings and wide character
strings have names beginning with ‘str’ and ‘wcs’ respectively (such as strcpy
and wcscpy) and look for a null character to terminate the string instead of re-
quiring an explicit size argument to be passed. (Some of these functions accept
a specified maximum length, but they also check for premature termination with
a null character.) The array arguments and return values for these functions have
type char * and wchar_t * respectively, and the array elements are referred to
as characters and wide characters.

In many cases, there are both ‘mem’ and ‘str’/‘wcs’ versions of a function.
The one that is more appropriate to use depends on the exact situation. When
your program is manipulating arbitrary arrays or blocks of storage, then you should
always use the ‘mem’ functions. On the other hand, when you are manipulating
null-terminated strings it is usually more convenient to use the ‘str’/‘wcs’ func-
tions, unless you already know the length of the string in advance. The ‘wmem’
functions should be used for wide-character arrays with known size.

Some of the memory and string functions take single characters as arguments.
Since a value of type char is automatically promoted into a value of type int
when used as a parameter, the functions are declared with int as the type of
the parameter in question. In case of the wide-character function, the situation
is similar—the parameter type for a single wide character is wint_t and not
wchar_t. This would, for many implementations, not be necessary since the
wchar_t is large enough to not be automatically promoted, but since the ISO C
standard does not require such a choice of types, the wint_t type is used.

5.3 String Length
You can get the length of a string using the strlen function. This function is

declared in the header file ‘string.h’.

92 The GNU C Library: Application Fundamentals

Functionsize_t strlen (const char *s)
The strlen function returns the length of the null-terminated string s in bytes.
In other words, it returns the offset of the terminating null character within the
array.
For example:

strlen ("hello, world")

⇒ 12

When applied to a character array, the strlen function returns the length of
the string stored there, not its allocated size. You can get the allocated size of
the character array that holds a string using the sizeof operator:

char string[32] = "hello, world";

sizeof (string)

⇒ 32

strlen (string)

⇒ 12

But beware, this will not work unless string is the character array itself, not a
pointer to it. For example:

char string[32] = "hello, world";

char *ptr = string;

sizeof (string)

⇒ 32

sizeof (ptr)

⇒ 4 /* (on a machine with 4 byte pointers) */

This is an easy mistake to make when you are working with functions that take
string arguments; those arguments are always pointers, not arrays.
It must also be noted that for multibyte-encoded strings the return value does
not have to correspond to the number of characters in the string. To get this
value, the string can be converted to wide characters and wcslen can be used,
or something like the following code can be used:

/* The input is in string.

The length is expected in n. */

{

mbstate_t t;

char *scopy = string;

/* In initial state. */

memset (&t, ’\0’, sizeof (t));

/* Determine number of characters. */

n = mbsrtowcs (NULL, &scopy, strlen (scopy), &t);

}

This is cumbersome, so if the number of characters (as opposed to bytes) is
needed, often it is better to work with wide characters.

The wide character equivalent is declared in ‘wchar.h’.

Chapter 5: String and Array Utilities 93

Functionsize_t wcslen (const wchar_t *ws)
The wcslen function is the wide character equivalent to strlen. The return
value is the number of wide characters in the wide-character string pointed to
by ws (this is also the offset of the terminating null wide character of ws).
Since there are no multi-wide-character sequences making up one character, the
return value is not only the offset in the array, but also the number of wide
characters.
This function was introduced in Amendment 1 to ISO C90.

Functionsize_t strnlen (const char *s, size_t maxlen)
The strnlen function returns the length of the string s in bytes if this length
is smaller than maxlen bytes. Otherwise it returns maxlen. Therefore, this
function is equivalent to (strlen (s) < n ? strlen (s) : maxlen), but it
is more efficient and works even if the string s is not null-terminated.

char string[32] = "hello, world";

strnlen (string, 32)

⇒ 12

strnlen (string, 5)

⇒ 5

This function is a GNU extension and is declared in ‘string.h’.

Functionsize_t wcsnlen (const wchar_t *ws, size_t maxlen)
wcsnlen is the wide-character equivalent to strnlen. The maxlen parame-
ter specifies the maximum number of wide characters.
This function is a GNU extension and is declared in ‘wchar.h’.

5.4 Copying and Concatenation
You can use the functions described in this section to copy the contents of strings

and arrays, or to append the contents of one string to another. The ‘str’ and
‘mem’ functions are declared in the header file ‘string.h’ while the ‘wstr’ and
‘wmem’ functions are declared in the file ‘wchar.h’.

A helpful way to remember the ordering of the arguments to the functions in this
section is that it corresponds to an assignment expression, with the destination array
specified to the left of the source array. All of these functions return the address of
the destination array.

Most of these functions do not work properly if the source and destination arrays
overlap. For example, if the beginning of the destination array overlaps the end
of the source array, the original contents of that part of the source array may get
overwritten before it is copied. Even worse, in the case of the string functions,
the null character marking the end of the string may be lost, and the copy function
might get stuck in a loop, trashing all the memory allocated to your program.

All functions that have problems copying between overlapping arrays are ex-
plicitly identified in this manual. In addition to functions in this section, there are

94 The GNU C Library: Application Fundamentals

a few others like sprintf (see Section 17.12.7 [Formatted Output Functions],
page 470) and scanf (see Section 17.14.8 [Formatted Input Functions], page 495).

Functionvoid * memcpy (void *restrict to, const void
*restrict from, size_t size)

The memcpy function copies size bytes from the object beginning at from into
the object beginning at to. The behavior of this function is undefined if the two
arrays to and from overlap; use memmove instead if overlapping is possible.
The value returned by memcpy is the value of to.
Here is an example of how you might use memcpy to copy the contents of an
array:

struct foo *oldarray, *newarray;

int arraysize;

...

memcpy (new, old, arraysize * sizeof (struct foo));

Functionwchar_t * wmemcpy (wchar_t *restrict wto, const
wchar_t *restruct wfrom, size_t size)

The wmemcpy function copies size wide characters from the object beginning
at wfrom into the object beginning at wto. The behavior of this function is
undefined if the two arrays wto and wfrom overlap; use wmemmove instead if
overlapping is possible.
The following is one possible implementation of wmemcpy, but there are also
other optimizations possible:

wchar_t *

wmemcpy (wchar_t *restrict wto, const wchar_t *restrict wfrom,

size_t size)

{

return (wchar_t *) memcpy (wto, wfrom, size * sizeof (wchar_t));

}

The value returned by wmemcpy is the value of wto.
This function was introduced in Amendment 1 to ISO C90.

Functionvoid * mempcpy (void *restrict to, const void
*restrict from, size_t size)

The mempcpy function is nearly identical to the memcpy function. It copies
size bytes from the object beginning at from into the object pointed to by to.
But instead of returning the value of to, it returns a pointer to the byte following
the last written byte in the object beginning at to—the value is ((void *)
((char *) to + size)).
This function is useful in situations where a number of objects will be copied to
consecutive memory positions:

void *

combine (void *o1, size_t s1, void *o2, size_t s2)

Chapter 5: String and Array Utilities 95

{

void *result = malloc (s1 + s2);

if (result != NULL)

mempcpy (mempcpy (result, o1, s1), o2, s2);

return result;

}

This function is a GNU extension.

Functionwchar_t * wmempcpy (wchar_t *restrict wto, const
wchar_t *restrict wfrom, size_t size)

The wmempcpy function is nearly identical to the wmemcpy function. It copies
size wide characters from the object beginning at wfrom into the object pointed
to by wto. But instead of returning the value of wto, it returns a pointer to the
wide character following the last written wide character in the object beginning
at wto—the value is wto + size .
This function is useful in situations where a number of objects will be copied to
consecutive memory positions.
The following is one possible implementation of wmemcpy, but there are also
other optimizations possible:

wchar_t *

wmempcpy (wchar_t *restrict wto, const wchar_t *restrict wfrom,

size_t size)

{

return (wchar_t *) mempcpy (wto, wfrom, size * sizeof (wchar_t));

}

This function is a GNU extension.

Functionvoid * memmove (void *to, const void *from, size_t
size)

memmove copies the size bytes at from into the size bytes at to, even if those
two blocks of space overlap. In the case of overlap, memmove is careful to copy
the original values of the bytes in the block at from, including those bytes that
also belong to the block at to.
The value returned by memmove is the value of to.

Functionwchar_t * wmemmove (wchar *wto, const wchar_t
*wfrom, size_t size)

wmemmove copies the size wide characters at wfrom into the size wide char-
acters at wto, even if those two blocks of space overlap. In the case of overlap,
memmove is careful to copy the original values of the wide characters in the
block at wfrom, including those wide characters that also belong to the block at
wto.
The following is one possible implementation of wmemcpy, but there are also
other optimizations possible:

96 The GNU C Library: Application Fundamentals

wchar_t *

wmempcpy (wchar_t *restrict wto, const wchar_t *restrict wfrom,

size_t size)

{

return (wchar_t *) mempcpy (wto, wfrom, size * sizeof (wchar_t));

}

The value returned by wmemmove is the value of wto.
This function is a GNU extension.

Functionvoid * memccpy (void *restrict to, const void
*restrict from, int c, size_t size)

This function copies no more than size bytes from from to to, stopping if a byte
matching c is found. The return value is a pointer into to one byte past where
c was copied, or a null pointer if no byte matching c appeared in the first size
bytes of from.

Functionvoid * memset (void *block, int c, size_t size)
This function copies the value of c (converted to an unsigned char) into
each of the first size bytes of the object beginning at block. It returns the value
of block.

Functionwchar_t * wmemset (wchar_t *block, wchar_t wc,
size_t size)

This function copies the value of wc into each of the first size wide characters
of the object beginning at block. It returns the value of block.

Functionchar * strcpy (char *restrict to, const char
*restrict from)

This copies characters from the string from (up to and including the terminating
null character) into the string to. Like memcpy, this function has undefined
results if the strings overlap. The return value is the value of to.

Functionwchar_t * wcscpy (wchar_t *restrict wto, const
wchar_t *restrict wfrom)

This copies wide characters from the string wfrom (up to and including the ter-
minating null wide character) into the string wto. Like wmemcpy, this function
has undefined results if the strings overlap. The return value is the value of wto.

Functionchar * strncpy (char *restrict to, const char
*restrict from, size_t size)

This function is similar to strcpy but always copies exactly size characters
into to.
If the length of from is more than size, then strncpy copies just the first size
characters. Note that in this case there is no null terminator written into to.

Chapter 5: String and Array Utilities 97

If the length of from is less than size, then strncpy copies all of from, fol-
lowed by enough null characters to add up to size characters in all. This behavior
is rarely useful, but it is specified by the ISO C standard.
The behavior of strncpy is undefined if the strings overlap.
Using strncpy as opposed to strcpy is a way to avoid bugs relating to
writing past the end of the allocated space for to. However, it can also make your
program much slower in one common case: copying a string that is probably
small into a potentially large buffer. In this case, size may be large, and when it
is, strncpy will waste a considerable amount of time copying null characters.

Functionwchar_t * wcsncpy (wchar_t *restrict wto, const
wchar_t *restrict wfrom, size_t size)

This function is similar to wcscpy but always copies exactly size wide charac-
ters into wto.
If the length of wfrom is more than size, then wcsncpy copies just the first size
wide characters. Note that in this case there is no null terminator written into
wto.
If the length of wfrom is less than size, then wcsncpy copies all of wfrom,
followed by enough null wide characters to add up to size wide characters in
all. This behavior is rarely useful, but it is specified by the ISO C standard.
The behavior of wcsncpy is undefined if the strings overlap.
Using wcsncpy as opposed to wcscpy is a way to avoid bugs relating to writ-
ing past the end of the allocated space for wto. However, it can also make your
program much slower in one common case: copying a string that is probably
small into a potentially large buffer. In this case, size may be large, and when
it is, wcsncpy will waste a considerable amount of time copying null wide
characters.

Functionchar * strdup (const char *s)
This function copies the null-terminated string s into a newly allocated string.
The string is allocated using malloc (see Section 3.2.2 [Unconstrained Allo-
cation], page 42). If malloc cannot allocate space for the new string, strdup
returns a null pointer. Otherwise, it returns a pointer to the new string.

Functionwchar_t * wcsdup (const wchar_t *ws)
This function copies the null-terminated wide-character string ws into a newly
allocated string. The string is allocated using malloc (see Section 3.2.2 [Un-
constrained Allocation], page 42). If malloc cannot allocate space for the new
string, wcsdup returns a null pointer. Otherwise, it returns a pointer to the new
wide-character string.
This function is a GNU extension.

Functionchar * strndup (const char *s, size_t size)
This function is similar to strdup but always copies at most size characters
into the newly allocated string.

98 The GNU C Library: Application Fundamentals

If the length of s is more than size, then strndup copies just the first size char-
acters and adds a closing null terminator. Otherwise, all characters are copied
and the string is terminated.
This function is different to strncpy in that it always terminates the destina-
tion string.
strndup is a GNU extension.

Functionchar * stpcpy (char *restrict to, const char
*restrict from)

This function is like strcpy, except that it returns a pointer to the end of the
string to (that is, the address of the terminating null character to + strlen
(from)) rather than the beginning.
For example, this program uses stpcpy to concatenate ‘foo’ and ‘bar’ to
produce ‘foobar’, which it then prints:

#include <string.h>

#include <stdio.h>

int

main (void)

{

char buffer[10];

char *to = buffer;

to = stpcpy (to, "foo");

to = stpcpy (to, "bar");

puts (buffer);

return 0;

}

This function is not part of the ISO or POSIX standards, and is not customary on
Unix systems, but we did not invent it either. Perhaps it comes from MS-DOS.
Its behavior is undefined if the strings overlap. The function is declared in
‘string.h’.

Functionwchar_t * wcpcpy (wchar_t *restrict wto, const
wchar_t *restrict wfrom)

This function is like wcscpy, except that it returns a pointer to the end of the
string wto (that is, the address of the terminating null character wto + strlen
(wfrom)) rather than the beginning.
This function is not part of ISO or POSIX but was found useful while developing
the GNU C Library itself.
The behavior of wcpcpy is undefined if the strings overlap.
wcpcpy is a GNU extension and is declared in ‘wchar.h’.

Chapter 5: String and Array Utilities 99

Functionchar * stpncpy (char *restrict to, const char
*restrict from, size_t size)

This function is similar to stpcpy but copies always exactly size characters
into to.
If the length of from is more then size, then stpncpy copies just the first size
characters and returns a pointer to the character directly following the one that
was copied last. In this case, there is no null terminator written into to.
If the length of from is less than size, then stpncpy copies all of from, fol-
lowed by enough null characters to add up to size characters in all. This behavior
is rarely useful, but it is implemented to be useful in contexts where this behav-
ior of the strncpy is used. stpncpy returns a pointer to the first written null
character.
This function is not part of ISO or POSIX but was found useful while developing
the GNU C Library itself.
Its behavior is undefined if the strings overlap. The function is declared in
‘string.h’.

Functionwchar_t * wcpncpy (wchar_t *restrict wto, const
wchar_t *restrict wfrom, size_t size)

This function is similar to wcpcpy but copies always exactly wsize characters
into wto.
If the length of wfrom is more then size, then wcpncpy copies just the first size
wide characters and returns a pointer to the wide character directly following the
last nonnull wide character which was copied last. Note that in this case there is
no null terminator written into wto.
If the length of wfrom is less than size, then wcpncpy copies all of wfrom,
followed by enough null characters to add up to size characters in all. This
behavior is rarely useful, but it is implemented to be useful in contexts where
this behavior of the wcsncpy is used. wcpncpy returns a pointer to the first
written null character.
This function is not part of ISO or POSIX but was found useful while developing
the GNU C Library itself.
Its behavior is undefined if the strings overlap.
wcpncpy is a GNU extension and is declared in ‘wchar.h’.

Macrochar * strdupa (const char *s)
This macro is similar to strdup but allocates the new string using alloca
instead of malloc (see Section 3.2.5 [Automatic Storage with Variable Size],
page 71). This means that the returned string has the same limitations as any
block of memory allocated using alloca.
For obvious reasons, strdupa is implemented only as a macro; you cannot get
the address of this function. Despite this limitation, it is a useful function. The
following code shows a situation where using malloc would be much more
expensive:

100 The GNU C Library: Application Fundamentals

#include <paths.h>

#include <string.h>

#include <stdio.h>

const char path[] = _PATH_STDPATH;

int

main (void)

{

char *wr_path = strdupa (path);

char *cp = strtok (wr_path, ":");

while (cp != NULL)

{

puts (cp);

cp = strtok (NULL, ":");

}

return 0;

}

strtok must be passed a writeable string. Passing a const string, such as path
in the above example, would be invalid. Also, using strdupa directly would
also cause conflict due to the use of alloca in strdupa (see Section 3.2.5
[Automatic Storage with Variable Size], page 71).
This function is only available if GNU CC is used.

Macrochar * strndupa (const char *s, size_t size)
This function is similar to strndup, but like strdupa it allocates the new
string using alloca (see Section 3.2.5 [Automatic Storage with Variable Size],
page 71). The same advantages and limitations of strdupa are valid for
strndupa too.
This function is implemented only as a macro, just like strdupa. Just as
strdupa, this macro also must not be used inside the parameter list in a func-
tion call.
strndupa is only available if GNU CC is used.

Functionchar * strcat (char *restrict to, const char
*restrict from)

The strcat function is similar to strcpy, except that the characters from
from are concatenated or appended to the end of to, instead of overwriting it.
The first character from from overwrites the null character marking the end of
to.
An equivalent definition for strcat would be

char *

Chapter 5: String and Array Utilities 101

strcat (char *restrict to, const char *restrict from)

{

strcpy (to + strlen (to), from);

return to;

}

This function has undefined results if the strings overlap.

Functionwchar_t * wcscat (wchar_t *restrict wto, const
wchar_t *restrict wfrom)

The wcscat function is similar to wcscpy, except that the characters from
wfrom are concatenated or appended to the end of wto, instead of overwriting
it. The first character from wfrom overwrites the null character marking the end
of wto.
An equivalent definition for wcscat would be

wchar_t *

wcscat (wchar_t *wto, const wchar_t *wfrom)

{

wcscpy (wto + wcslen (wto), wfrom);

return wto;

}

This function has undefined results if the strings overlap.

Programmers using the strcat or wcscat function (or the following
strncat or wcsncar functions for that matter) can easily be recognized as
lazy and reckless. In almost all situations, the lengths of the participating strings
are known (since otherwise you cannot ensure that the allocated size of the buffer
is sufficient). Or at least you could know them if you keep track of the results of
the various function calls. But then it is very inefficient to use strcat/wcscat.
Much time is wasted finding the end of the destination string so that the actual
copying can start. This is a common example:

/* This function concatenates arbitrarily many strings. The last

parameter must be NULL. */

char *

concat (const char *str, ...)

{

va_list ap, ap2;

size_t total = 1;

const char *s;

char *result;

va_start (ap, str);

/* Actually va_copy, but this is the name more gcc versions

understand. */

__va_copy (ap2, ap);

102 The GNU C Library: Application Fundamentals

/* Determine how much space we need. */

for (s = str; s != NULL; s = va_arg (ap, const char *))

total += strlen (s);

va_end (ap);

result = (char *) malloc (total);

if (result != NULL)

{

result[0] = ’\0’;

/* Copy the strings. */

for (s = str; s != NULL; s = va_arg (ap2, const char *))

strcat (result, s);

}

va_end (ap2);

return result;

}

This looks quite simple, especially the second loop, where the strings are actually
copied. But these innocent lines hide a major performance penalty. Just imagine
that ten strings of 100 bytes each have to be concatenated. For the second string, we
search the already stored 100 bytes for the end of the string so that we can append
the next string. For all strings in total, the comparisons necessary to find the end of
the intermediate results add up to 5500! If we combine the copying with the search
for the allocation, we can write this function more efficiently:

char *

concat (const char *str, ...)

{

va_list ap;

size_t allocated = 100;

char *result = (char *) malloc (allocated);

char *wp;

if (allocated != NULL)

{

char *newp;

va_start (ap, atr);

wp = result;

for (s = str; s != NULL; s = va_arg (ap, const char *))

Chapter 5: String and Array Utilities 103

{

size_t len = strlen (s);

/* Resize the allocated memory if necessary. */

if (wp + len + 1 > result + allocated)

{

allocated = (allocated + len) * 2;

newp = (char *) realloc (result, allocated);

if (newp == NULL)

{

free (result);

return NULL;

}

wp = newp + (wp - result);

result = newp;

}

wp = mempcpy (wp, s, len);

}

/* Terminate the result string. */

*wp++ = ’\0’;

/* Resize memory to the optimal size. */

newp = realloc (result, wp - result);

if (newp != NULL)

result = newp;

va_end (ap);

}

return result;

}

With a bit more knowledge about the input strings, one could fine-tune the mem-
ory allocation. The difference we are pointing to here is that we don’t use strcat
anymore. We always keep track of the length of the current intermediate result so
we can save the search for the end of the string and use mempcpy. We also don’t
use stpcpy, which might seem more natural since we handle strings. But this is
not necessary, since we already know the length of the string and therefore can use
the faster memory copying function. The example would work for wide characters
the same way.

Whenever a programmer feels the need to use strcat, she should think twice
and look through the program to see whether the code cannot be rewritten to take

104 The GNU C Library: Application Fundamentals

advantage of already calculated results. It is almost always unnecessary to use
strcat.

Functionchar * strncat (char *restrict to, const char
*restrict from, size_t size)

This function is like strcat except that not more than size characters from
from are appended to the end of to. A single null character is also always ap-
pended to to, so the total allocated size of to must be at least size + 1 bytes
longer than its initial length.
The strncat function could be implemented like this:

char *

strncat (char *to, const char *from, size_t size)

{

to[strlen (to) + size] = ’\0’;

strncpy (to + strlen (to), from, size);

return to;

}

The behavior of strncat is undefined if the strings overlap.

Functionwchar_t * wcsncat (wchar_t *restrict wto, const
wchar_t *restrict wfrom, size_t size)

This function is like wcscat except that not more than size characters from
from are appended to the end of to. A single null character is also always ap-
pended to to, so the total allocated size of to must be at least size + 1 bytes
longer than its initial length.
The wcsncat function could be implemented like this:

wchar_t *

wcsncat (wchar_t *restrict wto, const wchar_t *restrict wfrom,

size_t size)

{

wto[wcslen (to) + size] = L’\0’;

wcsncpy (wto + wcslen (wto), wfrom, size);

return wto;

}

The behavior of wcsncat is undefined if the strings overlap.

Here is an example showing the use of strncpy and strncat (the wide-
character version is equivalent). Notice how, in the call to strncat, the size
parameter is computed to avoid overflowing the character array buffer.

#include <string.h>

#include <stdio.h>

Chapter 5: String and Array Utilities 105

#define SIZE 10

static char buffer[SIZE];

main ()

{

strncpy (buffer, "hello", SIZE);

puts (buffer);

strncat (buffer, ", world", SIZE - strlen (buffer) - 1);

puts (buffer);

}

The output produced by this program looks like:
hello

hello, wo

Functionvoid bcopy (const void *from, void *to, size_t size)
This is a partially obsolete alternative for memmove, derived from BSD. It is not
quite equivalent to memmove, because the arguments are not in the same order
and there is no return value.

Functionvoid bzero (void *block, size_t size)
This is a partially obsolete alternative for memset, derived from BSD. It is not
as general as memset, because the only value it can store is zero.

5.5 String/Array Comparison
You can use the functions in this section to perform comparisons on the contents

of strings and arrays. As well as checking for equality, these functions can also
be used as the ordering functions for sorting operations (see Chapter 12 [Searching
and Sorting], page 343 for an example of this).

Unlike most comparison operations in C, the string comparison functions return
a nonzero value if the strings are not equivalent rather than if they are. The sign
of the value indicates the relative ordering of the first characters in the strings that
are not equivalent: a negative value indicates that the first string is “less” than the
second, while a positive value indicates that the first string is “greater”.

The most common use of these functions is to check only for equality. This is
canonically done with an expression like ‘! strcmp (s1, s2)’.

All of these functions are declared in the header file ‘string.h’.

Functionint memcmp (const void *a1, const void *a2, size_t
size)

The function memcmp compares the size bytes of memory beginning at a1
against the size bytes of memory beginning at a2. The value returned has the

106 The GNU C Library: Application Fundamentals

same sign as the difference between the first differing pair of bytes (interpreted
as unsigned char objects, then promoted to int).
If the contents of the two blocks are equal, memcmp returns 0.

Functionint wmemcmp (const wchar_t *a1, const wchar_t
*a2, size_t size)

The function wmemcmp compares the size wide characters beginning at a1
against the size wide characters beginning at a2. The value returned is smaller
than or larger than zero depending on whether the first differing wide character
is a1 is smaller or larger than the corresponding character in a2.
If the contents of the two blocks are equal, wmemcmp returns 0.

On arbitrary arrays, the memcmp function is mostly useful for testing equality. It
usually isn’t meaningful to do byte-wise ordering comparisons on arrays of things
other than bytes. For example, a byte-wise comparison on the bytes that make
up floating-point numbers isn’t likely to tell you anything about the relationship
between the values of the floating-point numbers.
wmemcmp is really only useful to compare arrays of type wchar_t, since the

function looks at sizeof (wchar_t) bytes at a time, and this number of bytes
is system dependent.

You should also be careful about using memcmp to compare objects that can con-
tain “holes”, such as the padding inserted into structure objects to enforce alignment
requirements, extra space at the end of unions and extra characters at the ends of
strings whose length is less than their allocated size. The contents of these “holes”
are indeterminate and may cause strange behavior when performing byte-wise com-
parisons. For more predictable results, perform an explicit component-wise com-
parison.

For example, given a structure-type definition like:
struct foo

{

unsigned char tag;

union

{

double f;

long i;

char *p;

} value;

};

you are better off writing a specialized comparison function to compare struct
foo objects instead of comparing them with memcmp.

Functionint strcmp (const char *s1, const char *s2)
The strcmp function compares the string s1 against s2, returning a value that
has the same sign as the difference between the first differing pair of characters
(interpreted as unsigned char objects, then promoted to int).

Chapter 5: String and Array Utilities 107

If the two strings are equal, strcmp returns 0.
A consequence of the ordering used by strcmp is that if s1 is an initial sub-
string of s2, then s1 is considered to be “less than” s2.
strcmp does not take sorting conventions of the language the strings are writ-
ten in into account. To get that one has to use strcoll.

Functionint wcscmp (const wchar_t *ws1, const wchar_t
*ws2)

The wcscmp function compares the wide-character string ws1 against ws2.
The value returned is smaller than or larger than zero, depending on whether
the first differing wide character ws1 is smaller or larger than the corresponding
character in ws2.
If the two strings are equal, wcscmp returns 0.
A consequence of the ordering used by wcscmp is that if ws1 is an initial
substring of ws2, then ws1 is considered to be “less than” ws2.
wcscmp does not take sorting conventions of the language the strings are writ-
ten in into account. To get that one has to use wcscoll.

Functionint strcasecmp (const char *s1, const char *s2)
This function is like strcmp, except that differences in case are ignored. How
uppercase and lowercase characters are related is determined by the currently
selected locale. In the standard "C" locale, the characters Ä and ä do not match,
but in a locale that regards these characters as parts of the alphabet, they do
match.
strcasecmp is derived from BSD.

Functionint wcscasecmp (const wchar_t *ws1, const wchar_T
*ws2)

This function is like wcscmp, except that differences in case are ignored. How
uppercase and lowercase characters are related is determined by the currently
selected locale. In the standard "C" locale, the characters Ä and ä do not match,
but in a locale that regards these characters as parts of the alphabet, they do
match.
wcscasecmp is a GNU extension.

Functionint strncmp (const char *s1, const char *s2, size_t
size)

This function is the similar to strcmp, except that no more than size wide
characters are compared. In other words, if the two strings are the same in their
first size wide characters, the return value is zero.

108 The GNU C Library: Application Fundamentals

Functionint wcsncmp (const wchar_t *ws1, const wchar_t
*ws2, size_t size)

This function is the similar to wcscmp, except that no more than size wide
characters are compared. In other words, if the two strings are the same in their
first size wide characters, the return value is zero.

Functionint strncasecmp (const char *s1, const char *s2,
size_t n)

This function is like strncmp, except that differences in case are ignored. Like
strcasecmp, how uppercase and lowercase characters are related is locale
dependent.
strncasecmp is a GNU extension.

Functionint wcsncasecmp (const wchar_t *ws1, const wchar_t
*s2, size_t n)

This function is like wcsncmp, except that differences in case are ignored. Like
wcscasecmp, how uppercase and lowercase characters are related is locale
dependent.
wcsncasecmp is a GNU extension.

Here are some examples showing the use of strcmp and strncmp (equiva-
lent examples can be constructed for the wide character functions). These exam-
ples assume the use of the ASCII character set. If some other character set—say,
EBCDIC—is used instead, then the glyphs are associated with different numeric
codes, and the return values and ordering may differ.

strcmp ("hello", "hello")

⇒ 0 /* These two strings are the same. */

strcmp ("hello", "Hello")

⇒ 32 /* Comparisons are case-sensitive. */

strcmp ("hello", "world")

⇒ -15 /* The character ’h’ comes before ’w’. */

strcmp ("hello", "hello, world")

⇒ -44 /* Comparing a null character against a comma. */

strncmp ("hello", "hello, world", 5)

⇒ 0 /* The initial 5 characters are the same. */

strncmp ("hello, world", "hello, stupid world!!!", 5)

⇒ 0 /* The initial 5 characters are the same. */

Functionint strverscmp (const char *s1, const char *s2)
The strverscmp function compares the string s1 against s2, considering
them as holding indices/version numbers. Return value follows the same con-
ventions as found in the strverscmp function. In fact, if s1 and s2 contain
no digits, strverscmp behaves like strcmp.
Basically, we compare strings normally (character-by-character) until we find
a digit in each string. Then we enter a special comparison mode, where each

Chapter 5: String and Array Utilities 109

sequence of digits is taken as a whole. If we reach the end of these two parts
without noticing a difference, we return to the standard comparison mode. There
are two types of numeric parts: integral and fractional (those begin with a ’0’).
The types of the numeric parts affect the way we sort them:

• integral/integral : We compare values as you would expect.
• fractional/integral : The fractional part is less than the integral one.
• fractional/fractional : Things become a bit more complex. If the common

prefix contains only leading zeros, the longest part is less than the other
one; else the comparison behaves normally.
strverscmp ("no digit", "no digit")

⇒ 0 /* same behavior as strcmp. */

strverscmp ("item#99", "item#100")

⇒ <0 /* same prefix, but 99 < 100. */

strverscmp ("alpha1", "alpha001")

⇒ >0 /* fractional part inferior to integral one. */

strverscmp ("part1_f012", "part1_f01")

⇒ >0 /* two fractional parts. */

strverscmp ("foo.009", "foo.0")

⇒ <0 /* idem, but with leading zeros only. */

This function is especially useful when dealing with file-name sorting, because
file names frequently hold indices and version numbers.
strverscmp is a GNU extension.

Functionint bcmp (const void *a1, const void *a2, size_t
size)

This is an obsolete alias for memcmp, derived from BSD.

5.6 Collation Functions
In some locales, the conventions for lexicographic ordering differ from the strict

numeric ordering of character codes. For example, in Spanish most glyphs with
diacritical marks such as accents are not considered distinct letters for the purposes
of collation. On the other hand, the two-character sequence ‘ll’ is treated as a
single letter that is collated immediately after ‘l’.

You can use the functions strcoll and strxfrm (declared in the head-
ers file ‘string.h’) and wcscoll and wcsxfrm (declared in the headers file
‘wchar’) to compare strings using a collation ordering appropriate for the current
locale. The locale used by these functions in particular can be specified by setting
the locale for the LC_COLLATE category (see Chapter 7 [Locales and Internation-
alization], page 181).

In the standard C locale, the collation sequence for strcoll is the same as that
for strcmp. Similarly, wcscoll and wcscmp are the same in this situation.

Effectively, the way these functions work is by applying a mapping to transform
the characters in a string to a byte sequence that represents the string’s position in

110 The GNU C Library: Application Fundamentals

the collating sequence of the current locale. Comparing two such byte-sequences
in a simple fashion is equivalent to comparing the strings with the locale’s collating
sequence.

The functions strcoll and wcscoll perform this translation implicitly, in
order to do one comparison. By contrast, strxfrm and wcsxfrm perform the
mapping explicitly. If you are making multiple comparisons using the same string
or set of strings, it is likely to be more efficient to use strxfrm or wcsxfrm
to transform all the strings just once, and subsequently compare the transformed
strings with strcmp or wcscmp.

Functionint strcoll (const char *s1, const char *s2)
The strcoll function is similar to strcmp but uses the collating sequence
of the current locale for collation (the LC_COLLATE locale).

Functionint wcscoll (const wchar_t *ws1, const wchar_t *ws2)
The wcscoll function is similar to wcscmp but uses the collating sequence
of the current locale for collation (the LC_COLLATE locale).

Here is an example of sorting an array of strings, using strcoll to compare
them. The actual sort algorithm is not written here; it comes from qsort (see
Section 12.3 [Array Sort Function], page 344). The job of the code shown here is
to say how to compare the strings while sorting them (later on in this section, we
will show a way to do this more efficiently using strxfrm).

/* This is the comparison function used with qsort. */

int

compare_elements (char **p1, char **p2)

{

return strcoll (*p1, *p2);

}

/* This is the entry point—the function to sort

strings using the locale’s collating sequence. */

void

sort_strings (char **array, int nstrings)

{

/* Sort temp_array by comparing the strings. */

qsort (array, nstrings,

sizeof (char *), compare_elements);

}

Functionsize_t strxfrm (char *restrict to, const char
*restrict from, size_t size)

The function strxfrm transforms the string from using the collation transfor-
mation determined by the locale currently selected for collation, and stores the

Chapter 5: String and Array Utilities 111

transformed string in the array to. Up to size characters (including a terminating
null character) are stored.
The behavior is undefined if the strings to and from overlap (see Section 5.4
[Copying and Concatenation], page 93).
The return value is the length of the entire transformed string. This value is not
affected by the value of size, but if it is greater than or equal to size, it means
that the transformed string did not entirely fit in the array to. In this case, only
as much of the string as actually fits was stored. To get the whole transformed
string, call strxfrm again with a bigger output array.
The transformed string may be longer than the original string, and it may also
be shorter.
If size is zero, no characters are stored in to. In this case, strxfrm simply
returns the number of characters that would be the length of the transformed
string. This is useful for determining what size the allocated array should be. It
does not matter what to is if size is zero; to may even be a null pointer.

Functionsize_t wcsxfrm (wchar_t *restrict wto, const
wchar_t *wfrom, size_t size)

The function wcsxfrm transforms wide-character string wfrom using the col-
lation transformation determined by the locale currently selected for collation,
and stores the transformed string in the array wto. Up to size wide characters
(including a terminating null character) are stored.
The behavior is undefined if the strings wto and wfrom overlap (see Section 5.4
[Copying and Concatenation], page 93).
The return value is the length of the entire transformed wide-character string.
This value is not affected by the value of size, but if it is greater than or equal to
size, it means that the transformed wide-character string did not entirely fit in the
array wto. In this case, only as much of the wide-character string as actually fits
was stored. To get the whole transformed wide-character string, call wcsxfrm
again with a bigger output array.
The transformed wide-character string may be longer than the original wide-
character string, and it may also be shorter.
If size is zero, no characters are stored in to. In this case, wcsxfrm simply re-
turns the number of wide characters that would be the length of the transformed
wide-character string. This is useful for determining what size the allocated ar-
ray should be (remember to multiply with sizeof (wchar_t)). It does not
matter what wto is if size is zero; wto may even be a null pointer.

Here is an example of how you can use strxfrm when you plan to do many
comparisons. It does the same thing as the previous example, but much faster,
because it has to transform each string only once, no matter how many times it is
compared with other strings. Even the time needed to allocate and free storage is
much less than the time we save, when there are many strings.

struct sorter { char *input; char *transformed; };

112 The GNU C Library: Application Fundamentals

/* This is the comparison function used with qsort

to sort an array of struct sorter. */

int

compare_elements (struct sorter *p1, struct sorter *p2)

{

return strcmp (p1->transformed, p2->transformed);

}

/* This is the entry point—the function to sort

strings using the locale’s collating sequence. */

void

sort_strings_fast (char **array, int nstrings)

{

struct sorter temp_array[nstrings];

int i;

/* Set up temp_array. Each element contains

one input string and its transformed string. */

for (i = 0; i < nstrings; i++)

{

size_t length = strlen (array[i]) * 2;

char *transformed;

size_t transformed_length;

temp_array[i].input = array[i];

/* First make a buffer that you guess is big enough. */

transformed = (char *) xmalloc (length);

/* Transform array[i]. */

transformed_length = strxfrm (transformed, array[i], length);

/* If the buffer was not large enough, resize it

and try again. */

if (transformed_length >= length)

{

/* Allocate the needed space. +1 for terminating

NUL character. */

transformed = (char *) xrealloc (transformed,

transformed_length + 1);

/* The return value is not interesting because we know

Chapter 5: String and Array Utilities 113

how long the transformed string is. */

(void) strxfrm (transformed, array[i],

transformed_length + 1);

}

temp_array[i].transformed = transformed;

}

/* Sort temp_array by comparing transformed strings. */

qsort (temp_array, sizeof (struct sorter),

nstrings, compare_elements);

/* Put the elements back in the permanent array

in their sorted order. */

for (i = 0; i < nstrings; i++)

array[i] = temp_array[i].input;

/* Free the strings we allocated. */

for (i = 0; i < nstrings; i++)

free (temp_array[i].transformed);

}

The interesting part of this code for the wide-character version would look like
this:

void

sort_strings_fast (wchar_t **array, int nstrings)

{

...

/* Transform array[i]. */

transformed_length = wcsxfrm (transformed, array[i], length);

/* If the buffer was not large enough, resize it

and try again. */

if (transformed_length >= length)

{

/* Allocate the needed space. +1 for terminating

NUL character. */

transformed = (wchar_t *) xrealloc (transformed,

(transformed_length + 1)

* sizeof (wchar_t));

/* The return value is not interesting because we know

how long the transformed string is. */

(void) wcsxfrm (transformed, array[i],

transformed_length + 1);

114 The GNU C Library: Application Fundamentals

}

...

Note the additional multiplication with sizeof (wchar_t) in the realloc
call.

Compatibility Note: The string collation functions are a new feature of
ISO C90. Older C dialects have no equivalent feature. The wide-character versions
were introduced in Amendment 1 to ISO C90.

5.7 Search Functions
This section describes library functions that perform various kinds of search

operations on strings and arrays. These functions are declared in the header file
‘string.h’.

Functionvoid * memchr (const void *block, int c, size_t size)
This function finds the first occurrence of the byte c (converted to an
unsigned char) in the initial size bytes of the object beginning at block.
The return value is a pointer to the located byte, or a null pointer if no match
was found.

Functionwchar_t * wmemchr (const wchar_t *block, wchar_t
wc, size_t size)

This function finds the first occurrence of the wide character wc in the initial
size wide characters of the object beginning at block. The return value is a
pointer to the located wide character, or a null pointer if no match was found.

Functionvoid * rawmemchr (const void *block, int c)
Often the memchr function is used with the knowledge that the byte c is avail-
able in the memory block specified by the parameters. But this means that the
size parameter is not really needed and that the tests performed with it at run
time (to check whether the end of the block is reached) are not needed.
The rawmemchr function exists for just this situation, which is surprisingly
frequent. The interface is similar to memchr except that the size parameter is
missing. The function will look beyond the end of the block pointed to by block
in case the programmer made an error in assuming that the byte c is present in
the block. In this case, the result is unspecified. Otherwise, the return value is a
pointer to the located byte.
This function is of special interest when looking for the end of a string. Since
all strings are terminated by a null byte a call like:

rawmemchr (str, ’\0’)

will never go beyond the end of the string.
This function is a GNU extension.

Chapter 5: String and Array Utilities 115

Functionvoid * memrchr (const void *block, int c, size_t size)

The function memrchr is like memchr, except that it searches backward from
the end of the block defined by block and size (instead of forward from the
front).

Functionchar * strchr (const char *string, int c)
The strchr function finds the first occurrence of the character c (converted to
a char) in the null-terminated string beginning at string. The return value is a
pointer to the located character, or a null pointer if no match was found.
For example:

strchr ("hello, world", ’l’)

⇒ "llo, world"

strchr ("hello, world", ’?’)

⇒ NULL

The terminating null character is considered to be part of the string, so you
can use this function get a pointer to the end of a string by specifying a null
character as the value of the c argument. It would be better (but less portable)
to use strchrnul in this case, though.

Functionwchar_t * wcschr (const wchar_t *wstring, int wc)
The wcschr function finds the first occurrence of the wide character wc in the
null-terminated wide-character string beginning at wstring. The return value is
a pointer to the located wide character, or a null pointer if no match was found.
The terminating null character is considered to be part of the wide character
string, so you can use this function get a pointer to the end of a wide-character
string by specifying a null wide character as the value of the wc argument. It
would be better (but less portable) to use wcschrnul in this case, though.

Functionchar * strchrnul (const char *string, int c)
strchrnul is the same as strchr except that if it does not find the charac-
ter, it returns a pointer to string’s terminating null character rather than a null
pointer.
This function is a GNU extension.

Functionwchar_t * wcschrnul (const wchar_t *wstring, wchar_t
wc)

wcschrnul is the same as wcschr except that if it does not find the wide
character, it returns a pointer to the wide-character string’s terminating null wide
character rather than a null pointer.
This function is a GNU extension.

One useful but unusual use of the strchr function is when you want to have a
pointer pointing to the NUL byte terminating a string. This is often written in this
way:

116 The GNU C Library: Application Fundamentals

s += strlen (s);

This is almost optimal, but the addition operation duplicated a bit of the work al-
ready done in the strlen function. A better solution is this:

s = strchr (s, ’\0’);

There is no restriction on the second parameter of strchr, so it could very
well also be the NUL character. The strchr function is more expensive than the
strlen function, since we have two abort criteria. But in the GNU C Library, the
implementation of strchr is optimized in a special way, so that strchr actually
is faster.

Functionchar * strrchr (const char *string, int c)
The function strrchr is like strchr, except that it searches backward from
the end of the string string (instead of forward from the front).
For example:

strrchr ("hello, world", ’l’)

⇒ "ld"

Functionwchar_t * wcsrchr (const wchar_t *wstring, wchar_t
c)

The function wcsrchr is like wcschr, except that it searches backwards from
the end of the string wstring (instead of forward from the front).

Functionchar * strstr (const char *haystack, const char *needle)

This is like strchr, except that it searches haystack for a substring needle
rather than just a single character. It returns a pointer into the string haystack
that is the first character of the substring, or a null pointer if no match was found.
If needle is an empty string, the function returns haystack.
For example:

strstr ("hello, world", "l")

⇒ "llo, world"

strstr ("hello, world", "wo")

⇒ "world"

Functionwchar_t * wcsstr (const wchar_t *haystack, const
wchar_t *needle)

This is like wcschr, except that it searches haystack for a substring needle
rather than just a single wide character. It returns a pointer into the string
haystack that is the first wide character of the substring, or a null pointer if
no match was found. If needle is an empty string, the function returns haystack.

Chapter 5: String and Array Utilities 117

Functionwchar_t * wcswcs (const wchar_t *haystack, const
wchar_t *needle)

wcsstr is a deprecated alias for wcsstr. This is the name originally used in
the X/Open Portability Guide1 before the Amendment 1 to ISO C90 was pub-
lished.

Functionchar * strcasestr (const char *haystack, const char
*needle)

This is like strstr, except that it ignores case in searching for the substring.
Like strcasecmp, how uppercase and lowercase characters are related is lo-
cale dependent.
For example:

strstr ("hello, world", "L")

⇒ "llo, world"

strstr ("hello, World", "wo")

⇒ "World"

Functionvoid * memmem (const void *haystack, size_t
haystack-len,
const void *needle, size_t needle-len)

This is like strstr, but needle and haystack are byte arrays rather than null-
terminated strings. needle-len is the length of needle and haystack-len is the
length of haystack.
This function is a GNU extension.

Functionsize_t strspn (const char *string, const char *skipset)
The strspn (“string span”) function returns the length of the initial substring
of string that consists entirely of characters that are members of the set specified
by the string skipset. The order of the characters in skipset is not important.
For example:

strspn ("hello, world", "abcdefghijklmnopqrstuvwxyz")

⇒ 5

Character used here in the sense of byte. In a string using a multibyte-character
encoding (abstract), characters consisting of more than one byte are not treated
as an entity. Each byte is treated separately. The function is not locale depen-
dent.

Functionsize_t wcsspn (const wchar_t *wstring, const
wchar_t *skipset)

The wcsspn (“wide-character string span”) function returns the length of the
initial substring of wstring that consists entirely of wide characters that are
members of the set specified by the string skipset. The order of the wide char-
acters in skipset is not important.

1 X/Open Company, X/Open Portability Guide, Issue 4, Version 2 (Reading, UK: X/Open Company,
Ltd., 1994).

118 The GNU C Library: Application Fundamentals

Functionsize_t strcspn (const char *string, const char *stopset)

The strcspn (“string complement span”) function returns the length of the
initial substring of string that consists entirely of characters that are not mem-
bers of the set specified by the string stopset. (In other words, it returns the
offset of the first character in string that is a member of the set stopset.)
For example:

strcspn ("hello, world", " \t\n,.;!?")

⇒ 5

Character is used here in the sense of byte. In a string using a multibyte-
character encoding (abstract), characters consisting of more than one byte are
not treated as an entity. Each byte is treated separately. The function is not
locale dependent.

Functionsize_t wcscspn (const wchar_t *wstring, const
wchar_t *stopset)

The wcscspn (“wide-character string complement span”) function returns the
length of the initial substring of wstring that consists entirely of wide characters
that are not members of the set specified by the string stopset. (In other words,
it returns the offset of the first character in string that is a member of the set
stopset.)

Functionchar * strpbrk (const char *string, const char *stopset)
The strpbrk (“string pointer break”) function is related to strcspn, except
that it returns a pointer to the first character in string that is a member of the set
stopset instead of the length of the initial substring. It returns a null pointer if
no such character from stopset is found.
For example:

strpbrk ("hello, world", " \t\n,.;!?")

⇒ ", world"

Character is used here in the sense of byte. In a string using a multibyte-
character encoding (abstract), characters consisting of more than one byte are
not treated as an entity. Each byte is treated separately. The function is not
locale dependent.

Functionwchar_t * wcspbrk (const wchar_t *wstring, const
wchar_t *stopset)

The wcspbrk (“wide-character string pointer break”) function is related to
wcscspn, except that it returns a pointer to the first wide character in wstring
that is a member of the set stopset instead of the length of the initial substring.
It returns a null pointer if no such character from stopset is found.

Chapter 5: String and Array Utilities 119

5.7.1 Compatibility String Search Functions

Functionchar * index (const char *string, int c)
index is another name for strchr; they are exactly the same. New code
should always use strchr, since this name is defined in ISO C while index
is a BSD invention that was never available on System V derived systems.

Functionchar * rindex (const char *string, int c)
rindex is another name for strrchr; they are exactly the same. New
code should always use strrchr, since this name is defined in ISO C while
rindex is a BSD invention that was never available on System V derived sys-
tems.

5.8 Finding Tokens in a String
It’s fairly common for programs to have a need to do some simple kinds of lexical

analysis and parsing, such as splitting a command string up into tokens. You can
do this with the strtok function, declared in the header file ‘string.h’.

Functionchar * strtok (char *restrict newstring, const char
*restrict delimiters)

A string can be split into tokens by making a series of calls to the function
strtok.
The string to be split up is passed as the newstring argument on the first call
only. The strtok function uses this to set up some internal state information.
Subsequent calls to get additional tokens from the same string are indicated by
passing a null pointer as the newstring argument. Calling strtok with another
nonnull newstring argument reinitializes the state information. It is guaranteed
that no other library function ever calls strtok behind your back (which would
mess up this internal state information).
The delimiters argument is a string that specifies a set of delimiters that may
surround the token being extracted. All the initial characters that are members
of this set are discarded. The first character that is not a member of this set of
delimiters marks the beginning of the next token. The end of the token is found
by looking for the next character that is a member of the delimiter set. This
character in the original string newstring is overwritten by a null character, and
the pointer to the beginning of the token in newstring is returned.
On the next call to strtok, the searching begins at the next character beyond
the one that marked the end of the previous token. Note that the set of delim-
iters delimiters do not have to be the same on every call in a series of calls to
strtok.
If the end of the string newstring is reached, or if the remainder of the string
consists only of delimiter characters, strtok returns a null pointer.
Character is used here in the sense of byte. In a string using a multibyte-
character encoding (abstract), characters consisting of more than 1 byte are not

120 The GNU C Library: Application Fundamentals

treated as an entity. Each byte is treated separately. The function is not locale
dependent.

Functionwchar_t * wcstok (wchar_t *newstring, const char
*delimiters)

A string can be split into tokens by making a series of calls to the function
wcstok.
The string to be split up is passed as the newstring argument on the first call only.
The wcstok function uses this to set up some internal state information. Sub-
sequent calls to get additional tokens from the same wide-character string are
indicated by passing a null pointer as the newstring argument. Calling wcstok
with another nonnull newstring argument reinitializes the state information. It
is guaranteed that no other library function ever calls wcstok behind your back
(which would mess up this internal state information).
The delimiters argument is a wide-character string that specifies a set of delim-
iters that may surround the token being extracted. All the initial wide characters
that are members of this set are discarded. The first wide character that is not a
member of this set of delimiters marks the beginning of the next token. The end
of the token is found by looking for the next wide character that is a member of
the delimiter set. This wide character in the original wide-character string new-
string is overwritten by a null wide character, and the pointer to the beginning
of the token in newstring is returned.
On the next call to wcstok, the searching begins at the next wide character
beyond the one that marked the end of the previous token. The set of delim-
iters delimiters do not have to be the same on every call in a series of calls to
wcstok.
If the end of the wide-character string newstring is reached, or if the remainder
of the string consists only of delimiter wide characters, wcstok returns a null
pointer.
Character is used here in the sense of byte. In a string using a multibyte-
character encoding (abstract), characters consisting of more than one byte are
not treated as an entity. Each byte is treated separately. The function is not
locale dependent.

Warning: Since strtok and wcstok alter the string they are parsing,
you should always copy the string to a temporary buffer before parsing it with
strtok/wcstok (see Section 5.4 [Copying and Concatenation], page 93). If you
allow strtok or wcstok to modify a string that came from another part of your
program, you are asking for trouble; that string might be used for other purposes
after strtok or wcstok has modified it, and it would not have the expected
value.

The string that you are operating on might even be a constant. Then when
strtok or wcstok tries to modify it, your program will get a fatal signal for
writing in read-only memory.2 Even if the operation of strtok or wcstokwould
2 See Loosemore et al., “Program-Error Signals” (see chap. 1, n. 1).

Chapter 5: String and Array Utilities 121

not require a modification of the string (e.g., if there is exactly one token), the string
can (and in the GNU libc case will) be modified.

This is a special case of a general principle: if a part of a program does not have
as its purpose the modification of a certain data structure, then to modify the data
structure temporarily is to risk errors.

The functions strtok and wcstok are not reentrant.3

Here is a simple example showing the use of strtok:
#include <string.h>

#include <stddef.h>

...

const char string[] = "words separated by spaces -- and, punctuation!";

const char delimiters[] = " .,;:!-";

char *token, *cp;

...

cp = strdupa (string); /* Make writable copy. */

token = strtok (cp, delimiters); /* token => "words" */

token = strtok (NULL, delimiters); /* token => "separated" */

token = strtok (NULL, delimiters); /* token => "by" */

token = strtok (NULL, delimiters); /* token => "spaces" */

token = strtok (NULL, delimiters); /* token => "and" */

token = strtok (NULL, delimiters); /* token => "punctuation" */

token = strtok (NULL, delimiters); /* token => NULL */

The GNU C Library contains two more functions for tokenizing a string which
overcome the limitation of nonreentrancy. They are only available for multibyte-
character strings.

Functionchar * strtok r (char *newstring, const char *delimiters,
char **save ptr)

Just like strtok, this function splits the string into several tokens that can be
accessed by successive calls to strtok_r. The difference is that the informa-
tion about the next token is stored in the space pointed to by the third argument,
save ptr, which is a pointer to a string pointer. Calling strtok_r with a null
pointer for newstring and leaving save ptr between the calls unchanged does
the job without hindering reentrancy.
This function is defined in POSIX.1 and can be found on many systems which
support multithreading.

3 See Loosemore et al., “Signal Handling and Nonreentrant Functions”, for a discussion of where
and why reentrancy is important.

122 The GNU C Library: Application Fundamentals

Functionchar * strsep (char **string ptr, const char *delimiter)
This function has a similar functionality to strtok_r, with the newstring ar-
gument replaced by the save ptr argument. The initialization of the moving
pointer has to be done by the user. Successive calls to strsepmove the pointer
along the tokens separated by delimiter, returning the address of the next token
and updating string ptr to point to the beginning of the next token.
One difference between strsep and strtok_r is that if the input string con-
tains more than one character from delimiter in a row, strsep returns an empty
string for each pair of characters from delimiter. This means that a program nor-
mally should test for strsep returning an empty string before processing it.
This function was introduced in 4.3BSD and therefore is widely available.

Here is how the above example looks like when strsep is used:
#include <string.h>

#include <stddef.h>

...

const char string[] = "words separated by spaces -- and, punctuation!";

const char delimiters[] = " .,;:!-";

char *running;

char *token;

...

running = strdupa (string);

token = strsep (&running, delimiters); /* token => "words" */

token = strsep (&running, delimiters); /* token => "separated" */

token = strsep (&running, delimiters); /* token => "by" */

token = strsep (&running, delimiters); /* token => "spaces" */

token = strsep (&running, delimiters); /* token => "" */

token = strsep (&running, delimiters); /* token => "" */

token = strsep (&running, delimiters); /* token => "" */

token = strsep (&running, delimiters); /* token => "and" */

token = strsep (&running, delimiters); /* token => "" */

token = strsep (&running, delimiters); /* token => "punctuation" */

token = strsep (&running, delimiters); /* token => "" */

token = strsep (&running, delimiters); /* token => NULL */

Functionchar * basename (const char *filename)
The GNU version of the basename function returns the last component of the
path in filename. This function is the preferred usage, since it does not mod-
ify the argument, filename, and respects trailing slashes. The prototype for
basename can be found in ‘string.h’. This function is overriden by the
XPG version, if ‘libgen.h’ is included.

Chapter 5: String and Array Utilities 123

Here is an example using GNU basename:
#include <string.h>

int

main (int argc, char *argv[])

{

char *prog = basename (argv[0]);

if (argc < 2)

{

fprintf (stderr, "Usage %s <arg>\n", prog);

exit (1);

}

...

}

Portability Note: This function may produce different results on different sys-
tems.

Functionchar * basename (char *path)
This is the standard XPG-defined basename. It is similar in spirit to the GNU
version, but may modify the path by removing trailing ‘/’ characters. If the
path is made up entirely of ‘/’ characters, then “/” will be returned. Also, if
path is NULL or an empty string, then “.” is returned. The prototype for the
XPG version can be found in ‘libgen.h’.
Here is an example using XPG basename:

#include <libgen.h>

int

main (int argc, char *argv[])

{

char *prog;

char *path = strdupa (argv[0]);

prog = basename (path);

if (argc < 2)

{

fprintf (stderr, "Usage %s <arg>\n", prog);

exit (1);

}

...

124 The GNU C Library: Application Fundamentals

}

Functionchar * dirname (char *path)
The dirname function is the compliment to the XPG version of basename.
It returns the parent directory of the file specified by path. If path is NULL, an
empty string, or contains no ‘/’ characters, then “.” is returned. The prototype
for this function can be found in ‘libgen.h’.

5.9 strfry

The function below addresses the perennial programming quandary, “How do I
take good data in string form and painlessly turn it into garbage?” This is actually
a fairly simple task for C programmers who do not use the GNU C Library string
functions, but for programs based on the GNU C Library, the strfry function is
the preferred method for destroying string data.

The prototype for this function is in ‘string.h’.

Functionchar * strfry (char *string)
strfry creates a pseudorandom anagram of a string, replacing the input with
the anagram. For each position in the string, strfry swaps it with a position
in the string selected at random (from a uniform distribution). The two positions
may be the same.
The return value of strfry is always string.
Portability Note: This function is unique to the GNU C Library.

5.10 Trivial Encryption
The memfrob function converts an array of data to something unrecognizable

and back again. It is not encryption in its usual sense since it is easy for someone
to convert the encrypted data back to clear text. The transformation is analogous to
Usenet’s “Rot13” encryption method for obscuring offensive jokes from sensitive
eyes and such. Unlike Rot13, memfrob works on arbitrary binary data, not just
text.4

This function is declared in ‘string.h’.

Functionvoid * memfrob (void *mem, size_t length)
memfrob transforms (frobnicates) each byte of the data structure at mem,
which is length bytes long, by bit-wise exclusive-oring it with binary 00101010.
It does the transformation in place and its return value is always mem.
memfrob a second time on the same data structure returns it to its original state.

4 See Loosemore et al., “DES Encryption and Password Handling”, for a discussion of true
encryption.

Chapter 5: String and Array Utilities 125

This is a good function for hiding information from someone who doesn’t want
to see it. To really prevent people from retrieving the information, use stronger
encryption.5

Portability Note: This function is unique to the GNU C Library.

5.11 Encode Binary Data
To store or transfer binary data in environments that only support text, you have

to encode the binary data by mapping the input bytes to characters in the range
allowed for storing or transferring. SVID systems (and nowadays XPG-compliant
systems) provide minimal support for this task.

Functionchar * l64a (long int n)
This function encodes a 32-bit input value using characters from the basic char-
acter set. It returns a pointer to a 6-character buffer that contains an encoded
version of n. To encode a series of bytes, the user must copy the returned string
to a destination buffer. It returns the empty string if n is zero, which is some-
what bizarre but mandated by the standard.
Warning: Since a static buffer is used, this function should not be used in mul-
tithreaded programs. There is no thread-safe alternative to this function in the C
library.
Compatibility Note: The XPG standard states that the return value of l64a is
undefined if n is negative. In the GNU implementation, l64a treats its argument
as unsigned, so it will return a sensible encoding for any nonzero n; however,
portable programs should not rely on this.
To encode a large buffer l64a must be called in a loop, once for each 32-bit
word of the buffer. For example, one could do something like this:

char *

encode (const void *buf, size_t len)

{

/* We know in advance how long the buffer has to be. */

unsigned char *in = (unsigned char *) buf;

char *out = malloc (6 + ((len + 3) / 4) * 6 + 1);

char *cp = out;

/* Encode the length. */

/* Using ‘htonl’ is necessary so that the data can be

decoded even on machines with different byte order. */

cp = mempcpy (cp, l64a (htonl (len)), 6);

while (len > 3)

5 Ibid., “DESEncryption and Password Handling”.

126 The GNU C Library: Application Fundamentals

{

unsigned long int n = *in++;

n = (n << 8) | *in++;

n = (n << 8) | *in++;

n = (n << 8) | *in++;

len -= 4;

if (n)

cp = mempcpy (cp, l64a (htonl (n)), 6);

else

/* ‘l64a’ returns the empty string for n==0, so we

must generate its encoding ("......") by hand. */

cp = stpcpy (cp, "......");

}

if (len > 0)

{

unsigned long int n = *in++;

if (--len > 0)

{

n = (n << 8) | *in++;

if (--len > 0)

n = (n << 8) | *in;

}

memcpy (cp, l64a (htonl (n)), 6);

cp += 6;

}

*cp = ’\0’;

return out;

}

To decode data produced with l64a, the following function should be used.

Functionlong int a64l (const char *string)
The parameter string should contain a string that was produced by a call to
l64a. The function processes at least 6 characters of this string, and decodes
the characters it finds according to the table below. It stops decoding when it
finds a character not in the table, rather like atoi; if you have a buffer that
has been broken into lines, you must be careful to skip over the end-of-line
characters.
The decoded number is returned as a long int value.

The l64a and a64l functions use a base-64 encoding, in which each character
of an encoded string represents 6 bits of an input word. These symbols are used for
the base-64 digits:

0 1 2 3 4 5 6 7
0 . / 0 1 2 3 4 5

Chapter 5: String and Array Utilities 127

8 6 7 8 9 A B C D
16 E F G H I J K L
24 M N O P Q R S T
32 U V W X Y Z a b
40 c d e f g h i j
48 k l m n o p q r
56 s t u v w x y z

This encoding scheme is not standard. There are some other encoding methods
that are much more widely used (UU encoding, MIME encoding). Generally, it is
better to use one of these encodings.

5.12 Argz and Envz Vectors

argz vectors are vectors of strings in a contiguous block of memory, each element
separated from its neighbors by null-characters (’\0’).

envz vectors are an extension of argz vectors where each element is a name-value
pair, separated by a ’=’ character (as in a Unix environment).

5.12.1 Argz Functions

Each argz vector is represented by a pointer to the first element, of type char *,
and a size, of type size_t, both of which can be initialized to 0 to represent an
empty argz vector. All argz functions accept either a pointer and a size argument,
or pointers to them, if they will be modified.

The argz functions use malloc/realloc to allocate and grow argz vectors,
so any argz vector created using these functions may be freed by using free;
conversely, any argz function that may grow a string expects that string to have been
allocated using malloc (those argz functions that only examine their arguments
or modify them in place will work on any sort of memory). See Section 3.2.2
[Unconstrained Allocation], page 42, for more information.

All argz functions that do memory allocation have a return type of error_t,
and return 0 for success or ENOMEM if an allocation error occurs.

These functions are declared in the standard include file ‘argz.h’.

Functionerror_t argz create (char *const argv[], char **argz,
size_t *argz len)

The argz_create function converts the Unix-style argument vector argv (a
vector of pointers to normal C strings, terminated by (char *)0; see Sec-
tion 14.1 [Program Arguments], page 379) into an argz vector with the same
elements, which is returned in argz and argz len.

128 The GNU C Library: Application Fundamentals

Functionerror_t argz create sep (const char *string, int sep,
char **argz, size_t *argz len)

The argz_create_sep function converts the null-terminated string string
into an argz vector (returned in argz and argz len) by splitting it into elements
at every occurrence of the character sep.

Functionsize_t argz count (const char *argz, size_t arg len)
Returns the number of elements in the argz vector argz and argz len.

Functionvoid argz extract (char *argz, size_t argz len, char
**argv)

The argz_extract function converts the argz vector argz and argz len into a
Unix-style argument vector stored in argv, by putting pointers to every element
in argz into successive positions in argv, followed by a terminator of 0. Argv
must be preallocated with enough space to hold all the elements in argz plus the
terminating (char *)0 ((argz_count (argz, argz len) + 1) * sizeof
(char *) bytes should be enough). The string pointers stored into argv point
into argz—they are not copies—and so argz must be copied if it will be changed
while argv is still active. This function is useful for passing the elements in argz
to an exec function.6

Functionvoid argz stringify (char *argz, size_t len, int sep)
The argz_stringify converts argz into a normal string with the elements
separated by the character sep, by replacing each ’\0’ inside argz (except the
last one, which terminates the string) with sep. This is handy for printing argz
in a readable manner.

Functionerror_t argz add (char **argz, size_t *argz len,
const char *str)

The argz_add function adds the string str to the end of the argz vector *argz,
and updates *argz and *argz len accordingly.

Functionerror_t argz add sep (char **argz, size_t *argz len,
const char *str, int delim)

The argz_add_sep function is similar to argz_add, but str is split into
separate elements in the result at occurrences of the character delim. This is
useful, for instance, for adding the components of a Unix search path to an argz
vector, by using a value of ’:’ for delim.

Functionerror_t argz append (char **argz, size_t *argz len,
const char *buf, size_t buf len)

The argz_append function appends buf len bytes starting at buf to the argz
vector *argz , reallocating *argz to accommodate it, and adding buf len to
*argz len .

6 Ibid., “Executing a File”.

Chapter 5: String and Array Utilities 129

Functionerror_t argz delete (char **argz, size_t *argz len,
char *entry)

If entry points to the beginning of one of the elements in the argz vector *argz,
the argz_delete function will remove this entry and reallocate *argz, mod-
ifying *argz and *argz len accordingly. As destructive argz functions usually
reallocate their argz argument, pointers into argz vectors such as entry will then
become invalid.

Functionerror_t argz insert (char **argz, size_t *argz len,
char *before, const char *entry)

The argz_insert function inserts the string entry into the argz vector *argz
at a point just before the existing element pointed to by before, reallocating
*argz and updating *argz and *argz len . If before is 0, entry is added to the
end instead (as if by argz_add). Since the first element is in fact the same as
*argz , passing in *argz as the value of before will result in entry being inserted
at the beginning.

Functionchar * argz next (char *argz, size_t argz len, const
char *entry)

The argz_next function provides a convenient way of iterating over the el-
ements in the argz vector argz. It returns a pointer to the next element in argz
after the element entry, or 0 if there are no elements following entry. If entry is
0, the first element of argz is returned.
This behavior suggests two styles of iteration:

char *entry = 0;

while ((entry = argz_next (argz, argz len, entry)))

action;

(the double parentheses are necessary to make some C compilers shut up about
what they consider a questionable while-test) and:

char *entry;

for (entry = argz;

entry;

entry = argz_next (argz, argz len, entry))

action;

The latter depends on argz having a value of 0 if it is empty (rather than a
pointer to an empty block of memory); this invariant is maintained for argz
vectors created by the functions here.

Functionerror_t argz replace (char **argz, size_t *argz len,
const char *str, const char *with,
unsigned *replace count)

Replace any occurrences of the string str in argz with with, reallocating argz as
necessary. If replace count is nonzero, *replace count will be incremented by
the number of replacements performed.

130 The GNU C Library: Application Fundamentals

5.12.2 Envz Functions

Envz vectors are just argz vectors with additional constraints on the form of each
element; as such, argz functions can also be used on them, where it makes sense.

Each element in an envz vector is a name-value pair, separated by a ’=’ char-
acter; if multiple ’=’ characters are present in an element, those after the first are
considered part of the value, and treated like all other non-’\0’ characters.

If no ’=’ characters are present in an element, that element is considered the
name of a “null” entry, as distinct from an entry with an empty value: envz_get
will return 0 if given the name of null entry, whereas an entry with an empty value
would result in a value of ""; envz_entry will still find such entries, however.
Null entries can be removed with envz_strip function.

As with argz functions, envz functions that may allocate memory (and thus fail)
have a return type of error_t, and return either 0 or ENOMEM.

These functions are declared in the standard include file ‘envz.h’.

Functionchar * envz entry (const char *envz, size_t envz len,
const char *name)

The envz_entry function finds the entry in envz with the name name, and
returns a pointer to the whole entry—the argz element that begins with name
followed by an ’=’ character. If there is no entry with that name, 0 is returned.

Functionchar * envz get (const char *envz, size_t envz len,
const char *name)

The envz_get function finds the entry in envz with the name name (like
envz_entry) and returns a pointer to the value portion of that entry (fol-
lowing the ’=’). If there is no entry with that name (or only a null entry), 0 is
returned.

Functionerror_t envz add (char **envz, size_t *envz len,
const char *name, const char *value)

The envz_add function adds an entry to *envz (updating *envz and
*envz len) with the name name, and value value. If an entry with the same
name already exists in envz, it is removed first. If value is 0, then the new entry
will be the special null type of entry mentioned above.

Functionerror_t envz merge (char **envz, size_t *envz len,
const char *envz2, size_t envz2 len, int override)

The envz_merge function adds each entry in envz2 to envz, as if with envz_
add, updating *envz and *envz len . If override is true, then values in envz2
will supersede those with the same name in envz, otherwise they will not.
Null entries are treated just like other entries in this respect, so a null entry in
envz can prevent an entry of the same name in envz2 from being added to envz,
if override is false.

Chapter 5: String and Array Utilities 131

Functionvoid envz strip (char **envz, size_t *envz len)
The envz_strip function removes any null entries from envz, updating
*envz and *envz len .

132 The GNU C Library: Application Fundamentals

Chapter 6: Character-Set Handling 133

6 Character-Set Handling
Character sets used in the early days of computing had only 6, 7, or 8 bits for

each character—there was never a case where more than 8 bits (1 byte) were used to
represent a single character. The limitations of this approach became more apparent
as more people grappled with non-Roman character sets, where all the characters
that make up a language’s character set cannot be represented by 28 choices. This
chapter shows the functionality that was added to the C library to support multiple
character sets.

6.1 Introduction to Extended Characters
A variety of solutions is available to overcome the differences between character

sets with a 1:1 relation between bytes and characters and character sets with ratios
of 2:1 or 4:1. The remainder of this section gives a few examples to help you
understand the design decisions made while developing the functionality of the
C library.

A distinction we have to make right away is between internal and external rep-
resentation. Internal representation means the representation used by a program
while keeping the text in memory. External representations are used when text is
stored or transmitted through some communication channel. Examples of external
representations include files waiting in a directory to be read and parsed.

Traditionally, there has been no difference between the two representations. It
was equally comfortable and useful to use the same single-byte representation in-
ternally and externally. This comfort level decreases with more and larger character
sets.

One of the problems to overcome with the internal representation is handling
text that is externally encoded using different character sets. Assume a program
that reads two texts and compares them using some metric. The comparison can be
usefully done only if the texts are internally kept in a common format.

For such a common format (character set), 8 bits are certainly no longer enough.
So the smallest entity will have to grow—wide characters will now be used. Instead
of 1 byte per character, 2 or 4 will be used instead (three are not good to address in
memory and using more than 4 bytes seems to be unnecessary).

As shown in Chapter 5 [String and Array Utilities], page 89, a completely new
family has been created of functions that can handle wide-character texts in mem-
ory. The most commonly used character sets for such internal wide-character repre-
sentations are Unicode and ISO 10646 (also known as UCS for Universal Character
Set). Unicode was originally planned as a 16-bit character set, whereas ISO 10646
was designed to be a 31-bit large code space. The two standards are practically
identical. They have the same character repertoire and code table, but Unicode
specifies added semantics. At the moment, only characters in the first 0x10000
code positions (the so-called Basic Multilingual Plane or BMP) have been assigned,
but the assignment of more specialized characters outside this 16-bit space is al-
ready in progress. A number of encodings have been defined for Unicode and

134 The GNU C Library: Application Fundamentals

ISO 10646 characters: UCS-2 is a 16-bit word that can only represent charac-
ters from the BMP, UCS-4 is a 32-bit word than can represent any Unicode and
ISO 10646 character, UTF-8 is an ASCII-compatible encoding where ASCII charac-
ters are represented by ASCII bytes and non-ASCII characters by sequences of 2-6
non-ASCII bytes, and UTF-16 is an extension of UCS-2 in which pairs of certain
UCS-2 words can be used to encode non-BMP characters up to 0x10ffff.

To represent wide characters, the char type is not suitable. For this reason, the
ISO C standard introduces a new type that is designed to keep one character of a
wide-character string. To maintain the similarity, there is also a type corresponding
to int for those functions that take a single wide character.

Data typewchar t
This data type is used as the base type for wide-character strings. In other
words, arrays of objects of this type are the equivalent of char[] for multibyte-
character strings. The type is defined in ‘stddef.h’.
The ISO C90 standard, where wchar_t was introduced, does not say anything
specific about the representation. It only requires that this type be capable of
storing all elements of the basic character set. Therefore, it would be legitimate
to define wchar_t as char, which might make sense for embedded systems.
But for GNU systems, wchar_t is always 32 bits wide and therefore capable
of representing all UCS-4 values, which means it is capable of covering all of
ISO 10646. Some Unix systems define wchar_t as a 16-bit type and thereby
follow Unicode very strictly. This definition is perfectly fine with the standard,
but it also means that to represent all characters from Unicode and ISO 10646,
you have to use UTF-16 surrogate characters, which is in fact a multi-wide-
character encoding. But resorting to multi-wide-character encoding contradicts
the purpose of the wchar_t type.

Data typewint t
wint_t is a data type used for parameters and variables that contain a single
wide character. As the name suggests, this type is the equivalent of int when
using the normal char strings. The types wchar_t and wint_t often have
the same representation if their size is 32 bits wide, but if wchar_t is defined
as char, the type wint_t must be defined as int due to the parameter pro-
motion.
This type is defined in ‘wchar.h’ and was introduced in Amendment 1 to
ISO C90.

As there are for the char data type, macros are available for specifying the
minimum and maximum value representable in an object of type wchar_t.

Macrowint_t WCHAR MIN
The macro WCHAR_MIN evaluates to the minimum value representable by an
object of type wint_t.
This macro was introduced in Amendment 1 to ISO C90.

Chapter 6: Character-Set Handling 135

Macrowint_t WCHAR MAX
The macro WCHAR_MAX evaluates to the maximum value representable by an
object of type wint_t.
This macro was introduced in Amendment 1 to ISO C90.

Another special wide-character value is the equivalent to EOF.

Macrowint_t WEOF
The macro WEOF evaluates to a constant expression of type wint_t, whose
value is different from any member of the extended character set.
WEOF need not be the same value as EOF, and unlike EOF, it also need not be
negative. In other words, sloppy code like:

{

int c;

...

while ((c = getc (fp)) < 0)

...

}

has to be rewritten to use WEOF explicitly when wide characters are used:
{

wint_t c;

...

while ((c = wgetc (fp)) != WEOF)

...

}

This macro was introduced in Amendment 1 to ISO C90 and is defined in
‘wchar.h’.

These internal representations present problems when it comes to storing and
transmittal. Because each single wide character consists of more than 1 byte, they
are effected by byte-ordering. Thus, machines with different endianesses would
see different values when accessing the same data. This byte-ordering concern also
applies for communication protocols that are all byte-based and therefore require
the sender to decide about splitting the wide character in bytes. A last point is that
wide characters often require more storage space than a customized byte-oriented
character set.

For all the above reasons, an external encoding that is different from the internal
encoding is often used if the latter is UCS-2 or UCS-4. The external encoding is
byte-based and can be chosen appropriately for the environment and for the texts
to be handled. A variety of different character sets can be used for this external
encoding (information that will not be exhaustively presented here—instead, a de-
scription of the major groups will suffice). All of the ASCII-based character sets
fulfill one requirement: they are file-system safe. This means that the character
’/’ is used in the encoding only to represent itself. Things are a bit different for
character sets like EBCDIC (Extended Binary Coded Decimal Interchange Code, a

136 The GNU C Library: Application Fundamentals

character-set family used by IBM), but if the operation system does not understand
EBCDIC directly, the parameters-to-system calls have to be converted first anyhow.

• The simplest character sets are single-byte character sets. There can only be
up to 256 characters (for 8-bit character sets), which is not sufficient to cover
all languages but might be sufficient to handle a specific text. Handling of an
8-bit character set is simple. This is not true for other kinds presented later,
and therefore, the application you use might require 8-bit character sets.

• The ISO 2022 standard defines a mechanism for extended character sets where
one character can be represented by more than one byte. This is achieved by
associating a state with the text. Characters that can be used to change the
state can be embedded in the text. Each byte in the text might have a different
interpretation in each state. The state might even influence whether a given
byte stands for a character on its own or whether it has to be combined with
some more bytes.
In most uses of ISO 2022, the defined character sets do not allow state changes
that cover more than the next character. This has the big advantage that when-
ever you can identify the beginning of the byte sequence of a character, you
can interpret a text correctly. Examples of character sets using this policy are
the various EUC character sets (used by Sun’s operations systems, EUC-JP,
EUC-KR, EUC-TW, and EUC-CN) or Shift JIS (SJIS, a Japanese encoding).
But there are also character sets using a state that is valid for more than one
character and has to be changed by another byte sequence. Examples for this
are ISO-2022-JP, ISO-2022-KR and ISO-2022-CN.

• Early attempts to fix 8-bit character sets for other languages using the Roman
alphabet lead to character sets like ISO 6937. Here, bytes representing char-
acters like the acute accent do not produce output themselves—you have to
combine them with other characters to get the desired result. For example, the
byte sequence 0xc2 0x61 (nonspacing acute accent, followed by lowercase
‘a’) to get the “small a with acute” character. To get the acute accent character
on its own, you have to write 0xc2 0x20 (the nonspacing acute followed by
a space).
Character sets like ISO 6937 are used in some embedded systems, such as
teletex.

• Instead of converting the Unicode or ISO 10646 text used internally, it is often
sufficient to simply use an encoding different than UCS-2/UCS-4. The Unicode
and ISO 10646 standards even specify such an encoding: UTF-8. This encod-
ing is able to represent all of ISO 10646 31 bits in a byte string of length 1 to
6.
There were a few other attempts to encode ISO 10646, such as UTF-7, but
UTF-8 is today the only encoding that should be used. In fact, with any luck,
UTF-8 will soon be the only external encoding that has to be supported. It
proves to be universally usable and its only disadvantage is that it favors Ro-
man languages by making the byte string representation of other scripts (Cyril-
lic, Greek, Asian scripts) longer than necessary if using a specific character set

Chapter 6: Character-Set Handling 137

for these scripts. Methods like the Unicode compression scheme can alleviate
these problems.

The question remaining is how to select the character set or encoding to use.
You cannot decide yourself—it is decided by the developers of the system or the
majority of the users. Since the goal is interoperability, you have to use whatever
the other people you work with use. If there are no constraints, the selection is
based on the requirements the expected circle of users will have. In other words, if
a project is expected to be used in only Russia, it is fine to use KOI8-R or a similar
character set. But if at the same time people from Greece are participating, you
should use a character set that allows all people to collaborate.

The most widely useful solution seems to be to go with the most general char-
acter set, ISO 10646. Use UTF-8 as the external encoding and problems with users
not being able to use their own language adequately are a thing of the past.

One final comment about the choice of the wide-character representation is nec-
essary at this point. We have said above that the natural choice is using Unicode
or ISO 10646. This is not required but is encouraged by the ISO C standard. The
standard defines at least a macro __STDC_ISO_10646__ that is only defined on
systems where the wchar_t type encodes ISO 10646 characters. If this symbol is
not defined, you should avoid making assumptions about the wide-character rep-
resentation. If the programmer uses only the functions provided by the C library
to handle wide-character strings, there should be no compatibility problems with
other systems.

6.2 Overview About Character-Handling Functions
A Unix C library contains three different sets of functions in two families to

handle character-set conversion. One of the function families (the most commonly
used) is specified in the ISO C90 standard and, therefore, is portable even beyond
the Unix world. Unfortunately, this family is the least useful one. These func-
tions should be avoided whenever possible, especially when developing libraries
(as opposed to applications).

The second family of functions was introduced in the early Unix standards
(XPG2) and is still part of the latest and greatest Unix standard, Unix 98. It is also
the most powerful and useful set of functions. But we will start with the functions
defined in Amendment 1 to ISO C90.

6.3 Restartable Multibyte Conversion Functions
The ISO C standard defines functions to convert strings from a multibyte repre-

sentation to wide-character strings. There are a number of peculiarities:
• The character set assumed for the multibyte encoding is not specified as an

argument to the functions. Instead, the character set specified by the LC_
CTYPE category of the current locale is used (see Section 7.3 [Categories of
Activities That Locales Affect], page 182).

138 The GNU C Library: Application Fundamentals

• The functions handling more than one character at a time require NUL ter-
minated strings as the argument (i.e., converting blocks of text does not work
unless one can add a NUL byte at an appropriate place). The GNU C Library
contains some extensions to the standard that allow specifying a size, but ba-
sically they also expect terminated strings.

Despite these limitations, the ISO C functions can be used in many contexts.
In graphical user interfaces, for instance, it is not uncommon to have functions
that require text to be displayed in a wide-character string if the text is not simple
ASCII. The text itself might come from a file with translations, and the user should
decide about the current locale, which determines the translation and therefore also
the external encoding used. In such a situation (and many others), the functions
described here are perfect. If more freedom while performing the conversion is
necessary, take a look at the iconv functions (see Section 6.5 [Generic Charset
Conversion], page 157).

6.3.1 Selecting the Conversion and Its Properties

We already said above that the currently selected locale for the LC_CTYPE
category decides about the conversion that is performed by the functions we are
about to describe. Each locale uses its own character set (given as an argument to
localedef) and this is the one assumed as the external multibyte encoding. The
wide-character character set always is UCS-4, at least on GNU systems.

A characteristic of each multibyte-character set is the maximum number of bytes
that can be necessary to represent one character. This information is quite important
when writing code that uses the conversion functions (as shown in the examples
below). The ISO C standard defines two macros that provide this information.

Macroint MB LEN MAX
MB_LEN_MAX specifies the maximum number of bytes in the multibyte se-
quence for a single character in any of the supported locales. It is a compile-time
constant and is defined in ‘limits.h’.

Macroint MB CUR MAX
MB_CUR_MAX expands into a positive integer expression that is the maximum
number of bytes in a multibyte character in the current locale. The value is
never greater than MB_LEN_MAX. Unlike MB_LEN_MAX, this macro need not
be a compile-time constant, and in the GNU C Library it is not.
MB_CUR_MAX is defined in ‘stdlib.h’.

Two different macros are necessary, since strictly ISO C90 compilers do not al-
low variable-length array definitions, but still it is desirable to avoid dynamic allo-
cation. This incomplete piece of code shows the problem:

{

char buf[MB_LEN_MAX];

ssize_t len = 0;

Chapter 6: Character-Set Handling 139

while (! feof (fp))

{

fread (&buf[len], 1, MB_CUR_MAX - len, fp);

/* . . . process buf */

len -= used;

}

}

The code in the inner loop is expected to always have enough bytes in the array
buf to convert one multibyte character. The array buf has to be sized statically since
many compilers do not allow a variable size. The fread call makes sure that MB_
CUR_MAX bytes are always available in buf. It isn’t a problem if MB_CUR_MAX is
not a compile-time constant.

6.3.2 Representing the State of the Conversion

In the introduction of this chapter, it was said that certain character sets use a
stateful encoding. That is, the encoded values depend in some way on the previous
bytes in the text.

Since the conversion functions allow converting a text in more than one step, we
must have a way to pass this information from one call of the functions to another.

Data typembstate t
A variable of type mbstate_t can contain all the information about the shift
state needed from one call to a conversion function to another.
mbstate_t is defined in ‘wchar.h’. It was introduced in Amendment 1 to
ISO C90.

To use objects of type mbstate_t, the programmer has to define such objects
(normally as local variables on the stack) and pass a pointer to the object to the
conversion functions. This way, the conversion function can update the object if
the current multibyte-character set is stateful.

There is no specific function or initializer to put the state object in any specific
state. The rules are that the object should always represent the initial state before
the first use, and this is achieved by clearing the whole variable with code such as:

{

mbstate_t state;

memset (&state, ’\0’, sizeof (state));

/* from now on state can be used. */

...

}

When using the conversion functions to generate output, it is often necessary to
test whether the current state corresponds to the initial state. This is necessary, for
example, to decide whether to emit escape sequences to set the state to the initial
state at certain sequence points. Communication protocols often require this.

140 The GNU C Library: Application Fundamentals

Functionint mbsinit (const mbstate_t *ps)
The mbsinit function determines whether the state object pointed to by ps is
in the initial state. If ps is a null pointer or the object is in the initial state, the
return value is nonzero. Otherwise it is zero.
mbsinit was introduced in Amendment 1 to ISO C90 and is declared in
‘wchar.h’.

Code using mbsinit often looks similar to this:
{

mbstate_t state;

memset (&state, ’\0’, sizeof (state));

/* Use state. */

...

if (! mbsinit (&state))

{

/* Emit code to return to initial state. */

const wchar_t empty[] = L"";

const wchar_t *srcp = empty;

wcsrtombs (outbuf, &srcp, outbuflen, &state);

}

...

}

The code to emit the escape sequence to get back to the initial state is interesting.
The wcsrtombs function can be used to determine the necessary output code (see
Section 6.3.4 [Converting Multibyte- and Wide-Character Strings], page 147). On
GNU systems it is not necessary to perform this extra action for the conversion
from multibyte text to wide-character text since the wide-character encoding is
not stateful. But there is nothing mentioned in any standard that prohibits making
wchar_t using a stateful encoding.

6.3.3 Converting Single Characters

The most fundamental of the conversion functions are those dealing with single
characters. This does not always mean single bytes. But since there is very often
a subset of the multibyte-character set that consists of single-byte sequences, there
are functions to help with converting bytes. Frequently, ASCII is a subpart of the
multibyte-character set. In such a scenario, each ASCII character stands for itself,
and all other characters have at least a first byte that is beyond the range 0 to 127.

Functionwint_t btowc (int c)
The btowc function (“byte to wide character”) converts a valid single-byte
character c in the initial shift state into the wide-character equivalent using the
conversion rules from the currently selected locale of the LC_CTYPE category.
If (unsigned char) c is not a valid single-byte multibyte character or if c is
EOF, the function returns WEOF.

Chapter 6: Character-Set Handling 141

Please note the restriction of c being tested for validity only in the initial shift
state. No mbstate_t object is used from which the state information is taken,
and the function also does not use any static state.
The btowc function was introduced in Amendment 1 to ISO C90 and is de-
clared in ‘wchar.h’.

Despite the limitation that the single-byte value is always interpreted in the initial
state, this function is actually useful most of the time. Most characters are either
entirely single-byte character sets or extensions to ASCII. But then, it is possible to
write code like this (not that this specific example is very useful):

wchar_t *

itow (unsigned long int val)

{

static wchar_t buf[30];

wchar_t *wcp = &buf[29];

*wcp = L’\0’;

while (val != 0)

{

*--wcp = btowc (’0’ + val % 10);

val /= 10;

}

if (wcp == &buf[29])

*--wcp = L’0’;

return wcp;

}

Why is it necessary to use such a complicated implementation and not simply
cast ’0’ + val % 10 to a wide character? The answer is that there is no guarantee
that one can perform this kind of arithmetic on the character of the character set
used for wchar_t representation. In other situations, the bytes are not constant at
compile time and so the compiler cannot do the work. In situations like this, it is
necessary to use btowc.
There also is a function for the conversion in the other direction.

Functionint wctob (wint_t c)
The wctob function (“wide character to byte”) takes as the parameter a valid
wide character. If the multibyte representation for this character in the initial
state is exactly 1 byte long, the return value of this function is this character.
Otherwise, the return value is EOF.
wctob was introduced in Amendment 1 to ISO C90 and is declared in
‘wchar.h’.

There are more general functions to convert single characters from multibyte
representations to wide characters and vice versa. These functions pose no limit on
the length of the multibyte representation, and they also do not require it to be in
the initial state.

142 The GNU C Library: Application Fundamentals

Functionsize_t mbrtowc (wchar_t *restrict pwc, const char
*restrict s, size_t n, mbstate_t *restrict ps)

The mbrtowc function (“multibyte restartable to wide character”) converts the
next multibyte character in the string pointed to by s into a wide character and
stores it in the wide-character string pointed to by pwc. The conversion is per-
formed according to the locale currently selected for the LC_CTYPE category.
If the conversion for the character set used in the locale requires a state, the
multibyte string is interpreted in the state represented by the object pointed to
by ps. If ps is a null pointer, a static, internal state variable used only by the
mbrtowc function is used.
If the next multibyte character corresponds to the NUL wide character, the return
value of the function is 0 and the state object is afterwards in the initial state.
If the next n or fewer bytes form a correct multibyte character, the return value
is the number of bytes starting from s that form the multibyte character. The
conversion state is updated according to the bytes consumed in the conversion.
In both cases the wide character (either the L’\0’ or the one found in the
conversion) is stored in the string pointed to by pwc if pwc is not null.
If the first n bytes of the multibyte string possibly form a valid multibyte char-
acter but there are more than n bytes needed to complete it, the return value of
the function is (size_t) -2 and no value is stored. This can happen even if n
has a value greater than or equal to MB_CUR_MAX since the input might contain
redundant shift sequences.
If the first n bytes of the multibyte string cannot possibly form a valid multi-
byte character, no value is stored, the global variable errno is set to the value
EILSEQ, and the function returns (size_t) -1. The conversion state is af-
terwards undefined.
mbrtowc was introduced in Amendment 1 to ISO C90 and is declared in
‘wchar.h’.

Use of mbrtowc is straightforward. A function that copies a multibyte string
into a wide-character string while at the same time converting all lowercase char-
acters into uppercase could look like this (this is not the final version, just an
example—it has no error checking, and sometimes leaks memory):

wchar_t *

mbstouwcs (const char *s)

{

size_t len = strlen (s);

wchar_t *result = malloc ((len + 1) * sizeof (wchar_t));

wchar_t *wcp = result;

wchar_t tmp[1];

mbstate_t state;

size_t nbytes;

memset (&state, ’\0’, sizeof (state));

while ((nbytes = mbrtowc (tmp, s, len, &state)) > 0)

Chapter 6: Character-Set Handling 143

{

if (nbytes >= (size_t) -2)

/* Invalid input string. */

return NULL;

*wcp++ = towupper (tmp[0]);

len -= nbytes;

s += nbytes;

}

return result;

}

The use of mbrtowc should be clear. A single wide character is stored in
tmp[0], and the number of consumed bytes is stored in the variable nbytes. If
the conversion is successful, the uppercase variant of the wide character is stored
in the result array and the pointer to the input string and the number of available
bytes is adjusted.

The only non-obvious thing about mbrtowc might be the way memory is al-
located for the result. The above code uses the fact that there can never be more
wide characters in the converted results than there are bytes in the multibyte input
string. This method yields a pessimistic guess about the size of the result, and if
many wide-character strings have to be constructed this way or if the strings are
long, the extra memory allocation required because the input string contains multi-
byte characters might be significant. The allocated memory block can be resized
to the correct size before returning it, but a better solution might be to allocate just
the right amount of space for the result right away. Unfortunately, there is no func-
tion to compute the length of the wide-character string directly from the multibyte
string. There is, however, a function that does part of the work.

Functionsize_t mbrlen (const char *restrict s, size_t n,
mbstate_t *ps)

The mbrlen function (“multibyte restartable length”) computes the number of
at most n bytes starting at s, which form the next valid and complete multibyte
character.
If the next multibyte character corresponds to the NUL wide character, the return
value is 0. If the next n bytes form a valid multibyte character, the number of
bytes belonging to this multibyte-character byte sequence is returned.
If the first n bytes possibly form a valid multibyte character but the character
is incomplete, the return value is (size_t) -2. Otherwise, the multibyte-
character sequence is invalid and the return value is (size_t) -1.
The multibyte sequence is interpreted in the state represented by the object
pointed to by ps. If ps is a null pointer, a state object local to mbrlen is used.
mbrlen was introduced in Amendment 1 to ISO C90 and is declared in
‘wchar.h’.

The attentive reader now will note that mbrlen can be implemented as:

144 The GNU C Library: Application Fundamentals

mbrtowc (NULL, s, n, ps != NULL ? ps : &internal)

This is true and in fact is mentioned in the official specification. How can this
function be used to determine the length of the wide-character string created from
a multibyte-character string? It is not directly usable, but we can define a function
mbslen using it:

size_t

mbslen (const char *s)

{

mbstate_t state;

size_t result = 0;

size_t nbytes;

memset (&state, ’\0’, sizeof (state));

while ((nbytes = mbrlen (s, MB_LEN_MAX, &state)) > 0)

{

if (nbytes >= (size_t) -2)

/* Something is wrong. */

return (size_t) -1;

s += nbytes;

++result;

}

return result;

}

This function simply calls mbrlen for each multibyte character in the string
and counts the number of function calls. We here use MB_LEN_MAX as the size
argument in the mbrlen call. This is acceptable since a) this value is larger than the
length of the longest multibyte-character sequence and b) we know that the string
s ends with a NUL byte, which cannot be part of any other multibyte-character
sequence but the one representing the NUL wide character. Therefore, the mbrlen
function will never read invalid memory.

Now that this function is available (just to make this clear, this function is not
part of the GNU C Library), we can compute the number of wide characters required
to store the converted multibyte-character string s using:

wcs_bytes = (mbslen (s) + 1) * sizeof (wchar_t);

Please note that the mbslen function is quite inefficient. The implementation of
mbstouwcswith mbslenwould have to perform the conversion of the multibyte-
character input string twice, and this conversion might be quite expensive. So it is
necessary to think about the consequences of using the easier but imprecise method
before doing the work twice.

Functionsize_t wcrtomb (char *restrict s, wchar_t wc,
mbstate_t *restrict ps)

The wcrtomb function (“wide character restartable to multibyte”) converts a
single wide character into a multibyte string corresponding to that wide charac-
ter.

Chapter 6: Character-Set Handling 145

If s is a null pointer, the function resets the state stored in the objects pointed to
by ps (or the internal mbstate_t object) to the initial state. This can also be
achieved by a call like this:

wcrtombs (temp_buf, L’\0’, ps)

since, if s is a null pointer, wcrtomb performs as if it writes into an internal
buffer, which is guaranteed to be large enough.
If wc is the NUL wide character, wcrtomb emits, if necessary, a shift sequence
to get the state ps into the initial state followed by a single NUL byte, which is
stored in the string s.
Otherwise, a byte sequence (possibly including shift sequences) is written into
the string s. This only happens if wc is a valid wide character (i.e., it has a multi-
byte representation in the character set selected by locale of the LC_CTYPE
category). If wc is not a valid wide character, nothing is stored in the string s,
errno is set to EILSEQ, the conversion state in ps is undefined, and the return
value is (size_t) -1.
If no error occurred, the function returns the number of bytes stored in the string
s. This includes all bytes representing shift sequences.
One word about the interface of the function: there is no parameter specifying
the length of the array s. Instead, the function assumes that there are at least
MB_CUR_MAX bytes available since this is the maximum length of any byte
sequence representing a single character. So the caller has to make sure that
there is enough space available; otherwise, buffer overruns can occur.
wcrtomb was introduced in Amendment 1 to ISO C90 and is declared in
‘wchar.h’.

Using wcrtomb is as easy as using mbrtowc. The following example appends
a wide-character string to a multibyte-character string. Again, the code is not really
useful (or correct) but is simply here to demonstrate use and some problems.

char *

mbscatwcs (char *s, size_t len, const wchar_t *ws)

{

mbstate_t state;

/* Find the end of the existing string. */

char *wp = strchr (s, ’\0’);

len -= wp - s;

memset (&state, ’\0’, sizeof (state));

do

{

size_t nbytes;

if (len < MB_CUR_LEN)

{

/* We cannot guarantee that the next

character fits into the buffer, so

return an error. */

146 The GNU C Library: Application Fundamentals

errno = E2BIG;

return NULL;

}

nbytes = wcrtomb (wp, *ws, &state);

if (nbytes == (size_t) -1)

/* Error in the conversion. */

return NULL;

len -= nbytes;

wp += nbytes;

}

while (*ws++ != L’\0’);

return s;

}

First the function has to find the end of the string currently in the array s. The
strchr call does this very efficiently, since a requirement for multibyte-character
representations is that the NUL byte never be used except to represent itself (and in
this context, the end of the string).

After initializing the state object, the loop is entered where the first task is to
make sure there is enough room in the array s. We abort if there are not at least MB_
CUR_LEN bytes available. This is not always optimal, but we have no other choice.
We might have less than MB_CUR_LEN bytes available, but the next multibyte
character might also be only 1 byte long. At the time the wcrtomb call returns,
it is too late to decide whether the buffer was large enough. If this solution is
unsuitable, there is a very slow but more accurate solution:

...

if (len < MB_CUR_LEN)

{

mbstate_t temp_state;

memcpy (&temp_state, &state, sizeof (state));

if (wcrtomb (NULL, *ws, &temp_state) > len)

{

/* We cannot guarantee that the next

character fits into the buffer, so

return an error. */

errno = E2BIG;

return NULL;

}

}

...

Here we perform the conversion that might overflow the buffer so that we are
afterwards in the position to make an exact decision about the buffer size. Please
note the NULL argument for the destination buffer in the new wcrtomb call; a
writeable string would usually be used, but we’ve used NULL since we’re not in-
terested in the converted text at this point. The most unusual thing about this piece

Chapter 6: Character-Set Handling 147

of code certainly is the duplication of the conversion-state object, but if a change
of the state is necessary to emit the next multibyte character, we want to have the
same shift-state change performed in the real conversion. Therefore, we have to
preserve the initial shift-state information.

There are certainly many more and better solutions to this problem. This example
is only provided for educational purposes.

6.3.4 Converting Multibyte- and Wide-Character Strings

The functions described in the previous section only convert a single character at
a time. Most operations to be performed in real-world programs include strings and
therefore the ISO C standard also defines conversions on entire strings. However,
the defined set of functions is quite limited; therefore, the GNU C Library contains
a few extensions that can help in some important situations.

Functionsize_t mbsrtowcs (wchar_t *restrict dst, const
char **restrict src, size_t len, mbstate_t *restrict
ps)

The mbsrtowcs function (“multibyte string restartable to wide-character
string”) converts a NUL-terminated multibyte-character string at *src into an
equivalent wide-character string, including the NUL wide character at the end.
The conversion is started using the state information from the object pointed to
by ps or from an internal object of mbsrtowcs if ps is a null pointer. Before
returning, the state object is updated to match the state after the last converted
character. The state is the initial state if the terminating NUL byte is reached
and converted.
If dst is not a null pointer, the result is stored in the array pointed to by dst ;
otherwise, the conversion result is not available since it is stored in an internal
buffer.
If len wide characters are stored in the array dst before reaching the end of the
input string, the conversion stops and len is returned. If dst is a null pointer, len
is never checked.
Another reason for a premature return from the function call is if the input string
contains an invalid multibyte-sequence. In this case the global variable errno
is set to EILSEQ and the function returns (size_t) -1.
In all other cases, the function returns the number of wide characters converted
during this call. If dst is not null, mbsrtowcs stores in the pointer pointed to
by src either a null pointer (if the NUL byte in the input string was reached) or
the address of the byte following the last converted multibyte character.
mbsrtowcs was introduced in Amendment 1 to ISO C90 and is declared in
‘wchar.h’.

The definition of the mbsrtowcs function has one important limitation. The
requirement that dst has to be a NUL-terminated string causes problems if you

148 The GNU C Library: Application Fundamentals

want to convert buffers with text. A buffer is normally not a collection of NUL-
terminated strings but instead a continuous collection of lines, separated by newline
characters. Now assume that a function to convert one line from a buffer is needed.
Since the line is not NUL-terminated, the source pointer cannot directly point into
the unmodified text buffer. This means that either you insert the NUL byte at the
appropriate place for the time of the mbsrtowcs function call (which is not doable
for a read-only buffer or in a multithreaded application) or you copy the line in an
extra buffer where it can be terminated by a NUL byte. It is not in general possible
to limit the number of characters to convert by setting the parameter len to any
specific value. Since it is not known how many bytes each multibyte-character
sequence is in length, you can only guess.

There is still a problem with the method of NUL-terminating a line right after
the newline character, which could lead to very strange results. As said in the
description of the mbsrtowcs function above, the conversion state is guaranteed
to be in the initial shift state after processing the NUL byte at the end of the input
string. But this NUL byte is not really part of the text (i.e., the conversion state
after the newline in the original text could be something different than the initial
shift state and therefore the first character of the next line is encoded using this
state). But the state in question is never accessible to the user since the conversion
stops after the NUL byte (which resets the state). Most stateful character sets in use
today require that the shift state after a newline be the initial state—but this is not
a strict guarantee. Therefore, simply NUL-terminating a piece of a running text is
not always an adequate solution and, therefore, should never be done in generally
used code.

The generic conversion interface (see Section 6.5 [Generic Charset Conversion],
page 157) does not have this limitation (it simply works on buffers, not strings), and
the GNU C Library contains a set of functions that take additional parameters spec-
ifying the maximum number of bytes that are consumed from the input string. This
way the problem of mbsrtowcs’s example above could be solved by determining
the line length and passing this length to the function.

Functionsize_t wcsrtombs (char *restrict dst, const
wchar_t **restrict src, size_t len, mbstate_t
*restrict ps)

The wcsrtombs function (“wide-character string restartable to multibyte
string”) converts the NUL-terminated wide-character string at *src into an
equivalent multibyte-character string and stores the result in the array pointed
to by dst. The NUL wide character is also converted. The conversion starts in
the state described in the object pointed to by ps or by a state object locally to
wcsrtombs in case ps is a null pointer. If dst is a null pointer, the conversion
is performed as usual, but the result is not available. If all characters of the input
string were successfully converted and if dst is not a null pointer, the pointer
pointed to by src gets assigned a null pointer.

Chapter 6: Character-Set Handling 149

If one of the wide characters in the input string has no valid multibyte-
character equivalent, the conversion stops early, sets the global variable errno
to EILSEQ, and returns (size_t) -1.
Another reason for a premature stop is if dst is not a null pointer and the next
converted character would require more than len bytes in total to the array dst.
In this case (and if dest is not a null pointer), the pointer pointed to by src is
assigned a value pointing to the wide character right after the last successfully
converted one.
Except in the case of an encoding error, the return value of the wcsrtombs
function is the number of bytes in all the multibyte-character sequences stored
in dst. Before returning, the state in the object pointed to by ps (or the internal
object in case ps is a null pointer) is updated to reflect the state after the last
conversion. The state is the initial shift state in case the terminating NUL wide
character was converted.
The wcsrtombs function was introduced in Amendment 1 to ISO C90 and is
declared in ‘wchar.h’.

The restriction mentioned above for the mbsrtowcs function applies here also.
There is no possibility of directly controlling the number of input characters. You
have to place the NUL wide character at the correct place, or control the consumed
input indirectly via the available output array size (the len parameter).

Functionsize_t mbsnrtowcs (wchar_t *restrict dst, const
char **restrict src, size_t nmc, size_t len,
mbstate_t *restrict ps)

The mbsnrtowcs function is very similar to the mbsrtowcs function. All
the parameters are the same except for nmc, which is new. The return value is
the same as for mbsrtowcs.
This new parameter specifies how many bytes at most can be used from the
multibyte-character string. In other words, the multibyte-character string *src
need not be NUL-terminated. But if a NUL byte is found within the nmc first
bytes of the string, the conversion stops there.
This function is a GNU extension. It is meant to work around the problems
mentioned above. Now it is possible to convert a buffer with multibyte-character
text piece-for-piece without having to care about inserting NUL bytes and the
effect of NUL bytes on the conversion state.

A function to convert a multibyte string into a wide-character string and display
it could be written like this (this example is useful only to show the syntax):

void

showmbs (const char *src, FILE *fp)

{

mbstate_t state;

int cnt = 0;

memset (&state, ’\0’, sizeof (state));

150 The GNU C Library: Application Fundamentals

while (1)

{

wchar_t linebuf[100];

const char *endp = strchr (src, ’\n’);

size_t n;

/* Exit if there is no more line. */

if (endp == NULL)

break;

n = mbsnrtowcs (linebuf, &src, endp - src, 99, &state);

linebuf[n] = L’\0’;

fprintf (fp, "line %d: \"%S\"\n", linebuf);

}

}

There is no problem with the state after a call to mbsnrtowcs. Since we don’t
insert characters in the strings that were not there from the beginning, and we use
state only for the conversion of the given buffer, there is no problem with altering
the state.

Functionsize_t wcsnrtombs (char *restrict dst, const
wchar_t **restrict src, size_t nwc, size_t len,
mbstate_t *restrict ps)

The wcsnrtombs function implements the conversion from wide-character
strings to multibyte-character strings. It is similar to wcsrtombs, but like
mbsnrtowcs, it takes an extra parameter, which specifies the length of the
input string.
No more than nwc wide characters from the input string *src are converted. If
the input string contains a NUL wide character in the first nwc characters, the
conversion stops at this place.
The wcsnrtombs function is a GNU extension and like mbsnrtowcs helps
in situations where no NUL-terminated input strings are available.

6.3.5 A Complete Multibyte Conversion Example

The example programs given in the last sections are only brief and do not contain
things like error checking. Presented here is a complete and documented example.
It features the mbrtowc function, but it should be easy to derive versions using the
other functions:

int

file_mbsrtowcs (int input, int output)

{

/* Note the use of MB_LEN_MAX.

MB_CUR_MAX cannot portably be used here. */

Chapter 6: Character-Set Handling 151

char buffer[BUFSIZ + MB_LEN_MAX];

mbstate_t state;

int filled = 0;

int eof = 0;

/* Initialize the state. */

memset (&state, ’\0’, sizeof (state));

while (!eof)

{

ssize_t nread;

ssize_t nwrite;

char *inp = buffer;

wchar_t outbuf[BUFSIZ];

wchar_t *outp = outbuf;

/* Fill up the buffer from the input file. */

nread = read (input, buffer + filled, BUFSIZ);

if (nread < 0)

{

perror ("read");

return 0;

}

/* If we reach end of file, make a note to read no more. */

if (nread == 0)

eof = 1;

/* filled is now the number of bytes in buffer. */

filled += nread;

/* Convert those bytes to wide characters—as many as we can. */

while (1)

{

size_t thislen = mbrtowc (outp, inp, filled, &state);

/* Stop converting at invalid character;

this can mean we have read just the first part

of a valid character. */

if (thislen == (size_t) -1)

break;

/* We want to handle embedded NUL bytes

but the return value is 0. Correct this. */

if (thislen == 0)

thislen = 1;

/* Advance past this character. */

152 The GNU C Library: Application Fundamentals

inp += thislen;

filled -= thislen;

++outp;

}

/* Write the wide characters we just made. */

nwrite = write (output, outbuf,

(outp - outbuf) * sizeof (wchar_t));

if (nwrite < 0)

{

perror ("write");

return 0;

}

/* See if we have a real invalid character. */

if ((eof && filled > 0) || filled >= MB_CUR_MAX)

{

error (0, 0, "invalid multibyte character");

return 0;

}

/* If any characters must be carried forward,

put them at the beginning of buffer. */

if (filled > 0)

memmove (inp, buffer, filled);

}

return 1;

}

6.4 Nonreentrant Conversion Function
The functions described in the previous chapter are defined in Amendment 1 to

ISO C90, but the original ISO C90 standard also contained functions for character-
set conversion. The reason that these original functions are not described first is
that they are almost entirely useless.

The problem is that all the conversion functions described in the original ISO C90
use a local state. Using a local state implies that multiple conversions at the same
time (not only when using threads) cannot be done, and that you cannot first convert
single characters and then strings since you cannot tell the conversion functions
which state to use.

These original functions are therefore usable only in a very limited set of situa-
tions. You have to finish converting the entire string before starting a new one, and
each string or text must be converted with the same function (there is no problem

Chapter 6: Character-Set Handling 153

with the library itself; it is guaranteed that no library function changes the state of
any of these functions). For the above reasons, it is strongly recommended that
the functions described in the previous section be used in place of nonreentrant
conversion functions.

6.4.1 Nonreentrant Conversion of Single Characters

Functionint mbtowc (wchar_t *restrict result, const char
*restrict string, size_t size)

The mbtowc (“multibyte to wide character”) function, when called with non-
null string, converts the first multibyte character beginning at string to its corre-
sponding wide-character code. It stores the result in *result .
mbtowc never examines more than size bytes. (The idea is to supply for size
the number of bytes of data you have in hand.)
mbtowcwith nonnull string distinguishes three possibilities: either the first size
bytes at string start with valid multibyte characters, they start with an invalid
byte-sequence or just part of a character, or string points to an empty string (a
null character).
For a valid multibyte character, mbtowc converts it to a wide character and
stores that in *result , and returns the number of bytes in that character (always
at least 1 and never more than size).
For an invalid byte-sequence, mbtowc returns −1. For an empty string, it re-
turns 0, also storing ’\0’ in *result .
If the multibyte-character code uses shift characters, then mbtowc maintains
and updates a shift state as it scans. If you call mbtowc with a null pointer for
string, that initializes the shift state to its standard initial value. It also returns
nonzero if the multibyte-character code in use actually has a shift state (see
Section 6.4.3 [States in Nonreentrant Functions], page 155).

Functionint wctomb (char *string, wchar_t wchar)
The wctomb (“wide character to multibyte”) function converts the wide-
character code wchar to its corresponding multibyte-character sequence, and
stores the result in bytes starting at string. At most MB_CUR_MAX characters
are stored.
wctomb with nonnull string distinguishes three possibilities for wchar: a valid
wide-character code (one that can be translated to a multibyte character), an
invalid code, and L’\0’.
Given a valid code, wctomb converts it to a multibyte character, storing the
bytes starting at string. Then it returns the number of bytes in that character
(always at least 1 and never more than MB_CUR_MAX).
If wchar is an invalid wide-character code, wctomb returns −1. If wchar is
L’\0’, it returns 0, also storing ’\0’ in *string .
If the multibyte-character code uses shift characters, then wctomb maintains
and updates a shift state as it scans. If you call wctomb with a null pointer for

154 The GNU C Library: Application Fundamentals

string, that initializes the shift state to its standard initial value. It also returns
nonzero if the multibyte-character code in use actually has a shift state (see
Section 6.4.3 [States in Nonreentrant Functions], page 155).
Calling this function with a wchar argument of zero when string is not null
has the side effect of reinitializing the stored shift state as well as storing the
multibyte character ’\0’ and returning 0.

Similar to mbrlen, there is also a nonreentrant function that computes the
length of a multibyte character. It can be defined in terms of mbtowc.

Functionint mblen (const char *string, size_t size)
The mblen function with a nonnull string argument returns the number of bytes
that make up the multibyte character beginning at string, never examining more
than size bytes. (The idea is to supply for size the number of bytes of data you
have in hand.)
The return value of mblen distinguishes three possibilities: either the first size
bytes at string start with valid multibyte characters, they start with an invalid
byte-sequence or just part of a character, or string points to an empty string (a
null character).
For a valid multibyte character, mblen returns the number of bytes in that char-
acter (always at least 1 and never more than size). For an invalid byte-sequence,
mblen returns −1. For an empty string, it returns 0.
If the multibyte-character code uses shift characters, then mblen maintains and
updates a shift state as it scans. If you call mblen with a null pointer for string,
that initializes the shift state to its standard initial value. It also returns a nonzero
value if the multibyte-character code in use actually has a shift state (see Sec-
tion 6.4.3 [States in Nonreentrant Functions], page 155).
The function mblen is declared in ‘stdlib.h’.

6.4.2 Nonreentrant Conversion of Strings

For convenience, the ISO C90 standard also defines functions to convert entire
strings instead of single characters. These functions suffer from the same problems
as their reentrant counterparts from Amendment 1 to ISO C90 (see Section 6.3.4
[Converting Multibyte- and Wide-Character Strings], page 147).

Functionsize_t mbstowcs (wchar_t *wstring, const char
*string, size_t size)

The mbstowcs (“multibyte string to wide-character string”) function converts
the null-terminated string of multibyte characters string to an array of wide-
character codes, storing not more than size wide characters into the array be-
ginning at wstring. The terminating null character counts toward the size, so if
size is less than the actual number of wide characters resulting from string, no
terminating null character is stored.
The conversion of characters from string begins in the initial shift state.

Chapter 6: Character-Set Handling 155

If an invalid multibyte-character sequence is found, the mbstowcs function
returns a value of −1. Otherwise, it returns the number of wide characters
stored in the array wstring. This number does not include the terminating null
character, which is present if the number is less than size.
Here is an example showing how to convert a string of multibyte characters,
allocating enough space for the result:

wchar_t *

mbstowcs_alloc (const char *string)

{

size_t size = strlen (string) + 1;

wchar_t *buf = xmalloc (size * sizeof (wchar_t));

size = mbstowcs (buf, string, size);

if (size == (size_t) -1)

return NULL;

buf = xrealloc (buf, (size + 1) * sizeof (wchar_t));

return buf;

}

Functionsize_t wcstombs (char *string, const wchar_t
*wstring, size_t size)

The wcstombs (“wide-character string to multibyte string”) function converts
the null-terminated wide-character array wstring into a string containing multi-
byte characters, storing not more than size bytes starting at string, followed by a
terminating null character if there is room. The conversion of characters begins
in the initial shift state.
The terminating null character counts toward the size, so if size is less than or
equal to the number of bytes needed in wstring, no terminating null character is
stored.
If a code that does not correspond to a valid multibyte character is found, the
wcstombs function returns a value of −1. Otherwise, the return value is the
number of bytes stored in the array string. This number does not include the
terminating null character, which is present if the number is less than size.

6.4.3 States in Nonreentrant Functions

In some multibyte-character codes, the meaning of any particular byte sequence
is not fixed; it depends on what other sequences have come earlier in the same
string. Typically there are just a few sequences that can change the meaning of
other sequences; these few are called shift sequences and we say that they set the
shift state for other sequences that follow.

To illustrate shift state and shift sequences, suppose we decide that the sequence
0200 (just one byte) enters Japanese mode, in which pairs of bytes in the range
0240 to 0377 are single characters, while 0201 enters Latin-1 mode, in which

156 The GNU C Library: Application Fundamentals

single bytes in the range 0240 to 0377 are characters, and interpreted according
to the ISO Latin-1 character set. This is a multibyte code that has two alternative
shift states (“Japanese mode” and “Latin-1 mode”), and two shift sequences that
specify particular shift states.

When the multibyte-character code in use has shift states, then mblen, mbtowc,
and wctombmust maintain and update the current shift state as they scan the string.
To make this work properly, you must follow these rules:

• Before starting to scan a string, call the function with a null pointer for the
multibyte-character address—for example, mblen (NULL, 0). This initial-
izes the shift state to its standard initial value.

• Scan the string one character at a time, in order. Do not “back up” and rescan
characters already scanned, and do not intersperse the processing of different
strings.

Here is an example of using mblen following these rules:

void

scan_string (char *s)

{

int length = strlen (s);

/* Initialize shift state. */

mblen (NULL, 0);

while (1)

{

int thischar = mblen (s, length);

/* Deal with end of string and invalid characters. */

if (thischar == 0)

break;

if (thischar == -1)

{

error ("invalid multibyte character");

break;

}

/* Advance past this character. */

s += thischar;

length -= thischar;

}

}

The functions mblen, mbtowc and wctomb are not reentrant when using a
multibyte code that uses a shift state. However, no other library functions call these
functions, so you don’t have to worry that the shift state might be mysteriously
changed.

Chapter 6: Character-Set Handling 157

6.5 Generic Charset Conversion
The conversion functions mentioned so far in this chapter all have in common

that they operate on character sets that are not directly specified by the functions.
The multibyte encoding used is specified by the currently selected locale for the
LC_CTYPE category. The wide-character set is fixed by the implementation (in the
case of GNU C library it is always UCS-4 encoded ISO 10646.

This has of course several problems when it comes to general character conver-
sion:

• For every conversion where neither the source nor the destination character
set is the character set of the locale for the LC_CTYPE category, one has to
change the LC_CTYPE locale using setlocale.
Changing the LC_TYPE locale introduces major problems for the rest of the
programs since several more functions, like the character-classification func-
tions (see Section 4.1 [Classification of Characters], page 79), use the LC_
CTYPE category.

• Parallel conversions to and from different character sets are not possible since
the LC_CTYPE selection is global and shared by all threads.

• If neither the source nor the destination character set is the character set used
for wchar_t representation, there is at least a two-step process necessary to
convert a text using the functions above. One would have to select the source
character set as the multibyte encoding, convert the text into a wchar_t text,
select the destination character set as the multibyte encoding, and convert the
wide-character text to the multibyte (= destination) character set.
Even if this is possible (which is not guaranteed), it is a very tiring work. Plus
it suffers from the other two aforementioned problems even more, due to the
steady changing of the locale.

The XPG2 standard defines a completely new set of functions, which has none
of these limitations. They are not at all coupled to the selected locales, and they
have no constraints on the character sets selected for source and destination. Only
the set of available conversions limits them. The standard does not specify that any
conversion at all must be available. Such availability is a measure of the quality of
the implementation.

In the following text, first the interface to iconv and then the conversion func-
tion will be described. Comparisons with other implementations will show what
obstacles stand in the way of portable applications. Finally, the implementation is
described in so far as might interest the advanced user who wants to extend conver-
sion capabilities.

6.5.1 Generic Character-Set Conversion Interface

This set of functions follows the traditional cycle of using a resource—open, use,
close. The interface consists of three functions, each of which implements one step.

158 The GNU C Library: Application Fundamentals

Before the interfaces are described, it is necessary to introduce a data type. Just
like other open-use-close interfaces, the functions introduced here work using han-
dles, and the ‘iconv.h’ header defines a special type for the handles used.

Data Typeiconv t
This data type is an abstract type defined in ‘iconv.h’. The user must not
assume anything about the definition of this type; it must be completely opaque.
Objects of this type can get assigned handles for the conversions using the
iconv functions. The objects themselves need not be freed, but the conver-
sions that the handles stand for do.

The first step is the function to create a handle.

Functioniconv_t iconv open (const char *tocode, const char
*fromcode)

The iconv_open function has to be used before starting a conversion. The
two parameters this function takes determine the source and destination charac-
ter set for the conversion, and if the implementation is able to perform such a
conversion, the function returns a handle.
If the wanted conversion is not available, the iconv_open function returns
(iconv_t) -1. In this case, the global variable errno can have the follow-
ing values:

EMFILE The process already has OPEN_MAX file descriptors open.

ENFILE The system limit of open files is reached.

ENOMEM There is not enough memory to carry out the operation.

EINVAL The conversion from fromcode to tocode is not supported.

It is not possible to use the same descriptor in different threads to perform inde-
pendent conversions. The data structures associated with the descriptor include
information about the conversion state. This must not be messed up by using it
in different conversions.
An iconv descriptor is like a file descriptor, as for every use a new descriptor
must be created. The descriptor does not stand for all of the conversions from
fromset to toset.
The GNU C Library implementation of iconv_open has one significant ex-
tension to other implementations. To ease the extension of the set of available
conversions, the implementation allows storing the necessary files with data and
code in an arbitrary number of directories. How this extension must be written
will be explained below (see Section 6.5.4 [The iconv Implementation in the
GNU C Library], page 165). Here it is only important to say that all directo-
ries mentioned in the GCONV_PATH environment variable are considered only
if they contain a file ‘gconv-modules’. These directories need not neces-
sarily be created by the system administrator. In fact, this extension is intro-
duced to help users writing and using their own, new conversions. Of course,

Chapter 6: Character-Set Handling 159

this does not work for security reasons in SUID binaries; in this case only the
system directory is considered—this is normally ‘prefix/lib/gconv’. The
GCONV_PATH environment variable is examined exactly once at the first call of
the iconv_open function. Later modifications of the variable have no effect.
The iconv_open function was introduced early in the X/Open Portability
Guide, Issue 2.1 It is supported by all commercial Unices, as it is required for
the Unix branding. However, the quality and completeness of the implementa-
tion varies widely. The iconv_open function is declared in ‘iconv.h’.

The iconv implementation can associate large data structures with the handle
returned by iconv_open. Therefore, it is crucial to free all the resources once all
conversions are carried out and the conversion is not needed anymore.

Functionint iconv close (iconv_t cd)
The iconv_close function frees all resources associated with the handle cd,
which must have been returned by a successful call to the iconv_open func-
tion.
If the function call was successful, the return value is 0. Otherwise, it is −1 and
errno is set appropriately. Defined errors are

EBADF The conversion descriptor is invalid.

The iconv_close function was introduced together with the rest of the
iconv functions in XPG2 and is declared in ‘iconv.h’.

The standard defines only one actual conversion function. This has, therefore, the
most general interface: it allows conversion from one buffer to another. Conversion
from a file to a buffer, from a buffer to a file, or even from a file to file can be
implemented on top of it.

Functionsize_t iconv (iconv_t cd, char **inbuf, size_t
*inbytesleft, char **outbuf, size_t *outbytesleft)

The iconv function converts the text in the input buffer according to the rules
associated with the descriptor cd and stores the result in the output buffer. It
is possible to call the function for the same text several times in a row, since
for stateful character sets the necessary state information is kept in the data
structures associated with the descriptor.
The input buffer is specified by *inbuf and it contains *inbytesleft bytes. The
extra indirection is necessary for communicating the used input back to the
caller (see below). It is important to note that the buffer pointer is of type char
and the length is measured in bytes even if the input text is encoded in wide
characters.
The output buffer is specified in a similar way. *outbuf points to the beginning
of the buffer with at least *outbytesleft bytes of room for the result. The buffer

1 X/Open Company, X/Open Portability Guide, Issue 2 (Reading, UK: X/Open Company, Ltd.,
1987).

160 The GNU C Library: Application Fundamentals

pointer again is of type char and the length is measured in bytes. If outbuf or
*outbuf is a null pointer, the conversion is performed but no output is available.
If inbuf is a null pointer, the iconv function performs the necessary action to
put the state of the conversion into the initial state. This is obviously a no-op for
nonstateful encodings, but if the encoding has a state, such a function call might
put some byte sequences in the output buffer, which perform the necessary state
changes. The next call with inbuf not being a null pointer then goes on from the
initial state. It is important that the programmer never make any assumption as
to whether the conversion has to deal with states. Even if the input and output
character sets are not stateful, the implementation might still have to keep states.
This is due to the implementation chosen for the GNU C Library as it is described
below. Therefore an iconv call to reset the state should always be performed
if some protocol requires this for the output text.
The conversion stops for one of three reasons. The first is that all characters
from the input buffer are converted. This actually can mean two things: either
all bytes from the input buffer are consumed or there are some bytes at the
end of the buffer that can possibly form a complete character, but the input is
incomplete. The second reason for a stop is that the output buffer is full. The
third reason is that the input contains invalid characters.
In all of these cases, the buffer pointers after the last successful conversion, for
input and output buffer, are stored in inbuf and outbuf, and the available room
in each buffer is stored in inbytesleft and outbytesleft.
Since the character sets selected in the iconv_open call can be almost arbi-
trary, there can be situations where the input buffer contains valid characters,
which have no identical representation in the output character set. The behavior
in this situation is undefined. The current behavior of the GNU C Library in this
situation is to return with an error immediately. This certainly is not the most
desirable solution. Future versions will provide better solutions, but they are not
yet finished.
If all input from the input buffer is successfully converted and stored in the
output buffer, the function returns the number of nonreversible conversions per-
formed. In all other cases, the return value is (size_t) -1 and errno is set
appropriately. In such cases, the value pointed to by inbytesleft is nonzero.

EILSEQ The conversion stopped because of an invalid byte-sequence in the
input. After the call, *inbuf points at the first byte of the invalid
byte-sequence.

E2BIG The conversion stopped because it ran out of space in the output
buffer.

EINVAL The conversion stopped because of an incomplete byte-sequence
at the end of the input buffer.

EBADF The cd argument is invalid.

The iconv function was introduced in the XPG2 standard and is declared in the
‘iconv.h’ header.

Chapter 6: Character-Set Handling 161

The definition of the iconv function is quite good overall. It provides flexible
functionality. The only problems lie in the boundary cases, which are incomplete
byte-sequences at the end of the input buffer and invalid input. A third problem,
which is not really a design problem, is the way conversions are selected. The stan-
dard does not say anything about the legitimate names—a minimal set of available
conversions. We will see how this negatively impacts other implementations, as
demonstrated below.

6.5.2 A Complete iconv Example

The example below features a solution for a common problem. Given that we
know the internal encoding used by the system for wchar_t strings, we often are
in the position to read text from a file and store it in wide-character buffers. We can
do this using mbsrtowcs, but then we run into the problems discussed above.

int

file2wcs (int fd, const char *charset, wchar_t *outbuf, size_t avail)

{

char inbuf[BUFSIZ];

size_t insize = 0;

char *wrptr = (char *) outbuf;

int result = 0;

iconv_t cd;

cd = iconv_open ("WCHAR_T", charset);

if (cd == (iconv_t) -1)

{

/* Something went wrong. */

if (errno == EINVAL)

error (0, 0, "conversion from ’%s’ to wchar_t not available",

charset);

else

perror ("iconv_open");

/* Terminate the output string. */

*outbuf = L’\0’;

return -1;

}

while (avail > 0)

{

size_t nread;

size_t nconv;

char *inptr = inbuf;

162 The GNU C Library: Application Fundamentals

/* Read more input. */

nread = read (fd, inbuf + insize, sizeof (inbuf) - insize);

if (nread == 0)

{

/* When we come here the file is completely read.

This still could mean there are some unused

characters in the inbuf. Put them back. */

if (lseek (fd, -insize, SEEK_CUR) == -1)

result = -1;

/* Now write out the byte sequence to get into the

initial state if this is necessary. */

iconv (cd, NULL, NULL, &wrptr, &avail);

break;

}

insize += nread;

/* Do the conversion. */

nconv = iconv (cd, &inptr, &insize, &wrptr, &avail);

if (nconv == (size_t) -1)

{

/* Not everything went right. It might only be

an unfinished byte-sequence at the end of the

buffer, or it could be a real problem. */

if (errno == EINVAL)

/* This is harmless. Simply move the unused

bytes to the beginning of the buffer so that

they can be used in the next round. */

memmove (inbuf, inptr, insize);

else

{

/* It is a real problem. Maybe we ran out of

space in the output buffer or we have invalid

input. In any case back the file pointer to

the position of the last processed byte. */

lseek (fd, -insize, SEEK_CUR);

result = -1;

break;

}

}

}

Chapter 6: Character-Set Handling 163

/* Terminate the output string. */

if (avail >= sizeof (wchar_t))

*((wchar_t *) wrptr) = L’\0’;

if (iconv_close (cd) != 0)

perror ("iconv_close");

return (wchar_t *) wrptr - outbuf;

}

This example shows the most important aspects of using the iconv functions.
It shows how successive calls to iconv can be used to convert large amounts of
text. The user does not have to care about stateful encodings, since the functions
take care of everything.

An interesting point is the case where iconv returns an error and errno is
set to EINVAL. This is not really an error in the transformation. It can happen
whenever the input character set contains byte sequences of more than 1 byte for
some character, and texts are not processed in one piece. In this case, there is
a chance that a multibyte sequence is cut. The caller can then simply read the
remainder of the takes and feed the offending bytes together with new characters
from the input to iconv and continue the work. The internal state kept in the
descriptor is not unspecified after such an event, as is the case with the conversion
functions from the ISO C standard.

The example also shows the problem of using wide-character strings with
iconv. As explained in the description of the iconv function above, the func-
tion always takes a pointer to a char array, and the available space is measured in
bytes. In the example, the output buffer is a wide-character buffer; therefore, we
use a local variable wrptr of type char *, which is used in the iconv calls.

This looks rather innocent but can lead to problems on platforms that have tight
restrictions on alignment. Therefore, the caller of iconv has to make sure that the
pointers passed are suitable for accessing characters from the appropriate character
set. Since, in the above case, the input parameter to the function is a wchar_t
pointer, this is the case (unless the user violates alignment when computing the
parameter). In other situations, especially when writing generic functions where
you do not know what type of character set you are using, iconv treats text as a
sequence of bytes, which might become tricky.

6.5.3 Some Details About Other iconv Implementations

This is not really the place to discuss the iconv implementation of other sys-
tems, but it is necessary to know a bit about them to write portable programs. The
aforementioned problems with the specification of the iconv functions can lead
to portability issues.

The first thing to notice is that, due to the large number of character sets in
use, it is certainly not practical to encode the conversions directly in the C library.

164 The GNU C Library: Application Fundamentals

Therefore, the conversion information must come from files outside the C library.
This is usually done in one or both of the following ways:

• The C library contains a set of generic conversion functions that can read the
needed conversion tables and other information from data files. These files get
loaded when necessary.
This solution is problematic, since it requires a great deal of effort to apply to
all character sets (potentially an infinite set). The differences in the structures
of the different character sets are so large that many different variants of the
table-processing functions must be developed. In addition, the generic nature
of these functions makes them slower than specifically implemented functions.

• The C library only contains a framework that can dynamically load object files
and execute the conversion functions contained therein.
This solution provides much more flexibility. The C library itself contains only
very little code and therefore reduces the general memory footprint. Also, with
a documented interface between the C library and the loadable modules, it is
possible for third parties to extend the set of available conversion modules. A
drawback of this solution is that dynamic loading must be available.

Some implementations in commercial Unices implement a mixture of these pos-
sibilities; the majority implement only the second solution. Using loadable modules
moves the code out of the library itself and keeps the door open for extensions and
improvements, but this design is also limiting on some platforms, since not many
platforms support dynamic loading in statically linked programs. On platforms
without this capability, it is therefore not possible to use this interface in statically
linked programs. The GNU C Library has, on ELF platforms, no problems with
dynamic loading in these situations; therefore, this point is moot. The danger is
that you get acquainted with this situation and forget about the restrictions on other
systems.

A second thing to know about other iconv implementations is that the number
of available conversions is often very limited. Some implementations provide, in
the standard release (not special international or developer releases), at most 100
to 200 conversion possibilities. This does not mean 200 different character sets
are supported; for example, conversions from one character set to a set of ten oth-
ers might count as ten conversions. Together with the other direction, this makes
twenty conversion possibilities used up by one character set. You can imagine the
thin coverage these platform provide. Some Unix vendors even provide only a
handful of conversions, which renders them useless for almost all uses.

This leads directly to the third and probably most problematic point. The way the
iconv conversion functions are implemented on all known Unix systems and the
availability of the conversion functions from character setA toB and the conversion
from B to C does not imply that the conversion from A to C is available.

This might not seem unreasonable or problematic at first, but it is a big problem.
To show the problem, we assume a program that has to convert fromA to C. A call
like:

cd = iconv_open ("C", "A");

Chapter 6: Character-Set Handling 165

fails according to the assumption above. But what does the program do now? The
conversion is necessary; therefore, simply giving up is not an option.

This is a nuisance. The iconv function should take care of this. But how should
the program proceed from here on? If it tries to convert to character set B, first the
two iconv_open calls:

cd1 = iconv_open ("B", "A");

and
cd2 = iconv_open ("C", "B");

will succeed, but how to find B?
Unfortunately, the answer is that there is no general solution. On some sys-

tems, guessing might help. On those systems, most character sets can convert to
and from UTF-8 encoded ISO 10646 or Unicode text. Besides this, only some very
system-specific methods can help. Since the conversion functions come from load-
able modules and these modules must be stored somewhere in the file system, one
could try to find them and determine from the available file which conversions are
available and whether there is an indirect route from A to C.

This example shows one of the design errors of iconv mentioned above. It
should at least be possible to determine the list of available conversions program-
matically so that if iconv_open says there is no such conversion, one could make
sure this also is true for indirect routes.

6.5.4 The iconv Implementation in the GNU C Library

After reading about the problems of iconv implementations in the last section,
it is certainly good to note that the implementation in the GNU C Library has none
of the problems mentioned above. What follows is a step-by-step analysis of the
points raised above. The evaluation is based on the current state of the development
(as of January 1999). The development of the iconv functions is not complete,
but basic functionality has solidified.

The GNU C Library’s iconv implementation uses shared loadable modules to
implement the conversions. A very small number of conversions are built into the
library itself, but these are only rather trivial conversions.

All the benefits of loadable modules are available in the GNU C Library imple-
mentation. This is especially appealing since the interface is well documented (see
below); therefore, it is easy to write new conversion modules. The drawback of
using loadable objects is not a problem in the GNU C Library, at least on ELF
systems. Since the library is able to load shared objects even in statically linked
binaries, static linking need not be forbidden in case one wants to use iconv.

The second mentioned problem is the number of supported conversions. Cur-
rently, the GNU C Library supports more than 150 character sets. The way the
implementation is designed the number of supported conversions is greater than
22350 (150 times 149). If any conversion from or to a character set is missing, it
can be added easily.

166 The GNU C Library: Application Fundamentals

Particularly impressive as it may be, this high number is due to the fact that
the GNU C Library implementation of iconv does not have the third problem
mentioned above (i.e., whenever there is a conversion from a character set A to
B and from B to C it is always possible to convert from A to C directly). If the
iconv_open returns an error and sets errno to EINVAL, there is no known
way, directly or indirectly, to perform the wanted conversion.

Triangulation is achieved by providing for each character set a conversion from
and to UCS-4 encoded ISO 10646. Using ISO 10646 as an intermediate representa-
tion, it is possible to triangulate (i.e., convert with an intermediate representation).

There is no inherent requirement to provide a conversion to ISO 10646 for a new
character set, and it is also possible to provide other conversions where neither
source nor destination character set is ISO 10646. The existing set of conversions
is simply meant to cover all conversions that might be of interest.

All currently available conversions use the triangulation method above, mak-
ing conversion run unnecessarily slow. If, for example, somebody often needs the
conversion from ISO-2022-JP to EUC-JP, a quicker solution would involve direct
conversion between the two character sets, skipping the input to ISO 10646 first.
The two character sets of interest are much more similar to each other than to
ISO 10646.

In such a situation, one easily can write a new conversion and provide it as a
better alternative. The GNU C Library iconv implementation would automatically
use the module implementing the conversion if it is specified to be more efficient.

6.5.4.1 Format of ‘gconv-modules’ Files

All information about the available conversions comes from a file named
‘gconv-modules’, which can be found in any of the directories along the
GCONV_PATH. The ‘gconv-modules’ files are line-oriented text files, where
each of the lines has one of the following formats:

• If the first non-white-space character is a ‘#’, the line contains only comments
and is ignored.

• Lines starting with alias define an alias name for a character set. Two more
words are expected on the line. The first word defines the alias name, and the
second defines the original name of the character set. The effect is that it is
possible to use the alias name in the fromset or toset parameters of iconv_
open and achieve the same result as when using the real character-set name.
This is quite important, since a character set often has many different names.
There is normally an official name, but this need not correspond to the most
popular name. Besides this, many character sets have special names that are
somehow constructed. For example, all character sets specified by the ISO
have an alias of the form ISO-IR-nnn , where nnn is the registration number.
This allows programs that know about the registration number to construct
character-set names and use them in iconv_open calls. More on the avail-
able names and aliases follows below.

Chapter 6: Character-Set Handling 167

• Lines starting with module introduce an available conversion module. These
lines must contain three or four more words.
The first word specifies the source character set, the second word the desti-
nation character set of conversion implemented in this module, and the third
word is the name of the loadable module. The file name is constructed by
appending the usual shared-object suffix (normally ‘.so’) and this file is then
supposed to be found in the same directory the ‘gconv-modules’ file is in.
The last word on the line, which is optional, is a numeric value representing
the cost of the conversion. If this word is missing, a cost of 1 is assumed. The
numeric value itself does not matter that much; the relative values of the sums
of costs for all possible conversion paths are what counts. Below is a more
precise description of the use of the cost value.

Returning to the example above of a module written to directly convert from ISO-
2022-JP to EUC-JP and back, all that has to be done is to put the new module (let its
name be ISO2022JP-EUCJP.so) in a directory and add a file ‘gconv-modules’
with the following content in the same directory:

module ISO-2022-JP// EUC-JP// ISO2022JP-EUCJP 1

module EUC-JP// ISO-2022-JP// ISO2022JP-EUCJP 1

To see why this is sufficient, it is necessary to understand how the conversion
used by iconv (and described in the descriptor) is selected. The approach to this
problem is quite simple.

At the first call of the iconv_open function, the program reads all available
‘gconv-modules’ files and builds up two tables—one containing all the known
aliases and another that contains the information about the conversions and which
shared object implements them.

6.5.4.2 Finding the Conversion Path in iconv

The set of available conversions form a directed graph with weighted edges. The
weights on the edges are the costs specified in the ‘gconv-modules’ files. The
iconv_open function uses an algorithm suitable for searching for the best path
in such a graph and so constructs a list of conversions that must be performed in
succession to get the transformation from the source to the destination character
set.

Explaining why the above ‘gconv-modules’ file allows the iconv imple-
mentation to resolve the specific ISO-2022-JP to EUC-JP conversion module in-
stead of the conversion coming with the library itself is straightforward. Since the
latter conversion takes two steps (from ISO-2022-JP to ISO 10646 and then from
ISO 10646 to EUC-JP), the cost is 1 + 1 = 2. The above ‘gconv-modules’ file,
however, specifies that the new conversion modules can perform this conversion
with only the cost of 1.

A mysterious item about the ‘gconv-modules’ file above (and also the file
that comes with the GNU C Library) is the names of the character sets specified in
the module lines. Almost all of the names end in //. Some names are actually

168 The GNU C Library: Application Fundamentals

regular expressions. The part of the implementation where this is used is not yet
finished. For now please simply follow the existing examples. It should become
clearer as you read on.

A last remark about the ‘gconv-modules’ is about the names not ending with
//. A character set named INTERNAL is often mentioned. From the discussion
above and the chosen name, it should have become clear that this is the name for the
representation used in the intermediate step of the triangulation. We have said that
this is UCS-4, but actually that is not quite right. The UCS-4 specification also in-
cludes the specification of the byte ordering used. Since a UCS-4 value consists of 4
bytes, a stored value is effected by byte ordering. The internal representation is not
the same as UCS-4 in case the byte ordering of the processor (or at least the running
process) is not the same as the one required for UCS-4. This is done for performance
reasons as one does not want to perform unnecessary byte-swapping operations if
one is not interested in actually seeing the result in UCS-4. To avoid trouble with
endianess, the internal representation consistently is named INTERNAL even on
big-endian systems where the representations are identical.

6.5.4.3 iconv Module Data Structures

So far, this section has described how modules are located and considered to be
used. What remains to be described is the interface of the modules so that you can
write new ones. This section describes the interface as it is in use in January 1999.
The interface will change a bit in the future but, with luck, only in an upwardly
compatible way.

The definitions necessary to write new modules are publicly available in the non-
standard header ‘gconv.h’. The following text, therefore, describes the defini-
tions from this header file. First, however, it is necessary to get an overview.

From the perspective of the user of iconv, the interface is quite simple; the
iconv_open function returns a handle that can be used in calls to iconv, and
then the handle is freed with a call to iconv_close. The problem is that the
handle has to be able to represent the possibly long sequences of conversion steps
and also the state of each conversion, since the handle is all that is passed to the
iconv function. Therefore, the data structures are really the elements necessary
to understanding the implementation.

We need two different kinds of data structures. The first describes the conversion
and the second describes the state, etc. There are really two type definitions like
this in ‘gconv.h’.

Data typestruct gconv step
This data structure describes one conversion a module can perform. For each
function in a loaded module with conversion functions, there is exactly one
object of this type. This object is shared by all users of the conversion (i.e., this
object does not contain any information corresponding to an actual conversion;
it only describes the conversion itself).

Chapter 6: Character-Set Handling 169

struct __gconv_loaded_object *__shlib_handle
const char *__modname
int __counter

All these elements of the structure are used internally in the C li-
brary to coordinate loading and unloading the shared object. You
should not expect any of the other elements to be available or ini-
tialized.

const char *__from_name
const char *__to_name

__from_name and __to_name contain the names of the source
and destination character sets. They can be used to identify the
actual conversion to be carried out, since one module might imple-
ment conversions for more than one character set and/or direction.

gconv_fct __fct
gconv_init_fct __init_fct
gconv_end_fct __end_fct

These elements contain pointers to the functions in the loadable
module. The interface will be explained below.

int __min_needed_from
int __max_needed_from
int __min_needed_to
int __max_needed_to;

These values have to be supplied in the init function of the mod-
ule. The __min_needed_from value specifies the minimum
number of bytes a character of the source character set needs. The
__max_needed_from specifies the maximum value that also
includes possible shift sequences.
The __min_needed_to and __max_needed_to values
serve the same purpose as __min_needed_from and
__max_needed_from but this time for the destination
character set.
It is crucial that these values be accurate, since otherwise the con-
version functions will have problems or not work at all.

int __stateful
This element must also be initialized by the init function. int
__stateful is nonzero if the source character set is stateful.
Otherwise, it is zero.

void *__data
This element can be used freely by the conversion functions in the
module. void *__data can be used to communicate extra in-
formation from one call to another. void *__data need not be
initialized if it is not needed at all. If void *__data element
is assigned a pointer to dynamically allocated memory (presum-

170 The GNU C Library: Application Fundamentals

ably in the init function), it has to be ensured that the end func-
tion de-allocates the memory. Otherwise, the application will leak
memory.
It is important to be aware that this data structure is shared by all
users of this specification conversion and therefore, the __data
element must not contain data specific to any particular use of the
conversion function.

Data typestruct gconv step data
This is the data structure that contains the information specific to each use of the
conversion functions.

char *__outbuf
char *__outbufend

These elements specify the output buffer for the conversion step.
The __outbuf element points to the beginning of the buffer, and
__outbufend points to the byte following the last byte in the
buffer. The conversion function must not assume anything about
the size of the buffer, but it can be safely assumed that there is
room for at least one complete character in the output buffer.
Once the conversion is finished, if the conversion is the last step,
the __outbuf element must be modified to point after the last
byte written into the buffer to signal how much output is available.
If this conversion step is not the last one, the element must not be
modified. The __outbufend element must not be modified.

int __is_last
This element is nonzero if this conversion step is the last one. This
information is necessary for the recursion. See the description of
the conversion function internals below. This element must never
be modified.

int __invocation_counter
The conversion function can use this element to see how many calls
of the conversion function already happened. Some character sets
require a certain prolog when generating output, and by comparing
this value with zero, one can find out whether it is the first call and
whether, therefore, the prolog should be emitted. This element
must never be modified.

int __internal_use
This element is another one rarely used but needed in certain situ-
ations. It is assigned a nonzero value in case the conversion func-
tions are used to implement mbsrtowcs or others like it (i.e., the
function is not used directly through the iconv interface).
This sometimes makes a difference, since it is expected that the
iconv functions are used to translate entire texts, while the

Chapter 6: Character-Set Handling 171

mbsrtowcs functions are normally used only to convert single
strings and might be used multiple times to convert entire texts.
But in this situation we would have problems complying with some
rules of the character-set specification. Some character sets require
a prolog, which must appear exactly once for an entire text. If a
number of mbsrtowcs calls are used to convert the text, only
the first call must add the prolog. However, because there is no
communication between the different calls of mbsrtowcs, the
conversion functions have no chance to find this out. The situation
is different for sequences of iconv calls, since the handle allows
access to the needed information.
The int __internal_use element is mostly used together
with __invocation_counter as follows:

if (!data->__internal_use

&& data->__invocation_counter == 0)

/* Emit prolog. */

...

This element must never be modified.

mbstate_t *__statep
The __statep element points to an object of type mbstate_
t (see Section 6.3.2 [Representing the State of the Conversion],
page 139). The conversion of a stateful character set must use the
object pointed to by __statep to store information about the
conversion state. The __statep element itself must never be
modified.

mbstate_t __state
This element must never be used directly. It is only part of this
structure to have the needed space allocated.

6.5.4.4 iconv Module Interfaces

With the knowledge about the data structures, we can now describe the con-
version function itself. To understand the interface, a bit of knowledge about the
functionality in the C library that loads the objects with the conversions is neces-
sary.

It is often the case that one conversion is used more than once (i.e., there are
several iconv_open calls for the same set of character sets during one program
run). The mbsrtowcs functions in the GNU C Library also use the iconv func-
tionality, which increases the number of uses of the same functions even more.

Because of this multiple use of conversions, the modules do not get loaded ex-
clusively for one conversion. Instead, a module once loaded can be used by an
arbitrary number of iconv or mbsrtowcs calls at the same time. The splitting
of the information between conversion-function-specific information and conver-

172 The GNU C Library: Application Fundamentals

sion data makes this possible. The last section showed the two data structures used
to do this.

This is also reflected in the interface and semantics of the functions that the
modules must provide. There are three functions, which must have the following
names:

gconv_init
The gconv_init function initializes the conversion-function-
specific data structure. This very same object is shared by all
conversions that use this conversion and, therefore, no state
information about the conversion itself must be stored in here. If a
module implements more than one conversion, the gconv_init
function will be called multiple times.

gconv_end
The gconv_end function is responsible for freeing all resources al-
located by the gconv_init function. If there is nothing to do, this
function can be missing. Special care must be taken if the module im-
plements more than one conversion and the gconv_init function
does not allocate the same resources for all conversions.

gconv This is the actual conversion function. It is called to convert one block
of text. It gets passed the conversion-step information initialized by
gconv_init and the conversion data, specific to this use of the con-
version functions.

There are three data types defined for the three module interface functions, and
these define the interface.

Data typeint (* gconv init fct) (struct gconv step *)
This specifies the interface of the initialization function of the module. It is
called exactly once for each conversion the module implements.
As explained in the description of the struct __gconv_step data structure
above, the initialization function has to initialize parts of it.

__min_needed_from
__max_needed_from
__min_needed_to
__max_needed_to

These elements must be initialized to the exact numbers of the min-
imum and maximum number of bytes used by one character in the
source and destination character sets, respectively. If the charac-
ters all have the same size, the minimum and maximum values are
the same.

__stateful
This element must be initialized to a nonzero value if the source
character set is stateful. Otherwise, it must be zero.

Chapter 6: Character-Set Handling 173

If the initialization function needs to communicate some information to the con-
version function, this communication can happen using the __data element of
the __gconv_step structure. But since this data is shared by all the conver-
sions, it must not be modified by the conversion function. The example below
shows how this can be used.

#define MIN_NEEDED_FROM 1

#define MAX_NEEDED_FROM 4

#define MIN_NEEDED_TO 4

#define MAX_NEEDED_TO 4

int

gconv_init (struct __gconv_step *step)

{

/* Determine which direction. */

struct iso2022jp_data *new_data;

enum direction dir = illegal_dir;

enum variant var = illegal_var;

int result;

if (__strcasecmp (step->__from_name, "ISO-2022-JP//") == 0)

{

dir = from_iso2022jp;

var = iso2022jp;

}

else if (__strcasecmp (step->__to_name, "ISO-2022-JP//") == 0)

{

dir = to_iso2022jp;

var = iso2022jp;

}

else if (__strcasecmp (step->__from_name, "ISO-2022-JP-2//") == 0)

{

dir = from_iso2022jp;

var = iso2022jp2;

}

else if (__strcasecmp (step->__to_name, "ISO-2022-JP-2//") == 0)

{

dir = to_iso2022jp;

var = iso2022jp2;

}

result = __GCONV_NOCONV;

if (dir != illegal_dir)

{

new_data = (struct iso2022jp_data *)

174 The GNU C Library: Application Fundamentals

malloc (sizeof (struct iso2022jp_data));

result = __GCONV_NOMEM;

if (new_data != NULL)

{

new_data->dir = dir;

new_data->var = var;

step->__data = new_data;

if (dir == from_iso2022jp)

{

step->__min_needed_from = MIN_NEEDED_FROM;

step->__max_needed_from = MAX_NEEDED_FROM;

step->__min_needed_to = MIN_NEEDED_TO;

step->__max_needed_to = MAX_NEEDED_TO;

}

else

{

step->__min_needed_from = MIN_NEEDED_TO;

step->__max_needed_from = MAX_NEEDED_TO;

step->__min_needed_to = MIN_NEEDED_FROM;

step->__max_needed_to = MAX_NEEDED_FROM + 2;

}

/* Yes, this is a stateful encoding. */

step->__stateful = 1;

result = __GCONV_OK;

}

}

return result;

}

The function first checks which conversion is wanted. The module from which
this function is taken implements four different conversions; the one that is se-
lected can be determined by comparing the names. The comparison should
always be done without paying attention to the case.
Next, a data structure, which contains the necessary information about which
conversion is selected, is allocated. The data structure struct iso2022jp_
data is locally defined since, outside the module, this data is not used at all.
If all four conversions this module supports are requested, there are four data
blocks.
The initialization of the __min_ and __max_ elements of the step-data ob-
ject is interesting. A single ISO-2022-JP character can consist of 1 to 4 bytes.

Chapter 6: Character-Set Handling 175

Therefore, the MIN_NEEDED_FROM and MAX_NEEDED_FROMmacros are de-
fined this way. The output is always the INTERNAL character set (aka UCS-4),
and therefore each character consists of exactly 4 bytes. For the conversion
from INTERNAL to ISO-2022-JP, we have to take into account that escape se-
quences might be necessary to switch the character sets. Therefore, the __max_
needed_to element for this direction gets assigned MAX_NEEDED_FROM +
2. This takes into account the 2 bytes needed for the escape sequences to signal
the switching. The asymmetry in the maximum values for the two directions
can be explained easily, when reading ISO-2022-JP text, escape sequences can
be handled alone (i.e., it is not necessary to process a real character, since the
effect of the escape sequence can be recorded in the state information). The sit-
uation is different for the other direction. Since it is in general not known which
character comes next, you cannot emit escape sequences to change the state in
advance. This means the escape sequences have to be emitted together with the
next character. Therefore, you need room for more than only the character itself.
The possible return values of the initialization function are

__GCONV_OK
The initialization succeeded.

__GCONV_NOCONV
The requested conversion is not supported in the module. This can
happen if the ‘gconv-modules’ file has errors.

__GCONV_NOMEM
Memory required to store additional information could not be al-
located.

The function called before the module is unloaded is significantly easier. It often
has nothing at all to do, in which case it can be left out completely.

Data typevoid (* gconv end fct) (struct gconv step *)
The task of this function is to free all resources allocated in the initialization
function. Therefore, only the __data element of the object pointed to by the
argument is of interest. Continuing the example from the initialization function,
the finalization function looks like this:

void

gconv_end (struct __gconv_step *data)

{

free (data->__data);

}

The most important function is the conversion function itself, which can get quite
complicated for complex character sets. But since this is not of interest here, we
will only describe a possible skeleton for the conversion function.

176 The GNU C Library: Application Fundamentals

Data typeint
(* gconv fct) (struct gconv step *, struct gconv step data
*, const char **, const char *, size t *, int)

The conversion function can be called for two basic reasons: to convert text or
to reset the state. From the description of the iconv function, it can be seen
why the flushing mode is necessary. The mode selected is determined by the
sixth argument, an integer. This argument being nonzero means that flushing is
selected.
Common to both modes is the location of the output buffer. The information
about this buffer is stored in the conversion-step data. A pointer to this infor-
mation is passed as the second argument to this function. The description of
the struct __gconv_step_data structure has more information on the
conversion-step data.
What has to be done for flushing depends on the source character set. If the
source character set is not stateful, nothing has to be done. Otherwise, the func-
tion has to emit a byte sequence to bring the state object into the initial state.
Once this has all happened, the other conversion modules in the chain of con-
versions have to get the same chance. Whether another step follows can be
determined from the __is_last element of the step data structure to which
the first parameter points.
The more interesting mode is when actual text has to be converted. The first
step in this case is to convert as much text as possible from the input buffer and
store the result in the output buffer. The start of the input buffer is determined
by the third argument, which is a pointer to a pointer variable referencing the
beginning of the buffer. The fourth argument is a pointer to the byte right after
the last byte in the buffer.
The conversion has to be performed according to the current state if the character
set is stateful. The state is stored in an object pointed to by the __statep
element of the step data (second argument). Once either the input buffer is
empty or the output buffer is full, the conversion stops. At this point, the pointer
variable referenced by the third parameter must point to the byte following the
last processed byte (i.e., if all of the input is consumed, this pointer and the
fourth parameter have the same value).
What happens now depends on whether this step is the last one. If it is the last
step, the only thing to be done is to update the __outbuf element of the step
data structure to point after the last written byte. This update gives the caller
the information on how much text is available in the output buffer. In addition,
the variable pointed to by the fifth parameter, which is of type size_t, must
be incremented by the number of characters (not bytes) that were converted in a
nonreversible way. Then, the function can return.
In case the step is not the last one, the later conversion functions have to get
a chance to do their work. Therefore, the appropriate conversion function has
to be called. The information about the functions is stored in the conversion
data structures, passed as the first parameter. This information and the step data

Chapter 6: Character-Set Handling 177

are stored in arrays, so the next element in both cases can be found by simple
pointer arithmetic:

int

gconv (struct __gconv_step *step, struct __gconv_step_data *data,

const char **inbuf, const char *inbufend, size_t *written,

int do_flush)

{

struct __gconv_step *next_step = step + 1;

struct __gconv_step_data *next_data = data + 1;

...

The next_step pointer references the next step information, and next_
data references the next data record. The call of the next function therefore
will look similar to this:

next_step->__fct (next_step, next_data, &outerr, outbuf,

written, 0)

But this is not yet all. Once the function call returns, the conversion function
might have some more to do. If the return value of the function is __GCONV_
EMPTY_INPUT, more room is available in the output buffer. Unless the input
buffer is empty, the conversion functions start all over again and process the
rest of the input buffer. If the return value is not __GCONV_EMPTY_INPUT,
something went wrong and we will have to recover from this.
A requirement for the conversion function is that the input buffer pointer (the
third argument) always point to the last character that was put in converted form
into the output buffer. This is true after the conversion performed in the current
step, but if the conversion functions deeper downstream stop prematurely, not all
characters from the output buffer are consumed and, therefore, the input buffer
pointers must be backed off to the right position.
Correcting the input buffers is easy to do if the input and output character sets
have a fixed width for all characters. In this situation, we can compute how
many characters are left in the output buffer and, therefore, can correct the in-
put buffer pointer appropriately with a similar computation. Things are getting
tricky if either character set has characters represented with variable-length byte
sequences, and it gets even more complicated if the conversion has to take care
of the state. In these cases, the conversion has to be performed once again, from
the known state before the initial conversion (i.e., if necessary the state of the
conversion has to be reset and the conversion loop has to be executed again).
The difference now is that it is known how much input must be created, and
the conversion can stop before converting the first unused character. Once this
is done, the input buffer pointers must be updated again and the function can
return.
One final thing should be mentioned. If it is necessary for the conversion to
know whether it is the first invocation (in case a prolog has to be emitted),
the conversion function should increment the __invocation_counter el-
ement of the step data structure just before returning to the caller. See the de-

178 The GNU C Library: Application Fundamentals

scription of the struct __gconv_step_data structure in Section 6.5.4.3
[iconv Module Data Structures], page 168 for more information on how this
can be used.
The return value must be one of the following values:

__GCONV_EMPTY_INPUT
All input was consumed and there is room left in the output buffer.

__GCONV_FULL_OUTPUT
No more room in the output buffer. In case this is not the last step,
this value is propagated down from the call of the next conversion
function in the chain.

__GCONV_INCOMPLETE_INPUT
The input buffer is not entirely empty, since it contains an incom-
plete character sequence.

The following example provides a framework for a conversion function. In case
a new conversion has to be written, the following is a template that can be filled
in to do the job:

int

gconv (struct __gconv_step *step, struct __gconv_step_data *data,

const char **inbuf, const char *inbufend, size_t *written,

int do_flush)

{

struct __gconv_step *next_step = step + 1;

struct __gconv_step_data *next_data = data + 1;

gconv_fct fct = next_step->__fct;

int status;

/* If the function is called with no input, we have

to reset to the initial state. The potentially partly

converted input is dropped. */

if (do_flush)

{

status = __GCONV_OK;

/* Possibly emit a byte sequence that puts the state object

into the initial state. */

/* Call the steps down the chain if there are any but only

if we successfully emitted the escape sequence. */

if (status == __GCONV_OK && ! data->__is_last)

status = fct (next_step, next_data, NULL, NULL,

written, 1);

}

else

Chapter 6: Character-Set Handling 179

{

/* We preserve the initial values of the pointer variables. */

const char *inptr = *inbuf;

char *outbuf = data->__outbuf;

char *outend = data->__outbufend;

char *outptr;

do

{

/* Remember the start value for this round. */

inptr = *inbuf;

/* The outbuf buffer is empty. */

outptr = outbuf;

/* For stateful encodings the state must be safe here. */

/* Run the conversion loop. status is set

appropriately afterwards. */

/* If this is the last step, leave the loop. There is

nothing we can do. */

if (data->__is_last)

{

/* Store information about how many bytes are

available. */

data->__outbuf = outbuf;

/* If any nonreversible conversions were performed,

add the number to *written. */

break;

}

/* Write out all output that was produced. */

if (outbuf > outptr)

{

const char *outerr = data->__outbuf;

int result;

result = fct (next_step, next_data, &outerr,

outbuf, written, 0);

if (result != __GCONV_EMPTY_INPUT)

{

180 The GNU C Library: Application Fundamentals

if (outerr != outbuf)

{

/* Reset the input buffer pointer. Here we

document the complex case. */

size_t nstatus;

/* Reload the pointers. */

*inbuf = inptr;

outbuf = outptr;

/* Possibly reset the state. */

/* Redo the conversion, but this time

the end of the output buffer is at

outerr. */

}

/* Change the status. */

status = result;

}

else

/* All the output is consumed, we can make

another run if everything was ok. */

if (status == __GCONV_FULL_OUTPUT)

status = __GCONV_OK;

}

}

while (status == __GCONV_OK);

/* We finished one use of this step. */

++data->__invocation_counter;

}

return status;

}

This information should be sufficient to write new modules. Anybody doing so
should also take a look at the available source code in the GNU C Library sources.
It contains many examples of working and optimized modules.

Chapter 7: Locales and Internationalization 181

7 Locales and Internationalization
Different countries and cultures have varying conventions for how to commu-

nicate. These conventions range from very simple ones, such as the format for
representing dates and times, to very complex ones, such as the language spoken.

Internationalization of software means programming it to be able to adapt to the
user’s favorite conventions. In ISO C, internationalization works by means of lo-
cales. Each locale specifies a collection of conventions, one convention for each
purpose. The user chooses a set of conventions by specifying a locale (via environ-
ment variables).

All programs inherit the chosen locale as part of their environment. Provided the
programs are written to obey the choice of locale, they will follow the conventions
preferred by the user.

7.1 What Effects a Locale Has
Each locale specifies conventions for several purposes, including the following:
• What multibyte-character sequences are valid, and how they are interpreted

(see Chapter 6 [Character-Set Handling], page 133)
• Classification of which characters in the local character set are considered al-

phabetic, and uppercase and lowercase conversion conventions (see Chapter 4
[Character Handling], page 79)

• The collating sequence for the local language and character set (see Section 5.6
[Collation Functions], page 109)

• Formatting of numbers and currency amounts (see Section 7.6.1.1 [Generic
Numeric Formatting Parameters], page 187)

• Formatting of dates and times (see Section 10.4.5 [Formatting Calendar Time],
page 291)

• What language to use for output, including error messages (see Chapter 11
[Message Translation], page 315)

• What language to use for user answers to yes-or-no questions (see Section 7.8
[Yes-or-No Questions], page 200)

• What language to use for more complex user input (the C library doesn’t yet
help you implement this)

Some aspects of adapting to the specified locale are handled automatically by
the library subroutines. For example, all your program needs to do in order to use
the collating sequence of the chosen locale is to use strcoll or strxfrm to
compare strings.

Other aspects of locales are beyond the comprehension of the library. For exam-
ple, the library can’t automatically translate your program’s output messages into
other languages. The only way you can support output in the user’s favorite lan-
guage is to program this more or less by hand. The C library provides functions to
handle translations for multiple languages easily.

182 The GNU C Library: Application Fundamentals

This chapter discusses the mechanism by which you can modify the current lo-
cale. The effects of the current locale on specific library functions are discussed in
more detail in the descriptions of those functions.

7.2 Choosing a Locale
The simplest way for the user to choose a locale is to set the environment variable

LANG. This specifies a single locale to use for all purposes. For example, a user
could specify a hypothetical locale named ‘espana-castellano’ to use the
standard conventions of most of Spain.

The set of locales supported depends on the operating system you are using,
and so do their names. We can’t make any promises about what locales will exist,
except for one standard locale called ‘C’ or ‘POSIX’. Later we will describe how
to construct locales.

A user also has the option of specifying different locales for different purposes—
in effect, choosing a mixture of multiple locales.

For example, the user might specify the locale ‘espana-castellano’ for
most purposes, but specify the locale ‘usa-english’ for currency formatting.
This might make sense if the user is a Spanish-speaking American, working in
Spanish, but representing monetary amounts in US dollars.

Both locales ‘espana-castellano’ and ‘usa-english’, like all locales,
would include conventions for all of the purposes to which locales apply. However,
the user can choose to use each locale for a particular subset of those purposes.

7.3 Categories of Activities That Locales Affect
The purposes that locales serve are grouped into categories, so that a user or a

program can choose the locale for each category independently. Here is a table of
categories; each name is both an environment variable that a user can set, and a
macro name that you can use as an argument to setlocale.

LC_COLLATE
This category applies to collation of strings (functions strcoll and
strxfrm) (see Section 5.6 [Collation Functions], page 109).

LC_CTYPE
This category applies to classification and conversion of characters,
and to multibyte and wide characters (see Chapter 4 [Character Han-
dling], page 79, and Chapter 6 [Character-Set Handling], page 133).

LC_MONETARY
This category applies to formatting monetary values (see
Section 7.6.1.1 [Generic Numeric Formatting Parameters], page 187).

Chapter 7: Locales and Internationalization 183

LC_NUMERIC
This category applies to formatting numeric values that are not mon-
etary (see Section 7.6.1.1 [Generic Numeric Formatting Parameters],
page 187).

LC_TIME This category applies to formatting date and time values (see Sec-
tion 10.4.5 [Formatting Calendar Time], page 291).

LC_MESSAGES
This category applies to selecting the language used in the user in-
terface for message translation (see Section 11.2 [The Uniforum Ap-
proach to Message Translation], page 325, and Section 11.1 [X/Open
Message Catalog Handling], page 315) and contains regular expres-
sions for affirmative and negative responses.

LC_ALL This is not an environment variable; it is only a macro that you can
use with setlocale to set a single locale for all purposes. Setting
this environment variable overwrites all selections by the other LC_*
variables or LANG.

LANG If this environment variable is defined, its value specifies the locale to
use for all purposes except as overridden by the variables above.

When developing the message translation functions it was felt that the function-
ality provided by the variables above is not sufficient. For example, it should be
possible to specify more than one locale name. Take a Swedish user who speaks
German better than English, and a program whose messages are output in English
by default. It should be possible to specify that the first choice of language is
Swedish, the second German, and if this also fails, to use English. This is possible
with the variable LANGUAGE. For further description of this GNU extension, see
Section 11.2.1.6 [User Influence on gettext], page 338.

7.4 How Programs Set the Locale
A C program inherits its locale environment variables when it starts up. This

happens automatically. However, these variables do not automatically control the
locale used by the library functions, because ISO C says that all programs start by
default in the standard ‘C’ locale. To use the locales specified by the environment,
you must call setlocale. Call it as follows:

setlocale (LC_ALL, "");

to select a locale based on the user choice of the appropriate environment variables.
You can also use setlocale to specify a particular locale, for general use or

for a specific category.
The symbols in this section are defined in the header file ‘locale.h’.

184 The GNU C Library: Application Fundamentals

Functionchar * setlocale (int category, const char *locale)
The function setlocale sets the current locale for category category to lo-
cale. A list of all the locales the system provides can be created by running:

locale -a

If category is LC_ALL, this specifies the locale for all purposes. The other
possible values of category specify a single purpose (see Section 7.3 [Categories
of Activities That Locales Affect], page 182).
You can also use this function to find out the current locale by passing a null
pointer as the locale argument. In this case, setlocale returns a string that
is the name of the locale currently selected for category category.
The string returned by setlocale can be overwritten by subsequent calls, so
you should make a copy of the string (see Section 5.4 [Copying and Concate-
nation], page 93) if you want to save it past any further calls to setlocale.
(The standard library is guaranteed never to call setlocale itself.)
You should not modify the string returned by setlocale. It might be the
same string that was passed as an argument in a previous call to setlocale.
One requirement is that the category must be the same in the call the string was
returned from and the call where the string is passed in as locale parameter.
When you read the current locale for category LC_ALL, the value encodes the
entire combination of selected locales for all categories. In this case, the value
is not just a single locale name. In fact, we don’t make any promises about
what it looks like. But if you specify the same locale name with LC_ALL in
a subsequent call to setlocale, it restores the same combination of locale
selections.
To be sure you can use the returned string encoding the currently selected locale
at a later time, you must make a copy of the string. It is not guaranteed that the
returned pointer remains valid over time.
When the locale argument is not a null pointer, the string returned by
setlocale reflects the newly-modified locale.
If you specify an empty string for locale, this means to read the appropriate
environment variable and use its value to select the locale for category.
If a nonempty string is given for locale, then the locale of that name is used if
possible.
If you specify an invalid locale name, setlocale returns a null pointer and
leaves the current locale unchanged.

Here is an example showing how you might use setlocale to temporarily
switch to a new locale:

#include <stddef.h>

#include <locale.h>

#include <stdlib.h>

#include <string.h>

void

Chapter 7: Locales and Internationalization 185

with_other_locale (char *new_locale,

void (*subroutine) (int),

int argument)

{

char *old_locale, *saved_locale;

/* Get the name of the current locale. */

old_locale = setlocale (LC_ALL, NULL);

/* Copy the name so it won’t be clobbered by setlocale. */

saved_locale = strdup (old_locale);

if (saved_locale == NULL)

fatal ("Out of memory");

/* Now change the locale and do some stuff with it. */

setlocale (LC_ALL, new_locale);

(*subroutine) (argument);

/* Restore the original locale. */

setlocale (LC_ALL, saved_locale);

free (saved_locale);

}

Portability Note: Some ISO C systems may define additional locale categories,
and future versions of the library will do so. For portability, assume that any symbol
beginning with ‘LC_’ might be defined in ‘locale.h’.

7.5 Standard Locales
The only locale names you can count on finding on all operating systems are

these three standard ones:

‘‘C’’ This is the standard C locale. The attributes and behavior it provides
are specified in the ISO C standard. When your program starts up, it
initially uses this locale by default.

‘‘POSIX’’
This is the standard POSIX locale. Currently, it is an alias for the
standard C locale.

‘‘’’ The empty name says to select a locale based on environment vari-
ables (see Section 7.3 [Categories of Activities That Locales Affect],
page 182).

Defining and installing named locales is normally a responsibility of the system
administrator at your site (or the person who installed the GNU C Library). It is also
possible for the user to create private locales. All this will be discussed later when
describing the tool for such creation.

186 The GNU C Library: Application Fundamentals

If your program needs to use something other than the ‘C’ locale, it will be more
portable if you use whatever locale the user specifies with the environment, rather
than trying to specify some nonstandard locale explicitly by name. Remember,
different machines might have different sets of locales installed.

7.6 Accessing Locale Information
There are several ways to access locale information. The simplest way is to let

the C library itself do the work. Several of the functions in this library implicitly ac-
cess the locale data, and use what information is provided by the currently selected
locale. This is how the locale model is meant to work normally.

As an example, take the strftime function, which is meant to nicely for-
mat date and time information (see Section 10.4.5 [Formatting Calendar Time],
page 291). Part of the standard information contained in the LC_TIME category
is the names of the months. Instead of requiring the programmer to take care of
providing the translations, the strftime function does this all by itself. %A in the
format string is replaced by the appropriate weekday name of the locale currently
selected by LC_TIME. This is an easy example, and wherever possible, functions
do things automatically in this way.

But there are quite often situations when there is simply no function to perform
the task, or it is simply not possible to do the work automatically. For these cases it
is necessary to access the information in the locale directly. To do this, the C library
provides two functions: localeconv and nl_langinfo. The former is part of
ISO C and is therefore portable, but has a brain-damaged interface. The second is
part of the Unix interface and is portable in as far as the system follows the Unix
standards.

7.6.1 localeconv: “It is portable, but . . . ”

Together with the setlocale function, the ISO C people invented the
localeconv function. It is a masterpiece of poor design. It is expensive to
use, not extendable, and not generally usable, since it provides access to only
LC_MONETARY and LC_NUMERIC related information. Nevertheless, if it is
applicable to a given situation, it should be used since it is very portable. The
function strfmon formats monetary amounts according to the selected locale
using this information.

Functionstruct lconv * localeconv (void)
The localeconv function returns a pointer to a structure whose components
contain information about how numeric and monetary values should be format-
ted in the current locale.
You should not modify the structure or its contents. The structure might be
overwritten by subsequent calls to localeconv, or by calls to setlocale,
but no other function in the library overwrites this value.

Chapter 7: Locales and Internationalization 187

Data Typestruct lconv
localeconv’s return value is of this data type. Its elements are described in
the following subsections.

If a member of the structure struct lconv has type char, and the value is
CHAR_MAX, it means that the current locale has no value for that parameter.

7.6.1.1 Generic Numeric Formatting Parameters

These are the standard members of struct lconv; there may be others.

char *decimal_point
char *mon_decimal_point

These are the decimal-point separators used in formatting nonmone-
tary and monetary quantities, respectively. In the ‘C’ locale, the value
of decimal_point is ".", and the value of mon_decimal_
point is "".

char *thousands_sep
char *mon_thousands_sep

These are the separators used to delimit groups of digits to the left of
the decimal point in formatting nonmonetary and monetary quantities,
respectively. In the ‘C’ locale, both members have a value of "" (the
empty string).

char *grouping
char *mon_grouping

These are strings that specify how to group the digits to the left of
the decimal point. grouping applies to nonmonetary quantities,
and mon_grouping applies to monetary quantities. Use either
thousands_sep or mon_thousands_sep to separate the digit
groups.
Each member of these strings is to be interpreted as an integer value
of type char. Successive numbers (from left to right) give the sizes
of successive groups (from right to left, starting at the decimal point.)
The last member is either 0, in which case the previous member is
used over and over again for all the remaining groups, or CHAR_MAX,
in which case there is no more grouping—or, put another way, any
remaining digits form one large group without separators.
For example, if grouping is "\04\03\02", the correct group-
ing for the number 123456787654321 is ‘12’, ‘34’, ‘56’, ‘78’,
‘765’, ‘4321’. This uses a group of four digits at the end, preceded
by a group of three digits, preceded by groups of two digits (as many
as needed). With a separator of ‘,’, the number would be printed as
‘12,34,56,78,765,4321’.
A value of "\03" indicates repeated groups of three digits, as nor-
mally used in the United States.

188 The GNU C Library: Application Fundamentals

In the standard ‘C’ locale, both grouping and mon_grouping
have a value of "". This value specifies no grouping at all.

char int_frac_digits
char frac_digits

These are small integers indicating how many fractional digits (to the
right of the decimal point) should be displayed in a monetary value in
international and local formats, respectively. (Most often, both mem-
bers have the same value.)
In the standard ‘C’ locale, both of these members have the value
CHAR_MAX, meaning “unspecified”. The ISO standard doesn’t say
what to do when you find this value; we recommend printing no frac-
tional digits. (This locale also specifies the empty string for mon_
decimal_point, so printing any fractional digits would be con-
fusing!)

7.6.1.2 Printing the Currency Symbol

These members of the struct lconv structure specify how to print the symbol
to identify a monetary value—the international analog of ‘$’ for US dollars.

Each country has two standard currency symbols. The local currency symbol is
used commonly within the country, while the international currency symbol is used
internationally to refer to that country’s currency when it is necessary to indicate
the country unambiguously.

For example, many countries use the dollar as their monetary unit, and when
dealing with international currencies it’s important to specify that one is dealing
with (say) Canadian dollars instead of US dollars or Australian dollars. But when
the context is known to be Canada, there is no need to make this explicit—dollar
amounts are implicitly assumed to be in Canadian dollars.

char *currency_symbol
The local currency symbol for the selected locale.
In the standard ‘C’ locale, this member has a value of "" (the empty
string), meaning “unspecified”. The ISO standard doesn’t say what
to do when you find this value; we recommend you simply print the
empty string as you would print any other string pointed to by this
variable.

char *int_curr_symbol
The international currency symbol for the selected locale.
The value of int_curr_symbol should normally consist of a
three-letter abbreviation determined by the international standard ISO
4217 Codes for the Representation of Currency and Funds, followed
by a one-character separator (often a space).
In the standard ‘C’ locale, this member has a value of "" (the empty
string), meaning “unspecified”. We recommend you simply print the

Chapter 7: Locales and Internationalization 189

empty string as you would print any other string pointed to by this
variable.

char p_cs_precedes
char n_cs_precedes
char int_p_cs_precedes
char int_n_cs_precedes

These members are 1 if the currency_symbol or int_curr_
symbol strings should precede the value of a monetary amount,
or 0 if the strings should follow the value. The p_cs_precedes
and int_p_cs_precedes members apply to positive amounts
(or zero), and the n_cs_precedes and int_n_cs_precedes
members apply to negative amounts.

In the standard ‘C’ locale, all of these members have a value of CHAR_
MAX, meaning “unspecified”. The ISO standard doesn’t say what to
do when you find this value. We recommend printing the currency
symbol before the amount, which is right for most countries. In other
words, treat all nonzero values alike in these members.

The members with the int_ prefix apply to the int_curr_
symbol while the other two apply to currency_symbol.

char p_sep_by_space
char n_sep_by_space
char int_p_sep_by_space
char int_n_sep_by_space

These members are 1 if a space should appear between the
currency_symbol or int_curr_symbol strings and the
amount, or 0 if no space should appear. The p_sep_by_space and
int_p_sep_by_space members apply to positive amounts (or
zero), and the n_sep_by_space and int_n_sep_by_space
members apply to negative amounts.

In the standard ‘C’ locale, all of these members have a value of CHAR_
MAX, meaning “unspecified”. The ISO standard doesn’t say what you
should do when you find this value; we suggest you treat it as 1 (print
a space). In other words, treat all nonzero values alike in these mem-
bers.

The members with the int_ prefix apply to the int_curr_
symbol while the other two apply to currency_symbol. There
is one special case with the int_curr_symbol, though. Since all
legal values contain a space at the end the string one either adds this
space with printf (if the currency symbol must appear in front and
must be separated) or one has to avoid printing this character at all
(especially when at the end of the string).

190 The GNU C Library: Application Fundamentals

7.6.1.3 Printing the Sign of a Monetary Amount

These members of the struct lconv structure specify how to print the sign
(if any) of a monetary value.

char *positive_sign
char *negative_sign

These are strings used to indicate positive (or zero) and negative mon-
etary quantities, respectively.
In the standard ‘C’ locale, both of these members have a value of ""
(the empty string), meaning “unspecified”.
The ISO standard doesn’t say what to do when you find this value;
we recommend printing positive_sign as you find it, even if it
is empty. For a negative value, print negative_sign as you find it
unless both it and positive_sign are empty, in which case print
‘-’ instead. (Failing to indicate the sign at all seems rather unreason-
able.)

char p_sign_posn
char n_sign_posn
char int_p_sign_posn
char int_n_sign_posn

These members are small integers that indicate how to position the
sign for nonnegative and negative monetary quantities, respectively.
(The string used by the sign is what was specified with positive_
sign or negative_sign.) The possible values are as follows:

0 The currency symbol and quantity should be surrounded
by parentheses.

1 Print the sign string before the quantity and currency
symbol.

2 Print the sign string after the quantity and currency sym-
bol.

3 Print the sign string right before the currency symbol.

4 Print the sign string right after the currency symbol.

CHAR_MAX
“Unspecified”. Both members have this value in the
standard ‘C’ locale.

The ISO standard doesn’t say what you should do when the value is
CHAR_MAX. We recommend you print the sign after the currency
symbol.
The members with the int_ prefix apply to the int_curr_
symbol while the other two apply to currency_symbol.

Chapter 7: Locales and Internationalization 191

7.6.2 Pinpoint Access to Locale Data

When writing the X/Open Portability Guide,1 the authors realized that the
localeconv function is not enough to provide reasonable access to locale in-
formation. The information that was meant to be available in the locale (as later
specified in the POSIX.1 standard) requires more ways to access it. Therefore, the
nl_langinfo function was introduced.

Functionchar * nl langinfo (nl_item item)
The nl_langinfo function can be used to access individual elements of the
locale categories. Unlike the localeconv function, which returns all the in-
formation, nl_langinfo lets the caller select what information it requires.
This is very fast and it is not a problem to call this function multiple times.
A second advantage is that in addition to the numeric and monetary formatting
information, information from the LC_TIME and LC_MESSAGES categories is
available.
The type nl_type is defined in ‘nl_types.h’. The argument item is a
numeric value defined in the header ‘langinfo.h’. The X/Open standard
defines the following values:

CODESET nl_langinfo returns a string with the name of the coded char-
acter set used in the selected locale.

ABDAY_1
ABDAY_2
ABDAY_3
ABDAY_4
ABDAY_5
ABDAY_6
ABDAY_7 nl_langinfo returns the abbreviated weekday name. ABDAY_

1 corresponds to Sunday.

DAY_1
DAY_2
DAY_3
DAY_4
DAY_5
DAY_6
DAY_7 Similar to ABDAY_1, etc., but here the return value is the unabbre-

viated weekday name.

1 X/Open Company, X/Open Portability Guide, Issue 4, Version 2 (Reading, UK: X/Open Company,
Ltd., 1994).

192 The GNU C Library: Application Fundamentals

ABMON_1
ABMON_2
ABMON_3
ABMON_4
ABMON_5
ABMON_6
ABMON_7
ABMON_8
ABMON_9
ABMON_10
ABMON_11
ABMON_12

The return value is the abbreviated name of the month. ABMON_1
corresponds to January.

MON_1
MON_2
MON_3
MON_4
MON_5
MON_6
MON_7
MON_8
MON_9
MON_10
MON_11
MON_12 Similar to ABMON_1, etc., but here the month names are not ab-

breviated. Here the first value MON_1 also corresponds to January.

AM_STR
PM_STR The return values are strings that can be used in the representation

of time as an hour from 1 to 12 plus an a.m. or p.m. specifier.
In locales that do not use this time representation, these strings
might be empty, in which case the a.m./p.m. format cannot be
used at all.

D_T_FMT The return value can be used as a format string for strftime to
represent time and date in a locale-specific way.

D_FMT The return value can be used as a format string for strftime to
represent a date in a locale-specific way.

T_FMT The return value can be used as a format string for strftime to
represent time in a locale-specific way.

T_FMT_AMPM
The return value can be used as a format string for strftime to
represent time in the a.m./p.m. format.

Chapter 7: Locales and Internationalization 193

If the a.m./p.m. format does not make any sense for the selected
locale, the return value might be the same as the one for T_FMT.

ERA The return value represents the era used in the current locale.
Most locales do not define this value. An example of a locale that
does define this value is the Japanese locale. In Japan, the tradi-
tional representation of dates includes the name of the era corre-
sponding to the then-emperor’s reign.
Normally it should not be necessary to use this value directly.
Specifying the E modifier in their format strings causes the
strftime functions to use this information. The format of
the returned string is not specified, and therefore you should not
assume knowledge of it on different systems.

ERA_YEAR
The return value gives the year in the relevant era of the locale. As
for ERA, it should not be necessary to use this value directly.

ERA_D_T_FMT
This return value can be used as a format string for strftime to
represent dates and times in a locale-specific era-based way.

ERA_D_FMT
This return value can be used as a format string for strftime to
represent a date in a locale-specific era-based way.

ERA_T_FMT
This return value can be used as a format string for strftime to
represent time in a locale-specific era-based way.

ALT_DIGITS
The return value is a representation of up to 100 values used to
represent the values 0 to 99. As for ERA, this value is not intended
to be used directly, but instead indirectly through the strftime
function. When the modifier O is used in a format that would oth-
erwise use numerals to represent hours, minutes, seconds, week-
days, months, or weeks, the appropriate value for the locale is used
instead.

INT_CURR_SYMBOL
This is the same as the value returned by localeconv in the
int_curr_symbol element of the struct lconv.

CURRENCY_SYMBOL
CRNCYSTR

This is the same as the value returned by localeconv in the
currency_symbol element of the struct lconv.
CRNCYSTR is a deprecated alias still required by Unix98.

194 The GNU C Library: Application Fundamentals

MON_DECIMAL_POINT
This is the same as the value returned by localeconv in the
mon_decimal_point element of the struct lconv.

MON_THOUSANDS_SEP
This is the same as the value returned by localeconv in the
mon_thousands_sep element of the struct lconv.

MON_GROUPING
This is the same as the value returned by localeconv in the
mon_grouping element of the struct lconv.

POSITIVE_SIGN
This is the same as the value returned by localeconv in the
positive_sign element of the struct lconv.

NEGATIVE_SIGN
This is the same as the value returned by localeconv in the
negative_sign element of the struct lconv.

INT_FRAC_DIGITS
This is the same as the value returned by localeconv in the
int_frac_digits element of the struct lconv.

FRAC_DIGITS
This is the same as the value returned by localeconv in the
frac_digits element of the struct lconv.

P_CS_PRECEDES
This is the same as the value returned by localeconv in the
p_cs_precedes element of the struct lconv.

P_SEP_BY_SPACE
This is the same as the value returned by localeconv in the
p_sep_by_space element of the struct lconv.

N_CS_PRECEDES
This is the same as the value returned by localeconv in the
n_cs_precedes element of the struct lconv.

N_SEP_BY_SPACE
This is the same as the value returned by localeconv in the
n_sep_by_space element of the struct lconv.

P_SIGN_POSN
This is the same as the value returned by localeconv in the
p_sign_posn element of the struct lconv.

N_SIGN_POSN
This is the same as the value returned by localeconv in the
n_sign_posn element of the struct lconv.

Chapter 7: Locales and Internationalization 195

INT_P_CS_PRECEDES
This is the same as the value returned by localeconv in the
int_p_cs_precedes element of the struct lconv.

INT_P_SEP_BY_SPACE
This is the same as the value returned by localeconv in the
int_p_sep_by_space element of the struct lconv.

INT_N_CS_PRECEDES
This is the same as the value returned by localeconv in the
int_n_cs_precedes element of the struct lconv.

INT_N_SEP_BY_SPACE
This is the same as the value returned by localeconv in the
int_n_sep_by_space element of the struct lconv.

INT_P_SIGN_POSN
This is the same as the value returned by localeconv in the
int_p_sign_posn element of the struct lconv.

INT_N_SIGN_POSN
This is the same as the value returned by localeconv in the
int_n_sign_posn element of the struct lconv.

DECIMAL_POINT
RADIXCHAR

This is the same as the value returned by localeconv in the
decimal_point element of the struct lconv.
The name RADIXCHAR is a deprecated alias still used in Unix98.

THOUSANDS_SEP
THOUSEP This is the same as the value returned by localeconv in the

thousands_sep element of the struct lconv.
The name THOUSEP is a deprecated alias still used in Unix98.

GROUPING
This is the same as the value returned by localeconv in the
grouping element of the struct lconv.

YESEXPR The return value is a regular expression that can be used with the
regex function to recognize a positive response to a yes-or-no
question. The GNU C Library provides the rpmatch function for
easier handling in applications.

NOEXPR The return value is a regular expression that can be used with the
regex function to recognize a negative response to a yes-or-no
question.

196 The GNU C Library: Application Fundamentals

YESSTR The return value is a locale-specific translation of the positive re-
sponse to a yes-or-no question.

Using this symbol or its value is deprecated, since it is a very spe-
cial case of message translation and is better handled by the mes-
sage translation functions (see Chapter 11 [Message Translation],
page 315).

NOSTR The return value is a locale-specific translation of the negative re-
sponse to a yes-or-no question. Use of this symbol or its value
is deprecated in the same fashion as YESSTR. Instead, message
translation should be used (see Chapter 11 [Message Translation],
page 315).

The file ‘langinfo.h’ defines a many more symbols, but none of them are
official. Using them is not portable, and the format of the return values might
change. Therefore, we recommend you do not use them.
The return value for any valid argument can be used for strftime in all
situations (with the possible exception of the a.m. and p.m. time-formatting
codes). If the user has not selected any locale for the appropriate category, nl_
langinfo returns the information from the "C" locale. It is therefore possible
to use this function as shown in the example below.
If the argument item is not valid, a pointer to an empty string is returned.

An example of nl_langinfo usage is a function that has to print a given date
and time in a locale-specific way. At first you might think that, since strftime in-
ternally uses the locale information, writing something like the following is enough:

size_t

i18n_time_n_data (char *s, size_t len, const struct tm *tp)

{

return strftime (s, len, "%X %D", tp);

}

The format contains no weekday or month names and therefore is internation-
ally usable. This is incorrect. The output produced is something like "hh:mm:ss
MM/DD/YY". This format is only recognizable in the United States. Other coun-
tries use different formats. Therefore, the function should be rewritten like this:

size_t

i18n_time_n_data (char *s, size_t len, const struct tm *tp)

{

return strftime (s, len, nl_langinfo (D_T_FMT), tp);

}

Now it uses the date and time format of the locale selected when the program
runs. If the user selects the locale correctly, there should never be a misunderstand-
ing over the time and date format.

Chapter 7: Locales and Internationalization 197

7.7 A Dedicated Function to Format Numbers
We have seen that the structure returned by localeconv as well as the values

given to nl_langinfo allow you to retrieve the various pieces of locale-specific
information to format numbers and monetary amounts. We have also seen that the
underlying rules are quite complex.

Therefore, the X/Open standards introduce a function that uses such locale in-
formation, making it easier for the user to format numbers according to these rules.

Functionssize_t strfmon (char *s, size_t maxsize, const char
*format, ...)

The strfmon function is similar to the strftime function in that it takes a
buffer, its size, a format string and values to write into the buffer as text in a
form specified by the format string. Like strftime, the function also returns
the number of bytes written into the buffer.
There are two differences: strfmon can take more than one argument, and the
format specification is different. Like strftime, the format string consists of
normal text, which is output as is, and format specifiers, which are indicated by
a ‘%’. Immediately after the ‘%’, you can optionally specify various flags and
formatting information before the main formatting character, in a similar way to
printf:

• Immediately following the ‘%’ there can be one or more of the following
flags:

‘=f ’ The single-byte character f is used for this field as the numeric
fill character. By default, this character is a space character.
Filling with this character is only performed if a left precision
is specified. It is not just to fill to the given field width.

‘ˆ’ The number is printed without grouping the digits according
to the rules of the current locale. By default, grouping is en-
abled.

‘+’, ‘(’ At most one of these flags can be used. They select which
format to represent the sign of a currency amount. By de-
fault, and if ‘+’ is given, the locale equivalent of +/− is used.
If ‘(’ is given, negative amounts are enclosed in parenthe-
ses. The exact format is determined by the values of the LC_
MONETARY category of the locale selected at program run
time.

‘!’ The output will not contain the currency symbol.

‘-’ The output will be formatted left-justified instead of right-
justified if it does not fill the entire field width.

The next part of a specification is an optional field width. If no width is specified,
0 is taken. During output, the function first determines how much space is
required. If it requires at least as many characters as given by the field width, it

198 The GNU C Library: Application Fundamentals

is output using as much space as necessary. Otherwise, it is extended to use the
full width by filling with the space character. The presence or absence of the ‘-’
flag determines the side at which such padding occurs. If present, the spaces are
added at the right, making the output left-justified, and vice versa.
So far the format looks familiar, being similar to the printf and strftime
formats. However, the next two optional fields introduce something new. The
first one is a ‘#’ character followed by a decimal digit string. The value of the
digit string specifies the number of digit positions to the left of the decimal point
(or equivalent). This does not include the grouping character when the ‘ˆ’ flag
is not given. If the space needed to print the number does not fill the whole
width, the field is padded at the left side with the fill character, which can be
selected using the ‘=’ flag and by default is a space. For example, if the field
width is selected as 6 and the number is 123, the fill character is ‘*’, and the
result will be ‘***123’.
The second optional field starts with a ‘.’ (period) and consists of another dec-
imal digit string. Its value describes the number of characters printed after the
decimal point. The default is selected from the current locale (frac_digits,
int_frac_digits; see Section 7.6.1.1 [Generic Numeric Formatting Pa-
rameters], page 187). If the exact representation needs more digits than given
by the field width, the displayed value is rounded. If the number of fractional
digits is selected to be zero, no decimal point is printed.
As a GNU extension, the strfmon implementation in the GNU libc allows an
optional ‘L’ next as a format modifier. If this modifier is given, the argument is
expected to be a long double instead of a double value.
Finally, the last component is a format specifier. There are three specifiers de-
fined:

‘i’ Use the locale’s rules for formatting an international currency
value.

‘n’ Use the locale’s rules for formatting a national currency value.

‘%’ Place a ‘%’ in the output. There must be no flag, width specifier or
modifier given; only ‘%%’ is allowed.

As for printf, the function reads the format string from left to right and uses
the values passed to the function following the format string. The values are
expected to be either of type double or long double, depending on the
presence of the modifier ‘L’. The result is stored in the buffer pointed to by s.
At most maxsize characters are stored.
The return value of the function is the number of characters stored in s, including
the terminating NULL byte. If the number of characters stored would exceed
maxsize, the function returns −1 and the content of the buffer s is unspecified.
In this case errno is set to E2BIG.

A few examples should make clear how the function works. It is assumed that
all the following pieces of code are executed in a program that uses the US locale
(en_US). The simplest form of the format is this:

Chapter 7: Locales and Internationalization 199

strfmon (buf, 100, "@%n@%n@%n@", 123.45, -567.89, 12345.678);

The output produced is
"@$123.45@-$567.89@$12,345.68@"

We can notice several things here. First, the widths of the output numbers are
different, since we have not specified a width in the format string. Second, the third
number is printed using thousands separators. The thousands separator for the en_
US locale is a comma. The number is also rounded. The number .678 is rounded to
.68 since the format does not specify a precision and the default value in the locale
is 2. Finally, note that the national currency symbol is printed since ‘%n’ was used,
not ‘i’. The next example shows how we can align the output:

strfmon (buf, 100, "@%=*11n@%=*11n@%=*11n@", 123.45, -567.89, 12345.678);

The output this time is
"@ $123.45@ -$567.89@ $12,345.68@"

Two things stand out. First, all fields have the same width (eleven characters)
since this is the width given in the format, and since no number required more
characters to be printed. The second important point is that the fill character is not
used. This is correct since the white space was not used to achieve a precision given
by a ‘#’ modifier, but instead to fill to the given width. The difference becomes
obvious if we now add a width specification:

strfmon (buf, 100, "@%=*11#5n@%=*11#5n@%=*11#5n@",

123.45, -567.89, 12345.678);

The output is
"@ $***123.45@-$***567.89@ $12,456.68@"

Here we can see that all the currency symbols are now aligned, and that the space
between the currency sign and the number is filled with the selected fill character.
Although the width is selected to be 5 and 123.45 has 3 digits left of the decimal
point, the space is filled with 3 asterisks. This is correct since, as explained above,
the width does not include the positions used to store thousands separators. One
last example should explain the remaining functionality:

strfmon (buf, 100, "@%=0(16#5.3i@%=0(16#5.3i@%=0(16#5.3i@",

123.45, -567.89, 12345.678);

This rather complex format string produces the following output:
"@ USD 000123,450 @(USD 000567.890)@ USD 12,345.678 @"

The most noticeable change is the alternative way of representing negative num-
bers. In financial circles this is often done using parentheses, and this is what the
‘(’ flag selected. The fill character is now ‘0’. This ‘0’ character is not regarded
as a numeric zero, and therefore the first and second numbers are not printed using
a thousands separator. Since we used the format specifier ‘i’ instead of ‘n’, the
international form of the currency symbol is used. This is a four-letter string, in
this case "USD ". The last point is that since the precision right of the decimal
point is selected to be three, the first and second numbers are printed with an extra
zero at the end and the third number is printed without rounding.

200 The GNU C Library: Application Fundamentals

7.8 Yes-or-No Questions
Some non-GUI programs ask a yes-or-no question. If the messages (especially

the questions) are translated into foreign languages, be sure that you localize the
answers too. It would be very bad habit to ask a question in one language and
request the answer in another, often English.

The GNU C Library contains rpmatch to give applications easy access to the
corresponding locale definitions.

Functionint rpmatch (const char *response)
The function rpmatch checks the string in response to see whether it is a cor-
rect yes-or-no answer and if yes, which one. The check uses the YESEXPR and
NOEXPR data in the LC_MESSAGES category of the currently selected locale.
The return value is as follows:

1 The user entered an affirmative answer.

0 The user entered a negative answer.

-1 The answer matched neither the YESEXPR nor the NOEXPR regu-
lar expression.

This function is not standardized, but is available in GNU libc and at least also
in the IBM AIX library.

This function would normally be used like this:
...

/* Use a safe default. */

_Bool doit = false;

fputs (gettext ("Do you really want to do this? "), stdout);

fflush (stdout);

/* Prepare the getline call. */

line = NULL;

len = 0;

while (getline (&line, &len, stdout) >= 0)

{

/* Check the response. */

int res = rpmatch (line);

if (res >= 0)

{

/* We got a definitive answer. */

if (res > 0)

doit = true;

break;

}

}

Chapter 7: Locales and Internationalization 201

/* Free what getline allocated. */

free (line);

Note that the loop continues until a read error is detected or until a definitive
(positive or negative) answer is read.

202 The GNU C Library: Application Fundamentals

Chapter 8: Mathematics 203

8 Mathematics
This chapter contains information about functions for performing mathematical

computations, such as trigonometric functions. Most of these functions have pro-
totypes declared in the header file ‘math.h’. The complex-valued functions are
defined in ‘complex.h’.

All mathematical functions that take a floating-point argument have three vari-
ants, one each for double, float and long double arguments. The double
versions are mostly defined in ISO C89. The float and long double versions
are from the numeric extensions to C included in ISO C99.

Which of the three versions of a function should be used depends on the situation.
For most calculations, the float functions are the fastest. On the other hand, the
long double functions have the highest precision. double is somewhere in
between. It is usually wise to pick the narrowest type that can accommodate your
data. Not all machines have a distinct long double type; it may be the same as
double.

8.1 Predefined Mathematical Constants
The header ‘math.h’ defines several useful mathematical constants. All values

are defined as preprocessor macros starting with M_. The values provided are

M_E The base of natural logarithms

M_LOG2E The logarithm to base 2 of M_E

M_LOG10E
The logarithm to base 10 of M_E

M_LN2 The natural logarithm of 2

M_LN10 The natural logarithm of 10

M_PI Pi, the ratio of a circle’s circumference to its diameter

M_PI_2 Pi divided by two

M_PI_4 Pi divided by four

M_1_PI The reciprocal of pi (1/pi)

M_2_PI Two times the reciprocal of pi

M_2_SQRTPI
Two times the reciprocal of the square root of pi

M_SQRT2 The square root of two

204 The GNU C Library: Application Fundamentals

M_SQRT1_2
The reciprocal of the square root of two (also the square root of 1/2)

These constants come from the Unix98 standard and were also available
in 4.4BSD; therefore they are only defined if _BSD_SOURCE or _XOPEN_
SOURCE=500 or a more general feature-select macro is defined. The default
set of features includes these constants (see Section 1.3.4 [Feature-Test Macros],
page 8).

All values are of type double. As an extension, the GNU C library also defines
these constants with type long double. The long double macros have a low-
ercase ‘l’ appended to their names: M_El, M_PIl, and so forth. These are only
available if _GNU_SOURCE is defined.

Some programs use a constant named PI that has the same value as M_PI. This
constant is not standard; it may have appeared in some old AT&T headers, and
is mentioned in Stroustrup’s book on C++. It infringes on the user’s name space,
so the GNU C Library does not define it. Fixing programs written to expect it is
simple; replace PI with M_PI throughout, or put ‘-DPI=M_PI’ on the compiler
command line.

8.2 Trigonometric Functions
These are the familiar sin, cos and tan functions. The arguments to all of

these functions are in units of radians; recall that pi radians equals 180 degrees.
The math library normally defines M_PI to a double approximation of pi. If

strict ISO and/or POSIX compliance are requested, this constant is not defined, but
you can easily define it yourself:

#define M_PI 3.14159265358979323846264338327

You can also compute the value of pi with the expression acos (-1.0).

Functiondouble sin (double x)
Functionfloat sinf (float x)
Functionlong double sinl (long double x)

These functions return the sine of x, where x is given in radians. The return
value is in the range -1 to 1.

Functiondouble cos (double x)
Functionfloat cosf (float x)
Functionlong double cosl (long double x)

These functions return the cosine of x, where x is given in radians. The return
value is in the range -1 to 1.

Functiondouble tan (double x)
Functionfloat tanf (float x)
Functionlong double tanl (long double x)

These functions return the tangent of x, where x is given in radians.

Chapter 8: Mathematics 205

Mathematically, the tangent function has singularities at odd multiples of pi/2.
If the argument x is too close to one of these singularities, tan will signal
overflow.

In many applications where sin and cos are used, the sine and cosine of the
same angle are needed at the same time. It is more efficient to compute them
simultaneously, so the library provides a function to do that.

Functionvoid sincos (double x, double *sinx, double *cosx)
Functionvoid sincosf (float x, float *sinx, float *cosx)
Functionvoid sincosl (long double x, long double *sinx, long

double *cosx)
These functions return the sine of x in *sinx and the cosine of x in *cos , where
x is given in radians. Both values, *sinx and *cosx, are in the range of -1 to 1.
This function is a GNU extension. Portable programs should be prepared to cope
with its absence.

ISO C99 defines variants of the trig functions that work on complex numbers.
The GNU C Library provides these functions, but they are only useful if your com-
piler supports the new complex types defined by the standard. (As of this writing,
GCC supports complex numbers, but there are bugs in the implementation.)

Functioncomplex double csin (complex double z)
Functioncomplex float csinf (complex float z)
Functioncomplex long double csinl (complex long double z)

These functions return the complex sine of z. The mathematical definition of
the complex sine is

sin(z) =
1
2i

(ezi − e−zi)

Functioncomplex double ccos (complex double z)
Functioncomplex float ccosf (complex float z)
Functioncomplex long double ccosl (complex long double z)

These functions return the complex cosine of z. The mathematical definition of
the complex cosine is

cos(z) =
1
2

(ezi + e−zi)

Functioncomplex double ctan (complex double z)
Functioncomplex float ctanf (complex float z)
Functioncomplex long double ctanl (complex long double z)

These functions return the complex tangent of z. The mathematical definition
of the complex tangent is

206 The GNU C Library: Application Fundamentals

tan(z) = −i · e
zi − e−zi

ezi + e−zi

The complex tangent has poles at pi/2 + 2n, where n is an integer. ctan may
signal overflow if z is too close to a pole.

8.3 Inverse Trigonometric Functions
These are the usual arc sine, arc cosine and arc tangent functions, which are the

inverses of the sine, cosine and tangent functions respectively.

Functiondouble asin (double x)
Functionfloat asinf (float x)
Functionlong double asinl (long double x)

These functions compute the arc sine of x—that is, the value whose sine is
x. The value is in units of radians. Mathematically, there are infinitely many
such values; the one actually returned is the one between -pi/2 and pi/2
(inclusive).
The arc sine function is defined mathematically only over the domain -1 to 1.
If x is outside the domain, asin signals a domain error.

Functiondouble acos (double x)
Functionfloat acosf (float x)
Functionlong double acosl (long double x)

These functions compute the arc cosine of x—the value whose cosine is x. The
value is in units of radians. Mathematically, there are infinitely many such val-
ues; the one actually returned is the one between 0 and pi (inclusive).
The arc cosine function is defined mathematically only over the domain -1 to
1. If x is outside the domain, acos signals a domain error.

Functiondouble atan (double x)
Functionfloat atanf (float x)
Functionlong double atanl (long double x)

These functions compute the arc tangent of x—the value whose tangent is x.
The value is in units of radians. Mathematically, there are infinitely many such
values; the one actually returned is the one between -pi/2 and pi/2 (inclu-
sive).

Functiondouble atan2 (double y, double x)
Functionfloat atan2f (float y, float x)
Functionlong double atan2l (long double y, long double x)

This function computes the arc tangent of y/x, but the signs of both arguments
are used to determine the quadrant of the result, and x is permitted to be zero.
The return value is given in radians and is in the range -pi to pi, inclusive.

Chapter 8: Mathematics 207

If x and y are coordinates of a point in the plane, atan2 returns the signed an-
gle between the line from the origin to that point and the x-axis. Thus, atan2
is useful for converting Cartesian coordinates to polar coordinates. To compute
the radial coordinate, use hypot (see Section 8.4 [Exponentiation and Loga-
rithms], page 207).
If both x and y are zero, atan2 returns zero.

ISO C99 defines complex versions of the inverse trig functions.

Functioncomplex double casin (complex double z)
Functioncomplex float casinf (complex float z)
Functioncomplex long double casinl (complex long double z)

These functions compute the complex arc sine of z—the value whose sine is z.
The value returned is in radians.
Unlike the real-valued functions, casin is defined for all values of z.

Functioncomplex double cacos (complex double z)
Functioncomplex float cacosf (complex float z)
Functioncomplex long double cacosl (complex long double z)

These functions compute the complex arc cosine of z—the value whose cosine
is z. The value returned is in radians.
Unlike the real-valued functions, cacos is defined for all values of z.

Functioncomplex double catan (complex double z)
Functioncomplex float catanf (complex float z)
Functioncomplex long double catanl (complex long double z)

These functions compute the complex arc tangent of z—the value whose tangent
is z. The value is in units of radians.

8.4 Exponentiation and Logarithms
Functiondouble exp (double x)
Functionfloat expf (float x)
Functionlong double expl (long double x)

These functions compute e (the base of natural logarithms) raised to the power
x.
If the magnitude of the result is too large to be representable, exp signals over-
flow.

Functiondouble exp2 (double x)
Functionfloat exp2f (float x)
Functionlong double exp2l (long double x)

These functions compute 2 raised to the power x. Mathematically, exp2 (x)
is the same as exp (x * log (2)).

208 The GNU C Library: Application Fundamentals

Functiondouble exp10 (double x)
Functionfloat exp10f (float x)
Functionlong double exp10l (long double x)
Functiondouble pow10 (double x)
Functionfloat pow10f (float x)
Functionlong double pow10l (long double x)

These functions compute 10 raised to the power x. Mathematically, exp10
(x) is the same as exp (x * log (10)).
These functions are GNU extensions. The name exp10 is preferred, since it is
analogous to exp and exp2.

Functiondouble log (double x)
Functionfloat logf (float x)
Functionlong double logl (long double x)

These functions compute the natural logarithm of x. exp (log (x)) equals x,
exactly in mathematics and approximately in C.
If x is negative, log signals a domain error. If x is zero, it returns negative
infinity; if x is too close to zero, it may signal overflow.

Functiondouble log10 (double x)
Functionfloat log10f (float x)
Functionlong double log10l (long double x)

These functions return the base-10 logarithm of x. log10 (x) equals log
(x) / log (10).

Functiondouble log2 (double x)
Functionfloat log2f (float x)
Functionlong double log2l (long double x)

These functions return the base-2 logarithm of x. log2 (x) equals log (x)
/ log (2).

Functiondouble logb (double x)
Functionfloat logbf (float x)
Functionlong double logbl (long double x)

These functions extract the exponent of x and return it as a floating-point value.
If FLT_RADIX is two, logb is equal to floor (log2 (x)), except it’s
probably faster.
If x is de-normalized, logb returns the exponent x would have if it were nor-
malized. If x is infinity (positive or negative), logb returns ∞. If x is zero,
logb returns∞. It does not signal.

Functionint ilogb (double x)
Functionint ilogbf (float x)
Functionint ilogbl (long double x)

These functions are equivalent to the corresponding logb functions, except that
they return signed integer values.

Chapter 8: Mathematics 209

Since integers cannot represent infinity and NaN, ilogb instead returns an integer
that can’t be the exponent of a normal floating-point number. ‘math.h’ defines
constants so you can check for this.

Macroint FP ILOGB0
ilogb returns this value if its argument is 0. The numeric value is either INT_
MIN or -INT_MAX.
This macro is defined in ISO C99.

Macroint FP ILOGBNAN
ilogb returns this value if its argument is NaN. The numeric value is either
INT_MIN or INT_MAX.
This macro is defined in ISO C99.

These values are system specific. They might even be the same. The proper way
to test the result of ilogb is as follows:

i = ilogb (f);

if (i == FP_ILOGB0 || i == FP_ILOGBNAN)

{

if (isnan (f))

{

/* Handle NaN. */

}

else if (f == 0.0)

{

/* Handle 0.0. */

}

else

{

/* Some other value with large exponent,

perhaps +Inf. */

}

}

Functiondouble pow (double base, double power)
Functionfloat powf (float base, float power)
Functionlong double powl (long double base, long double

power)
These are general exponentiation functions, returning base raised to power.
Mathematically, pow would return a complex number when base is negative
and power is not an integral value. pow can’t do that, so instead it signals a
domain error. pow may also underflow or overflow the destination type.

210 The GNU C Library: Application Fundamentals

Functiondouble sqrt (double x)
Functionfloat sqrtf (float x)
Functionlong double sqrtl (long double x)

These functions return the nonnegative square root of x.
If x is negative, sqrt signals a domain error. Mathematically, it should return
a complex number.

Functiondouble cbrt (double x)
Functionfloat cbrtf (float x)
Functionlong double cbrtl (long double x)

These functions return the cube root of x. They cannot fail; every representable
real value has a representable real cube root.

Functiondouble hypot (double x, double y)
Functionfloat hypotf (float x, float y)
Functionlong double hypotl (long double x, long double y)

These functions return sqrt (x*x + y*y). This is the length of the hy-
potenuse of a right triangle with sides of length x and y, or the distance of
the point (x, y) from the origin. Using this function instead of the direct for-
mula is wise, since the error is much smaller (see also the function cabs in
Section 9.8.1 [Absolute Value], page 258).

Functiondouble expm1 (double x)
Functionfloat expm1f (float x)
Functionlong double expm1l (long double x)

These functions return a value equivalent to exp (x) - 1. They are computed
in a way that is accurate even if x is near zero—a case where exp (x) - 1
would be inaccurate owing to subtraction of two numbers that are nearly equal.

Functiondouble log1p (double x)
Functionfloat log1pf (float x)
Functionlong double log1pl (long double x)

These functions returns a value equivalent to log (1 + x). They are computed
in a way that is accurate even if x is near zero.

ISO C99 defines complex variants of some of the exponentiation and logarithm
functions.

Functioncomplex double cexp (complex double z)
Functioncomplex float cexpf (complex float z)
Functioncomplex long double cexpl (complex long double z)

These functions return e (the base of natural logarithms) raised to the power of
z. Mathematically, this corresponds to the value:

Chapter 8: Mathematics 211

exp(z) = ez = eRe z(cos(Im z) + i sin(Im z))

Functioncomplex double clog (complex double z)
Functioncomplex float clogf (complex float z)
Functioncomplex long double clogl (complex long double z)

These functions return the natural logarithm of z. Mathematically, this corre-
sponds to the value:

log(z) = log |z| + i arg z

clog has a pole at 0, and will signal overflow if z equals or is very close to 0.
It is well-defined for all other values of z.

Functioncomplex double clog10 (complex double z)
Functioncomplex float clog10f (complex float z)
Functioncomplex long double clog10l (complex long double

z)
These functions return the base-10 logarithm of the complex value z. Mathe-
matically, this corresponds to the value:

log10(z) = log10 |z| + i arg z

These functions are GNU extensions.

Functioncomplex double csqrt (complex double z)
Functioncomplex float csqrtf (complex float z)
Functioncomplex long double csqrtl (complex long double z)

These functions return the complex square root of the argument z. Unlike the
real-valued functions, they are defined for all values of z.

Functioncomplex double cpow (complex double base, complex
double power)

Functioncomplex float cpowf (complex float base, complex
float power)

Functioncomplex long double cpowl (complex long double
base, complex long double power)

These functions return base raised to the power of power. This is equivalent to
cexp (y * clog (x))

212 The GNU C Library: Application Fundamentals

8.5 Hyperbolic Functions
The functions in this section are related to the exponential functions (see Sec-

tion 8.4 [Exponentiation and Logarithms], page 207).

Functiondouble sinh (double x)
Functionfloat sinhf (float x)
Functionlong double sinhl (long double x)

These functions return the hyperbolic sine of x, defined mathematically as
(exp (x) - exp (-x)) / 2. They may signal overflow if x is too large.

Functiondouble cosh (double x)
Functionfloat coshf (float x)
Functionlong double coshl (long double x)

These functions return the hyperbolic cosine of x, defined mathematically as
(exp (x) + exp (-x)) / 2. They may signal overflow if x is too large.

Functiondouble tanh (double x)
Functionfloat tanhf (float x)
Functionlong double tanhl (long double x)

These functions return the hyperbolic tangent of x, defined mathematically as
sinh (x) / cosh (x). They may signal overflow if x is too large.

There are counterparts for the hyperbolic functions that take complex arguments.

Functioncomplex double csinh (complex double z)
Functioncomplex float csinhf (complex float z)
Functioncomplex long double csinhl (complex long double z)

These functions return the complex hyperbolic sine of z, defined mathematically
as (exp (z) - exp (-z)) / 2.

Functioncomplex double ccosh (complex double z)
Functioncomplex float ccoshf (complex float z)
Functioncomplex long double ccoshl (complex long double z)

These functions return the complex hyperbolic cosine of z, defined mathemati-
cally as (exp (z) + exp (-z)) / 2.

Functioncomplex double ctanh (complex double z)
Functioncomplex float ctanhf (complex float z)
Functioncomplex long double ctanhl (complex long double z)

These functions return the complex hyperbolic tangent of z, defined mathemat-
ically as csinh (z) / ccosh (z).

Chapter 8: Mathematics 213

Functiondouble asinh (double x)
Functionfloat asinhf (float x)
Functionlong double asinhl (long double x)

These functions return the inverse hyperbolic sine of x—the value whose hyper-
bolic sine is x.

Functiondouble acosh (double x)
Functionfloat acoshf (float x)
Functionlong double acoshl (long double x)

These functions return the inverse hyperbolic cosine of x—the value whose hy-
perbolic cosine is x. If x is less than 1, acosh signals a domain error.

Functiondouble atanh (double x)
Functionfloat atanhf (float x)
Functionlong double atanhl (long double x)

These functions return the inverse hyperbolic tangent of x—the value whose
hyperbolic tangent is x. If the absolute value of x is greater than 1, atanh
signals a domain error; if it is equal to 1, atanh returns infinity.

Functioncomplex double casinh (complex double z)
Functioncomplex float casinhf (complex float z)
Functioncomplex long double casinhl (complex long double

z)
These functions return the inverse complex hyperbolic sine of z—the value
whose complex hyperbolic sine is z.

Functioncomplex double cacosh (complex double z)
Functioncomplex float cacoshf (complex float z)
Functioncomplex long double cacoshl (complex long double

z)
These functions return the inverse complex hyperbolic cosine of z—the value
whose complex hyperbolic cosine is z. Unlike the real-valued functions, there
are no restrictions on the value of z.

Functioncomplex double catanh (complex double z)
Functioncomplex float catanhf (complex float z)
Functioncomplex long double catanhl (complex long double

z)
These functions return the inverse complex hyperbolic tangent of z—the value
whose complex hyperbolic tangent is z. Unlike the real-valued functions, there
are no restrictions on the value of z.

214 The GNU C Library: Application Fundamentals

8.6 Special Functions
These are some more exotic mathematical functions that are sometimes useful.

Currently they only have real-valued versions.

Functiondouble erf (double x)
Functionfloat erff (float x)
Functionlong double erfl (long double x)

erf returns the error function of x. The error function is defined as:

erf(x) =
2√
π
·
∫ x

0

e−t2dt

Functiondouble erfc (double x)
Functionfloat erfcf (float x)
Functionlong double erfcl (long double x)

erfc returns 1.0 - erf(x), but computed in a fashion that avoids round-off
error when x is large.

Functiondouble lgamma (double x)
Functionfloat lgammaf (float x)
Functionlong double lgammal (long double x)

lgamma returns the natural logarithm of the absolute value of the gamma func-
tion of x. The gamma function is defined as

lgamma(x) =
∫ ∞

0

tx−1e−tdt

The sign of the gamma function is stored in the global variable signgam, which
is declared in ‘math.h’. It is 1 if the intermediate result was positive or zero,
or -1 if it was negative.
To compute the real gamma function, you can use the tgamma function or you
can compute the values as follows:

lgam = lgamma(x);

gam = signgam*exp(lgam);

The gamma function has singularities at the nonpositive integers. lgamma will
raise the zero divide exception if evaluated at a singularity.

Functiondouble lgamma r (double x, int *signp)
Functionfloat lgammaf r (float x, int *signp)
Functionlong double lgammal r (long double x, int *signp)

lgamma_r is just like lgamma, but it stores the sign of the intermediate result
in the variable pointed to by signp instead of in the signgam global. This means
it is reentrant.

Chapter 8: Mathematics 215

Functiondouble gamma (double x)
Functionfloat gammaf (float x)
Functionlong double gammal (long double x)

These functions exist for compatibility reasons. They are equivalent to
lgamma, lgammaf and lgammal. It is better to use lgamma for two
reasons. The name better reflects the actual computation, and lgamma is
standardized in ISO C99 while gamma is not.

Functiondouble tgamma (double x)
Functionfloat tgammaf (float x)
Functionlong double tgammal (long double x)

tgamma applies the gamma function to x. The gamma function is defined as:

tgamma(x) =
∫ ∞

0

tx−1e−tdt

This function was introduced in ISO C99.

Functiondouble j0 (double x)
Functionfloat j0f (float x)
Functionlong double j0l (long double x)

j0 returns the Bessel function of the first kind of order 0 of x. It may signal
underflow if x is too large.

Functiondouble j1 (double x)
Functionfloat j1f (float x)
Functionlong double j1l (long double x)

j1 returns the Bessel function of the first kind of order 1 of x. It may signal
underflow if x is too large.

Functiondouble jn (int n, double x)
Functionfloat jnf (int n, float x)
Functionlong double jnl (int n, long double x)

jn returns the Bessel function of the first kind of order n of x. It may signal
underflow if x is too large.

Functiondouble y0 (double x)
Functionfloat y0f (float x)
Functionlong double y0l (long double x)

y0 returns the Bessel function of the second kind of order 0 of x. It may signal
underflow if x is too large. If x is negative, y0 signals a domain error; if it is
zero, y0 signals overflow and returns −∞.

216 The GNU C Library: Application Fundamentals

Functiondouble y1 (double x)
Functionfloat y1f (float x)
Functionlong double y1l (long double x)

y1 returns the Bessel function of the second kind of order 1 of x. It may signal
underflow if x is too large. If x is negative, y1 signals a domain error; if it is
zero, y1 signals overflow and returns −∞.

Functiondouble yn (int n, double x)
Functionfloat ynf (int n, float x)
Functionlong double ynl (int n, long double x)

yn returns the Bessel function of the second kind of order n of x. It may signal
underflow if x is too large. If x is negative, yn signals a domain error; if it is
zero, yn signals overflow and returns −∞.

8.7 Known Maximum Errors in Math Functions
This section lists the known errors of the functions in the math library. Errors

are measured in “units of the last place”. This is a measure for the relative error.
For a number z with the representation d.d . . . d·2e (we assume IEEE floating-point
numbers with base 2), the ULP is represented by:

|d.d . . . d− (z/2e)|
2p−1

where p is the number of bits in the mantissa of the floating-point number rep-
resentation. Ideally the error for all functions is always less than 0.5ulps. Using
rounding bits, this is also possible and normally implemented for the basic opera-
tions. To achieve the same for the complex math functions requires a lot more work
and this has not yet been done.

Therefore many of the functions in the math library have errors. The table lists
the maximum error for each function that is exposed by one of the existing tests
in the test suite. The table tries to cover as much as possible and list the actual
maximum error (or at least a ballpark figure) but this is often not achieved due to
the large search space.

The table lists the ULP values for different architectures. Different architec-
tures have different results since their hardware support for floating-point opera-
tions varies and also the existing hardware support is different.

Chapter 8: Mathematics 217

Function Alpha ARM Generic hppa/fpu ix86
acosf - - - - -
acos - - - - -
acosl - - - - 622
acoshf - - - - -
acosh - - - - -
acoshl - - - - -
asinf - 2 - - -
asin - 1 - - -
asinl - - - - 1
asinhf - - - - -
asinh - - - - -
asinhl - - - - -
atanf - - - - -
atan - - - - -
atanl - - - - -
atanhf 1 - - 1 -
atanh - 1 - - -
atanhl - - - - 1
atan2f 3 - - 3 -
atan2 - - - - -
atan2l - - - - -
cabsf - 1 - - -
cabs - 1 - - -
cabsl - - - - -
cacosf - 1 + i 1 - - 0 + i 1
cacos - 1 + i 0 - - -
cacosl - - - - 0 + i 2
cacoshf 7 + i 3 7 + i 3 - 7 + i 3 9 + i 4
cacosh 1 + i 1 1 + i 1 - 1 + i 1 1 + i 1
cacoshl - - - - 6 + i 1
cargf - - - - -
carg - - - - -
cargl - - - - -
casinf 1 + i 0 2 + i 1 - 1 + i 0 1 + i 1
casin 1 + i 0 3 + i 0 - 1 + i 0 1 + i 0
casinl - - - - 2 + i 2
casinhf 1 + i 6 1 + i 6 - 1 + i 6 1 + i 6
casinh 5 + i 3 5 + i 3 - 5 + i 3 5 + i 3
casinhl - - - - 5 + i 5
catanf 4 + i 1 4 + i 1 - 4 + i 1 0 + i 1
catan 0 + i 1 0 + i 1 - 0 + i 1 0 + i 1
catanl - - - - -
catanhf 0 + i 6 1 + i 6 - 0 + i 6 1 + i 0
catanh 4 + i 0 4 + i 1 - 4 + i 0 2 + i 0
catanhl - - - - 1 + i 0

218 The GNU C Library: Application Fundamentals

cbrtf - - - - -
cbrt 1 1 - 1 -
cbrtl - - - - 1
ccosf 1 + i 1 0 + i 1 - 1 + i 1 0 + i 1
ccos 1 + i 0 1 + i 1 - 1 + i 0 1 + i 0
ccosl - - - - 1 + i 1
ccoshf 1 + i 1 1 + i 1 - 1 + i 1 1 + i 1
ccosh 1 + i 0 1 + i 1 - 1 + i 0 1 + i 1
ccoshl - - - - 0 + i 1
ceilf - - - - -
ceil - - - - -
ceill - - - - -
cexpf 1 + i 1 1 + i 1 - 1 + i 1 -
cexp - 1 + i 0 - - -
cexpl - - - - 1 + i 1
cimagf - - - - -
cimag - - - - -
cimagl - - - - -
clogf 1 + i 3 0 + i 3 - 1 + i 3 1 + i 0
clog - 0 + i 1 - - -
clogl - - - - 1 + i 0
clog10f 1 + i 5 1 + i 5 - 1 + i 5 1 + i 1
clog10 0 + i 1 1 + i 1 - 0 + i 1 1 + i 1
clog10l - - - - 1 + i 1
conjf - - - - -
conj - - - - -
conjl - - - - -
copysignf - - - - -
copysign - - - - -
copysignl - - - - -
cosf 1 1 - 1 1
cos 2 2 - 2 2
cosl - - - - 1
coshf - - - - -
cosh - - - - -
coshl - - - - -
cpowf 4 + i 2 4 + i 2 - 4 + i 2 4 + i 3
cpow 2 + i 2 1 + i 1.1031 - 2 + i 2 1 + i 2
cpowl - - - - 763 + i 2
cprojf - - - - -
cproj - - - - -
cprojl - - - - -
crealf - - - - -
creal - - - - -
creall - - - - -
csinf - 0 + i 1 - - 1 + i 1

Chapter 8: Mathematics 219

csin - - - - -
csinl - - - - 1 + i 0
csinhf 1 + i 1 1 + i 1 - 1 + i 1 1 + i 1
csinh 0 + i 1 0 + i 1 - 0 + i 1 1 + i 1
csinhl - - - - 1 + i 2
csqrtf 1 + i 0 1 + i 1 - 1 + i 0 -
csqrt - 1 + i 0 - - -
csqrtl - - - - -
ctanf - 1 + i 1 - - 0 + i 1
ctan 1 + i 1 1 + i 1 - 1 + i 1 1 + i 1
ctanl - - - - 439 + i 3
ctanhf 2 + i 1 2 + i 1 - 2 + i 1 1 + i 1
ctanh 1 + i 0 2 + i 2 - 1 + i 0 0 + i 1
ctanhl - - - - 5 + i 25
erff - - - - -
erf 1 - - 1 1
erfl - - - - -
erfcf - 12 - - 1
erfc 1 24 - 1 1
erfcl - - - - 1
expf - - - - -
exp - - - - -
expl - - - - -
exp10f 2 2 - 2 -
exp10 6 6 - 6 -
exp10l - - - - 8
exp2f - - - - -
exp2 - - - - -
exp2l - - - - -
expm1f 1 1 - 1 -
expm1 1 - - 1 -
expm1l - - - - -
fabsf - - - - -
fabs - - - - -
fabsl - - - - -
fdimf - - - - -
fdim - - - - -
fdiml - - - - -
floorf - - - - -
floor - - - - -
floorl - - - - -
fmaf - - - - -
fma - - - - -
fmal - - - - -
fmaxf - - - - -
fmax - - - - -

220 The GNU C Library: Application Fundamentals

fmaxl - - - - -
fminf - - - - -
fmin - - - - -
fminl - - - - -
fmodf - 1 - - -
fmod - 2 - - -
fmodl - - - - -
frexpf - - - - -
frexp - - - - -
frexpl - - - - -
gammaf - - - - -
gamma - - - - 1
gammal - - - - 1
hypotf 1 1 - 1 1
hypot - 1 - - -
hypotl - - - - -
ilogbf - - - - -
ilogb - - - - -
ilogbl - - - - -
j0f 2 2 - 2 1
j0 2 2 - 2 1
j0l - - - - 1
j1f 2 2 - 2 1
j1 1 1 - 1 1
j1l - - - - 1
jnf 4 4 - 4 2
jn 4 6 - 4 2
jnl - - - - 2
lgammaf 2 2 - 2 2
lgamma 1 1 - 1 1
lgammal - - - - 1
lrintf - - - - -
lrint - - - - -
lrintl - - - - -
llrintf - - - - -
llrint - - - - -
llrintl - - - - -
logf - 1 - - 1
log - 1 - - -
logl - - - - -
log10f 2 1 - 2 1
log10 1 1 - 1 -
log10l - - - - 1
log1pf 1 1 - 1 -
log1p - 1 - - -
log1pl - - - - -

Chapter 8: Mathematics 221

log2f - 1 - - -
log2 - 1 - - -
log2l - - - - -
logbf - - - - -
logb - - - - -
logbl - - - - -
lroundf - - - - -
lround - - - - -
lroundl - - - - -
llroundf - - - - -
llround - - - - -
llroundl - - - - -
modff - - - - -
modf - - - - -
modfl - - - - -
nearbyintf - - - - -
nearbyint - - - - -
nearbyintl - - - - -
nextafterf - - - - -
nextafter - - - - -
nextafterl - - - - -
nexttowardf - - - - -
nexttoward - - - - -
nexttowardl - - - - -
powf - - - - -
pow - - - - -
powl - - - - -
remainderf - - - - -
remainder - - - - -
remainderl - - - - -
remquof - - - - -
remquo - - - - -
remquol - - - - -
rintf - - - - -
rint - - - - -
rintl - - - - -
roundf - - - - -
round - - - - -
roundl - - - - -
scalbf - - - - -
scalb - - - - -
scalbl - - - - -
scalbnf - - - - -
scalbn - - - - -
scalbnl - - - - -
scalblnf - - - - -

222 The GNU C Library: Application Fundamentals

scalbln - - - - -
scalblnl - - - - -
sinf - - - - -
sin - - - - -
sinl - - - - -
sincosf 1 1 - 1 1
sincos 1 1 - 1 1
sincosl - - - - 1
sinhf - 1 - - -
sinh - 1 - - -
sinhl - - - - -
sqrtf - - - - -
sqrt - - - - -
sqrtl - - - - -
tanf - - - - -
tan 1 0.5 - 1 1
tanl - - - - -
tanhf - 1 - - -
tanh - 1 - - -
tanhl - - - - -
tgammaf 1 1 - 1 1
tgamma 1 1 - 1 2
tgammal - - - - 1
truncf - - - - -
trunc - - - - -
truncl - - - - -
y0f 1 1 - 1 1
y0 2 2 - 2 2
y0l - - - - 1
y1f 2 2 - 2 2
y1 3 3 - 3 2
y1l - - - - 1
ynf 2 2 - 2 3
yn 3 3 - 3 2
ynl - - - - 4
Function IA64 M68k MIPS PowerPC powerpc/nofpu
acosf - - - - -
acos - - - - -
acosl - - - - -
acoshf - - - - -
acosh - - - - -
acoshl - 1 - - -
asinf - - - - -
asin - - - - -
asinl - - - - -
asinhf - - - - -

Chapter 8: Mathematics 223

asinh - - - - -
asinhl - 1 - - -
atanf - - - - -
atan - - - - -
atanl - - - - -
atanhf - - 1 1 1
atanh - - - - -
atanhl - 1 - - -
atan2f - - 3 3 3
atan2 - - - - -
atan2l - 1 - - -
cabsf - - - - -
cabs - - - - -
cabsl - - - - -
cacosf 0 + i 1 2 + i 1 - - -
cacos - - - - -
cacosl 0 + i 2 1 + i 2 - - -
cacoshf 7 + i 0 7 + i 1 7 + i 3 7 + i 3 7 + i 3
cacosh 1 + i 1 1 + i 1 1 + i 1 1 + i 1 1 + i 1
cacoshl 7 + i 1 6 + i 2 - - -
cargf - - - - -
carg - - - - -
cargl - - - - -
casinf 1 + i 1 5 + i 1 1 + i 0 1 + i 0 1 + i 0
casin 1 + i 0 1 + i 0 1 + i 0 1 + i 0 1 + i 0
casinl 2 + i 2 3 + i 2 - - -
casinhf 1 + i 6 19 + i 1 1 + i 6 1 + i 6 1 + i 6
casinh 5 + i 3 6 + i 13 5 + i 3 5 + i 3 5 + i 3
casinhl 5 + i 5 5 + i 6 - - -
catanf 0 + i 1 0 + i 1 4 + i 1 4 + i 1 4 + i 1
catan 0 + i 1 0 + i 1 0 + i 1 0 + i 1 0 + i 1
catanl - 1 + i 0 - - -
catanhf - - 0 + i 6 0 + i 6 0 + i 6
catanh 4 + i 0 - 4 + i 0 4 + i 0 4 + i 0
catanhl 1 + i 0 1 + i 0 - - -
cbrtf - - - - -
cbrt - - 1 1 1
cbrtl - 1 - - -
ccosf 0 + i 1 1 + i 1 1 + i 1 1 + i 1 1 + i 1
ccos 1 + i 0 - 1 + i 0 1 + i 0 1 + i 0
ccosl 1 + i 1 1 + i 1 - - -
ccoshf 1 + i 1 1 + i 1 1 + i 1 1 + i 1 1 + i 1
ccosh 1 + i 1 - 1 + i 0 1 + i 0 1 + i 0
ccoshl 0 + i 1 0 + i 1 - - -
ceilf - - - - -
ceil - - - - -

224 The GNU C Library: Application Fundamentals

ceill - - - - -
cexpf 1 + i 1 2 + i 1 1 + i 1 1 + i 1 1 + i 1
cexp - - - - -
cexpl 0 + i 1 0 + i 1 - - -
cimagf - - - - -
cimag - - - - -
cimagl - - - - -
clogf 1 + i 0 1 + i 0 1 + i 3 1 + i 3 1 + i 3
clog - - - - -
clogl 1 + i 0 1 + i 1 - - -
clog10f 1 + i 1 1 + i 1 1 + i 5 1 + i 5 1 + i 5
clog10 1 + i 1 1 + i 1 0 + i 1 0 + i 1 0 + i 1
clog10l 1 + i 1 1 + i 2 - - -
conjf - - - - -
conj - - - - -
conjl - - - - -
copysignf - - - - -
copysign - - - - -
copysignl - - - - -
cosf 1 1 1 1 1
cos 2 2 2 2 2
cosl 1 1 - - -
coshf - - - - -
cosh - - - - -
coshl - - - - -
cpowf 5 + i 3 2 + i 6 4 + i 2 4 + i 2 4 + i 2
cpow 2 + i 2 1 + i 2 2 + i 2 2 + i 2 2 + i 2
cpowl 3 + i 4 15 + i 2 - - -
cprojf - - - - -
cproj - - - - -
cprojl - - - - -
crealf - - - - -
creal - - - - -
creall - - - - -
csinf 1 + i 1 1 + i 1 - - -
csin - - - - -
csinl 1 + i 0 1 + i 0 - - -
csinhf 1 + i 1 1 + i 1 1 + i 1 1 + i 1 1 + i 1
csinh 1 + i 1 - 0 + i 1 0 + i 1 0 + i 1
csinhl 1 + i 2 1 + i 0 - - -
csqrtf 1 + i 0 - 1 + i 0 1 + i 0 1 + i 0
csqrt - - - - -
csqrtl - - - - -
ctanf 0 + i 1 - - - -
ctan 1 + i 1 1 + i 0 1 + i 1 1 + i 1 1 + i 1
ctanl 2 + i 1 1 + i 2 - - -

Chapter 8: Mathematics 225

ctanhf 0 + i 1 0 + i 1 2 + i 1 2 + i 1 2 + i 1
ctanh 1 + i 1 0 + i 1 1 + i 0 1 + i 0 1 + i 0
ctanhl 1 + i 24 0 + i 1 - - -
erff - - - - -
erf 1 - 1 1 1
erfl - - - - -
erfcf 1 1 - 1 -
erfc 1 - 1 1 1
erfcl 1 1 - - -
expf - - - - -
exp - - - - -
expl - - - - -
exp10f 2 - 2 2 2
exp10 6 - 6 6 6
exp10l 3 - - - -
exp2f - - - - -
exp2 - - - - -
exp2l - - - - -
expm1f - - 1 1 1
expm1 - - 1 1 1
expm1l 1 1 - - -
fabsf - - - - -
fabs - - - - -
fabsl - - - - -
fdimf - - - - -
fdim - - - - -
fdiml - - - - -
floorf - - - - -
floor - - - - -
floorl - - - - -
fmaf - - - - -
fma - - - - -
fmal - - - - -
fmaxf - - - - -
fmax - - - - -
fmaxl - - - - -
fminf - - - - -
fmin - - - - -
fminl - - - - -
fmodf - - - - -
fmod - - - - -
fmodl - - - - -
frexpf - - - - -
frexp - - - - -
frexpl - - - - -
gammaf - - - - -

226 The GNU C Library: Application Fundamentals

gamma - - - - -
gammal 1 1 - - -
hypotf 1 1 1 1 1
hypot - - - - -
hypotl - - - - -
ilogbf - - - - -
ilogb - - - - -
ilogbl - - - - -
j0f 1 1 2 1 2
j0 2 1 2 2 2
j0l 2 1 - - -
j1f 2 2 2 2 2
j1 1 - 1 1 1
j1l 1 1 - - -
jnf 3 5 4 3 4
jn 3 1 4 3 4
jnl 2 2 - - -
lgammaf 2 2 2 2 2
lgamma 1 1 1 1 1
lgammal 1 1 - - -
lrintf - - - - -
lrint - - - - -
lrintl - - - - -
llrintf - - - - -
llrint - - - - -
llrintl - - - - -
logf 1 1 - - -
log - - - - -
logl - 1 - - -
log10f 1 1 2 2 2
log10 - - 1 1 1
log10l 1 2 - - -
log1pf - - 1 1 1
log1p - - - - -
log1pl - 1 - - -
log2f - - - - -
log2 - - - - -
log2l - 1 - - -
logbf - - - - -
logb - - - - -
logbl - - - - -
lroundf - - - - -
lround - - - - -
lroundl - - - - -
llroundf - - - - -
llround - - - - -

Chapter 8: Mathematics 227

llroundl - - - - -
modff - - - - -
modf - - - - -
modfl - - - - -
nearbyintf - - - - -
nearbyint - - - - -
nearbyintl - - - - -
nextafterf - - - - -
nextafter - - - - -
nextafterl - - - - -
nexttowardf - - - - -
nexttoward - - - - -
nexttowardl - - - - -
powf - - - - -
pow - - - - -
powl - 1 - - -
remainderf - - - - -
remainder - - - - -
remainderl - - - - -
remquof - - - - -
remquo - - - - -
remquol - - - - -
rintf - - - - -
rint - - - - -
rintl - - - - -
roundf - - - - -
round - - - - -
roundl - - - - -
scalbf - - - - -
scalb - - - - -
scalbl - - - - -
scalbnf - - - - -
scalbn - - - - -
scalbnl - - - - -
scalblnf - - - - -
scalbln - - - - -
scalblnl - - - - -
sinf - - - - -
sin - - - - -
sinl - - - - -
sincosf 1 1 1 1 1
sincos 1 1 1 1 1
sincosl 1 1 - - -
sinhf - - - - -
sinh - - - - -
sinhl - 1 - - -

228 The GNU C Library: Application Fundamentals

sqrtf - - - - -
sqrt - - - - -
sqrtl - - - - -
tanf - - - - -
tan 1 1 1 1 1
tanl - 1 - - -
tanhf - - - - -
tanh - - - - -
tanhl - - - - -
tgammaf 1 1 1 1 1
tgamma 1 1 1 1 1
tgammal 1 1 - - -
truncf - - - - -
trunc - - - - -
truncl - - - - -
y0f 1 1 1 1 1
y0 2 1 2 2 2
y0l 1 2 - - -
y1f 2 2 2 2 2
y1 3 1 3 3 3
y1l 1 1 - - -
ynf 2 2 2 2 2
yn 3 1 3 3 3
ynl 2 4 - - -
Function S/390 SH4 Sparc

32-bit
Sparc
64-bit

x86 64/fpu

acosf - - - - -
acos - - - - -
acosl - - - - -
acoshf - - - - -
acosh - - - - -
acoshl - - - - -
asinf - 2 - - -
asin - 1 - - -
asinl - - - - 1
asinhf - - - - -
asinh - - - - -
asinhl - - - - -
atanf - - - - -
atan - - - - -
atanl - - - - -
atanhf 1 - 1 1 1
atanh - 1 - - -
atanhl - - - - 1
atan2f 3 4 3 3 3
atan2 - - - - -

Chapter 8: Mathematics 229

atan2l - - - 1 -
cabsf - 1 - - -
cabs - 1 - - -
cabsl - - - - -
cacosf - 1 + i 1 - - 0 + i 1
cacos - 1 + i 0 - - -
cacosl - - - 0 + i 1 0 + i 2
cacoshf 7 + i 3 7 + i 3 7 + i 3 7 + i 3 7 + i 3
cacosh 1 + i 1 1 + i 1 1 + i 1 1 + i 1 1 + i 1
cacoshl - - - 5 + i 1 6 + i 1
cargf - - - - -
carg - - - - -
cargl - - - - -
casinf 1 + i 0 2 + i 1 1 + i 0 1 + i 0 1 + i 1
casin 1 + i 0 3 + i 0 1 + i 0 1 + i 0 1 + i 0
casinl - - - 0 + i 1 2 + i 2
casinhf 1 + i 6 1 + i 6 1 + i 6 1 + i 6 1 + i 6
casinh 5 + i 3 5 + i 3 5 + i 3 5 + i 3 5 + i 3
casinhl - - - 4 + i 2 5 + i 5
catanf 4 + i 1 4 + i 1 4 + i 1 4 + i 1 4 + i 1
catan 0 + i 1 0 + i 1 0 + i 1 0 + i 1 0 + i 1
catanl - - - 0 + i 1 -
catanhf 0 + i 6 1 + i 6 0 + i 6 0 + i 6 0 + i 6
catanh 4 + i 0 4 + i 1 4 + i 0 4 + i 0 4 + i 0
catanhl - - - 1 + i 1 1 + i 0
cbrtf - - - - -
cbrt 1 1 1 1 1
cbrtl - - - 1 1
ccosf 1 + i 1 0 + i 1 1 + i 1 1 + i 1 1 + i 1
ccos 1 + i 0 1 + i 1 1 + i 0 1 + i 0 1 + i 0
ccosl - - - - 1 + i 1
ccoshf 1 + i 1 1 + i 1 1 + i 1 1 + i 1 1 + i 1
ccosh 1 + i 0 1 + i 1 1 + i 0 1 + i 0 1 + i 1
ccoshl - - - - 0 + i 1
ceilf - - - - -
ceil - - - - -
ceill - - - - -
cexpf 1 + i 1 1 + i 1 1 + i 1 1 + i 1 1 + i 1
cexp - 1 + i 0 - - -
cexpl - - - 1 + i 1 0 + i 1
cimagf - - - - -
cimag - - - - -
cimagl - - - - -
clogf 1 + i 3 0 + i 3 1 + i 3 1 + i 3 1 + i 3
clog - 0 + i 1 - - -
clogl - - - 1 + i 0 1 + i 0

230 The GNU C Library: Application Fundamentals

clog10f 1 + i 5 1 + i 5 1 + i 5 1 + i 5 1 + i 5
clog10 0 + i 1 1 + i 1 0 + i 1 0 + i 1 1 + i 1
clog10l - - - 0 + i 1 1 + i 1
conjf - - - - -
conj - - - - -
conjl - - - - -
copysignf - - - - -
copysign - - - - -
copysignl - - - - -
cosf 1 1 1 1 1
cos 2 2 2 2 2
cosl - - - 1 1
coshf - - - - -
cosh - - - - -
coshl - - - - -
cpowf 4 + i 2 4 + i 2 4 + i 2 4 + i 2 5 + i 2
cpow 2 + i 2 1 + i 1.1031 2 + i 2 2 + i 2 2 + i 2
cpowl - - - 1 + i 1 5 + i 2
cprojf - - - - -
cproj - - - - -
cprojl - - - - -
crealf - - - - -
creal - - - - -
creall - - - - -
csinf - 0 + i 1 - - 0 + i 1
csin - - - - -
csinl - - - 1 + i 0 1 + i 0
csinhf 1 + i 1 1 + i 1 1 + i 1 1 + i 1 1 + i 1
csinh 0 + i 1 0 + i 1 0 + i 1 0 + i 1 1 + i 1
csinhl - - - - 1 + i 2
csqrtf 1 + i 0 1 + i 1 1 + i 0 1 + i 0 1 + i 0
csqrt - 1 + i 0 - - -
csqrtl - - - 1 + i 1 -
ctanf - 1 + i 1 - - 0 + i 1
ctan 1 + i 1 1 + i 1 1 + i 1 1 + i 1 1 + i 1
ctanl - - - 0 + i 2 439 + i 3
ctanhf 2 + i 1 2 + i 1 2 + i 1 2 + i 1 2 + i 1
ctanh 1 + i 0 2 + i 2 1 + i 0 1 + i 0 1 + i 1
ctanhl - - - - 5 + i 25
erff - - - - -
erf 1 - 1 1 1
erfl - - - - -
erfcf - 12 - - -
erfc 1 24 1 1 1
erfcl - - - 1 1
expf - - - - -

Chapter 8: Mathematics 231

exp - - - - -
expl - - - - -
exp10f 2 2 2 2 2
exp10 6 6 6 6 6
exp10l - - - 1 3
exp2f - - - - -
exp2 - - - - -
exp2l - - - - -
expm1f 1 1 1 1 1
expm1 1 - 1 1 1
expm1l - - - 1 -
fabsf - - - - -
fabs - - - - -
fabsl - - - - -
fdimf - - - - -
fdim - - - - -
fdiml - - - - -
floorf - - - - -
floor - - - - -
floorl - - - - -
fmaf - - - - -
fma - - - - -
fmal - - - - -
fmaxf - - - - -
fmax - - - - -
fmaxl - - - - -
fminf - - - - -
fmin - - - - -
fminl - - - - -
fmodf - 1 - - -
fmod - 2 - - -
fmodl - - - - -
frexpf - - - - -
frexp - - - - -
frexpl - - - - -
gammaf - - - - -
gamma - - - - -
gammal - - - 1 1
hypotf 1 1 1 1 1
hypot - 1 - - -
hypotl - - - - -
ilogbf - - - - -
ilogb - - - - -
ilogbl - - - - -
j0f 2 2 2 2 2
j0 2 2 2 2 2

232 The GNU C Library: Application Fundamentals

j0l - - - 2 1
j1f 2 2 2 2 2
j1 1 1 1 1 1
j1l - - - 4 1
jnf 4 4 4 4 4
jn 4 6 4 4 4
jnl - - - 4 2
lgammaf 2 2 2 2 2
lgamma 1 1 1 1 1
lgammal - - - 1 1
lrintf - - - - -
lrint - - - - -
lrintl - - - - -
llrintf - - - - -
llrint - - - - -
llrintl - - - - -
logf - 1 - - -
log - 1 - - -
logl - - - - -
log10f 2 1 2 2 2
log10 1 1 1 1 1
log10l - - - 1 1
log1pf 1 1 1 1 1
log1p - 1 - - -
log1pl - - - 1 -
log2f - 1 - - -
log2 - 1 - - -
log2l - - - 1 -
logbf - - - - -
logb - - - - -
logbl - - - - -
lroundf - - - - -
lround - - - - -
lroundl - - - - -
llroundf - - - - -
llround - - - - -
llroundl - - - - -
modff - - - - -
modf - - - - -
modfl - - - - -
nearbyintf - - - - -
nearbyint - - - - -
nearbyintl - - - - -
nextafterf - - - - -
nextafter - - - - -
nextafterl - - - - -

Chapter 8: Mathematics 233

nexttowardf - - - - -
nexttoward - - - - -
nexttowardl - - - - -
powf - - - - -
pow - - - - -
powl - - - - -
remainderf - - - - -
remainder - - - - -
remainderl - - - - -
remquof - - - - -
remquo - - - - -
remquol - - - - -
rintf - - - - -
rint - - - - -
rintl - - - - -
roundf - - - - -
round - - - - -
roundl - - - - -
scalbf - - - - -
scalb - - - - -
scalbl - - - - -
scalbnf - - - - -
scalbn - - - - -
scalbnl - - - - -
scalblnf - - - - -
scalbln - - - - -
scalblnl - - - - -
sinf - - - - -
sin - - - - -
sinl - - - - -
sincosf 1 1 1 1 1
sincos 1 1 1 1 1
sincosl - - - 1 1
sinhf - 1 - - -
sinh - 1 - - -
sinhl - - - - -
sqrtf - - - - -
sqrt - - - - -
sqrtl - - - 1 -
tanf - - - - -
tan 1 0.5 1 1 1
tanl - - - - -
tanhf - 1 - - -
tanh - 1 - - -
tanhl - - - 1 -
tgammaf 1 1 1 1 1

234 The GNU C Library: Application Fundamentals

tgamma 1 1 1 1 1
tgammal - - - 1 1
truncf - - - - -
trunc - - - - -
truncl - - - - -
y0f 1 1 1 1 1
y0 2 2 2 2 2
y0l - - - 3 1
y1f 2 2 2 2 2
y1 3 3 3 3 3
y1l - - - 1 1
ynf 2 2 2 2 2
yn 3 3 3 3 3
ynl - - - 5 4

8.8 Pseudorandom Numbers

This section describes the GNU facilities for generating a series of pseudoran-
dom numbers. The numbers generated are not truly random; typically, they form a
sequence that repeats periodically, with a period so large that you can ignore it for
ordinary purposes. The random-number generator works by remembering a seed
value, which it uses to compute the next random number and also to compute a new
seed.

Although the generated numbers look unpredictable within one run of a pro-
gram, the sequence of numbers is exactly the same from one run to the next. This
is because the initial seed is always the same. This is convenient when you are
debugging a program, but it is unhelpful if you want the program to behave unpre-
dictably. If you want a different pseudorandom series each time your program runs,
you must specify a different seed each time. For ordinary purposes, basing the seed
on the current time works well.

You can obtain repeatable sequences of numbers on a particular machine type by
specifying the same initial seed value for the random-number generator. There is
no standard meaning for a particular seed value; the same seed, used in different C
libraries or on different CPU types, will give you different random numbers.

The GNU library supports the standard ISO C random-number functions plus two
other sets derived from BSD and SVID. The BSD and ISO C functions provide iden-
tical, somewhat limited functionality. If only a small number of random bits are re-
quired, we recommend you use the ISO C interface, rand and srand. The SVID
functions provide a more flexible interface, which allows better random-number
generator algorithms, provides more random bits (up to 48) per call, and can pro-
vide random floating-point numbers. These functions are required by the XPG stan-
dard and therefore will be present in all modern Unix systems.

Chapter 8: Mathematics 235

8.8.1 ISO C Random-Number Functions

This section describes the random-number functions that are part of the ISO C
standard.

To use these facilities, you should include the header file ‘stdlib.h’ in your
program.

Macroint RAND MAX
The value of this macro is an integer constant representing the largest value the
rand function can return. In the GNU library, it is 2147483647, which is
the largest signed integer representable in 32 bits. In other libraries, it may be
as low as 32767.

Functionint rand (void)
The rand function returns the next pseudorandom number in the series. The
value ranges from 0 to RAND_MAX.

Functionvoid srand (unsigned int seed)
This function establishes seed as the seed for a new series of pseudorandom
numbers. If you call rand before a seed has been established with srand, it
uses the value 1 as a default seed.
To produce a different pseudorandom series each time your program is run, do
srand (time (0)).

POSIX.1 extended the C standard functions to support reproducible random
numbers in multithreaded programs. However, the extension is badly designed
and unsuitable for serious work.

Functionint rand r (unsigned int *seed)
This function returns a random number in the range 0 to RAND_MAX just as
rand does. However, all its state is stored in the seed argument. This means
the RNG’s state can only have as many bits as the type unsigned int has.
This is far too few to provide a good RNG.
If your program requires a reentrant RNG, we recommend you use the reen-
trant GNU extensions to the SVID random-number generator. The POSIX.1
interface should only be used when the GNU extensions are not available.

8.8.2 BSD Random-Number Functions

This section describes a set of random-number generation functions that are de-
rived from BSD. There is no advantage to using these functions with the GNU C
Library; we support them for BSD compatibility only.

The prototypes for these functions are in ‘stdlib.h’.

236 The GNU C Library: Application Fundamentals

Functionlong int random (void)
This function returns the next pseudorandom number in the sequence. The value
returned ranges from 0 to RAND_MAX.
Temporarily, this function was defined to return a int32_t value to indicate
that the return value always contains 32 bits even if long int is wider. The
standard demands it differently. Users must always be aware of the 32-bit limi-
tation, though.

Functionvoid srandom (unsigned int seed)
The srandom function sets the state of the random-number generator based on
the integer seed. If you supply a seed value of 1, this will cause random to
reproduce the default set of random numbers.
To produce a different set of pseudorandom numbers each time your program
runs, do srandom (time (0)).

Functionvoid * initstate (unsigned int seed, void *state, size_t
size)

The initstate function is used to initialize the random-number generator
state. The argument state is an array of size bytes, used to hold the state in-
formation. It is initialized based on seed. The size must be between 8 and 256
bytes, and should be a power of two. The bigger the state array, the better.
The return value is the previous value of the state information array. You can
use this value later as an argument to setstate to restore that state.

Functionvoid * setstate (void *state)
The setstate function restores the random-number state information state.
The argument must have been the result of a previous call to initstate or setstate.
The return value is the previous value of the state information array. You can
use this value later as an argument to setstate to restore that state.
If the function fails, the return value is NULL.

The four functions described so far in this section all work on a state that is
shared by all threads. The state is not directly accessible to the user and can only
be modified by these functions. This makes it hard to deal with situations where
each thread should have its own pseudorandom-number generator.

The GNU C Library contains four additional functions that contain the state as
an explicit parameter and therefore make it possible to handle thread-local PRNGs.
Besides this, there are no differences. In fact, the four functions already discussed
are implemented internally using the following interfaces.

The ‘stdlib.h’ header contains a definition of the following type:

Data Typestruct random data
Objects of type struct random_data contain the information necessary to
represent the state of the PRNG. Although a complete definition of the type is
present, the type should be treated as opaque.

Chapter 8: Mathematics 237

The functions modifying the state follow exactly the already described functions.

Functionint random r (struct random_data *restrict buf,
int32_t *restrict result)

The random_r function behaves exactly like the random function, except
that it uses and modifies the state in the object pointed to by the first parameter
instead of the global state.

Functionint srandom r (unsigned int seed, struct
random_data *buf)

The srandom_r function behaves exactly like the srandom function, except
that it uses and modifies the state in the object pointed to by the second param-
eter instead of the global state.

Functionint initstate r (unsigned int seed, char *restrict
statebuf, size_t statelen, struct random_data *restrict
buf)

The initstate_r function behaves exactly like the initstate function,
except that it uses and modifies the state in the object pointed to by the fourth
parameter instead of the global state.

Functionint setstate r (char *restrict statebuf, struct
random_data *restrict buf)

The setstate_r function behaves exactly like the setstate function, ex-
cept that it uses and modifies the state in the object pointed to by the first pa-
rameter instead of the global state.

8.8.3 SVID Random-Number Functions

The C library on SVID systems contains yet another kind of random-number
generator functions. They use a state of 48 bits of data. The user can choose among
a collection of functions that return the random bits in different forms.

Generally, there are two kinds of function. The first uses a state of the random-
number generator that is shared among several functions and by all threads of the
process. The second requires the user to handle the state.

All functions have in common that they use the same congruential formula with
the same constants. The formula is

Y = (a * X + c) mod m

where X is the state of the generator at the beginning and Y the state at the end. a
and c are constants determining the way the generator works. By default they are

a = 0x5DEECE66D = 25214903917

c = 0xb = 11

but they can also be changed by the user. m is of course 2ˆ48 since the state consists
of a 48-bit array.

The prototypes for these functions are in ‘stdlib.h’.

238 The GNU C Library: Application Fundamentals

Functiondouble drand48 (void)
This function returns a double value in the range of 0.0 to 1.0 (exclusive).
The random bits are determined by the global state of the random-number gen-
erator in the C library.
Since the double type according to IEEE 754 has a 52-bit mantissa, 4 bits are
not initialized by the random-number generator. These are chosen to be the least
significant bits and are initialized to 0.

Functiondouble erand48 (unsigned short int xsubi [3])
This function returns a double value in the range of 0.0 to 1.0 (exclusive),
similarly to drand48. The argument is an array describing the state of the
random-number generator.
This function can be called subsequently since it updates the array to guarantee
random numbers. The array should have been initialized before initial use to
obtain reproducible results.

Functionlong int lrand48 (void)
The lrand48 function returns an integer value in the range of 0 to 2ˆ31
(exclusive). Even if the size of the long int type can take more than 32 bits,
no higher numbers are returned. The random bits are determined by the global
state of the random-number generator in the C library.

Functionlong int nrand48 (unsigned short int xsubi [3])
This function is similar to the lrand48 function in that it returns a number in
the range of 0 to 2ˆ31 (exclusive), but the state of the random-number genera-
tor used to produce the random bits is determined by the array provided as the
parameter to the function.
The numbers in the array are updated afterwards so that subsequent calls to this
function yield different results (as is expected of a random-number generator).
The array should have been initialized before the first call to obtain reproducible
results.

Functionlong int mrand48 (void)
The mrand48 function is similar to lrand48. The only difference is that the
numbers returned are in the range -2ˆ31 to 2ˆ31 (exclusive).

Functionlong int jrand48 (unsigned short int xsubi [3])
The jrand48 function is similar to nrand48. The only difference is that the
numbers returned are in the range -2ˆ31 to 2ˆ31 (exclusive). For the xsubi
parameter the same requirements are necessary.

The internal state of the random-number generator can be initialized in several
ways. The methods differ in the completeness of the information provided.

Chapter 8: Mathematics 239

Functionvoid srand48 (long int seedval)
The srand48 function sets the most significant 32 bits of the internal state
of the random-number generator to the least significant 32 bits of the seedval
parameter. The lower 16 bits are initialized to the value 0x330E. Even if the
long int type contains more than 32 bits, only the lower 32 bits are used.
Owing to this limitation, initialization of the state of this function is not very
useful. But it makes it easy to use a construct like srand48 (time (0)).
A side effect of this function is that the values a and c from the internal state,
which are used in the congruential formula, are reset to the default values given
above. This is of importance once the user has called the lcong48 function
(see below).

Functionunsigned short int * seed48 (unsigned short int
seed16v[3])

The seed48 function initializes all 48 bits of the state of the internal random-
number generator from the contents of the parameter seed16v. Here the lower
16 bits of the first element of see16v initialize the least significant 16 bits of the
internal state, the lower 16 bits of seed16v[1] initialize the mid-order 16 bits
of the state and the 16 lower bits of seed16v[2] initialize the most significant
16 bits of the state.
Unlike srand48 this function lets the user initialize all 48 bits of the state.
The value returned by seed48 is a pointer to an array containing the values of
the internal state before the change. This might be useful to restart the random-
number generator at a certain state. Otherwise the value can simply be ignored.
As for srand48, the values a and c from the congruential formula are reset to
the default values.

There is one more function to initialize the random-number generator that en-
ables you to specify even more information by allowing you to change the param-
eters in the congruential formula.

Functionvoid lcong48 (unsigned short int param[7])
The lcong48 function allows the user to change the complete state of the
random-number generator. Unlike srand48 and seed48, this function also
changes the constants in the congruential formula.
From the seven elements in the array param the least significant 16 bits of the en-
tries param[0] to param[2] determine the initial state, the least significant 16
bits of param[3] to param[5] determine the 48-bit constant a and param[6]
determines the 16-bit value c.

All the above functions have in common that they use the global parameters for
the congruential formula. In multithreaded programs, it might sometimes be useful
to have different parameters in different threads. For this reason, all the above
functions have a counterpart that works on a description of the random-number
generator in the user-supplied buffer instead of the global state.

240 The GNU C Library: Application Fundamentals

It is no problem if several threads use the global state if all threads use the func-
tions that take a pointer to an array containing the state. The random numbers
are computed following the same loop, but if the state in the array is different, all
threads will obtain an individual random-number generator.

The user-supplied buffer must be of type struct drand48_data. This type
should be regarded as opaque and not manipulated directly.

Functionint drand48 r (struct drand48_data *buffer, double
*result)

This function is equivalent to the drand48 function with the difference that
it does not modify the global random-number generator parameters but instead
the parameters in the buffer supplied through the pointer buffer. The random
number is returned in the variable pointed to by result.
The return value of the function indicates whether the call succeeded. If the
value is less than 0 an error occurred and errno is set to indicate the problem.
This function is a GNU extension and should not be used in portable programs.

Functionint erand48 r (unsigned short int xsubi [3], struct
drand48_data *buffer, double *result)

The erand48_r function works like erand48, but in addition it takes an
argument buffer that describes the random-number generator. The state of the
random-number generator is taken from the xsubi array, the parameters for
the congruential formula from the global random-number generator data. The
random number is returned in the variable pointed to by result.
The return value is nonnegative if the call succeeded.
This function is a GNU extension and should not be used in portable programs.

Functionint lrand48 r (struct drand48_data *buffer, double
*result)

This function is similar to lrand48, but in addition it takes a pointer to a buffer
describing the state of the random-number generator just like drand48.
If the return value of the function is nonnegative, the variable pointed to by
result contains the result. Otherwise an error occurred.
This function is a GNU extension and should not be used in portable programs.

Functionint nrand48 r (unsigned short int xsubi [3], struct
drand48_data *buffer, long int *result)

The nrand48_r function works like nrand48 in that it produces a random
number in the range 0 to 2ˆ31. But instead of using the global parameters for
the congruential formula, it uses the information from the buffer pointed to by
buffer. The state is described by the values in xsubi.
If the return value is nonnegative, the variable pointed to by result contains the
result.
This function is a GNU extension and should not be used in portable programs.

Chapter 8: Mathematics 241

Functionint mrand48 r (struct drand48_data *buffer, double
*result)

This function is similar to mrand48, but like the other reentrant functions it
uses the random-number generator described by the value in the buffer pointed
to by buffer.
If the return value is nonnegative, the variable pointed to by result contains the
result.
This function is a GNU extension and should not be used in portable programs.

Functionint jrand48 r (unsigned short int xsubi [3], struct
drand48_data *buffer, long int *result)

The jrand48_r function is similar to jrand48. Like the other reentrant
functions of this function family, it uses the congruential formula parameters
from the buffer pointed to by buffer.
If the return value is nonnegative, the variable pointed to by result contains the
result.
This function is a GNU extension and should not be used in portable programs.

Before any of the above functions are used, the buffer of type struct
drand48_data should be initialized. The easiest way to do this is to fill the
whole buffer with null bytes, e.g.:

memset (buffer, ’\0’, sizeof (struct drand48_data));

Using any of the reentrant functions of this family now will automatically initialize
the random-number generator to the default values for the state and the parameters
of the congruential formula.

The other possibility is to use any of the functions that explicitly initialize the
buffer. Though it might be obvious how to initialize the buffer from looking at the
parameter to the function, it is highly recommended to use these functions since the
result might not always be what you expect.

Functionint srand48 r (long int seedval, struct drand48_data
*buffer)

The description of the random-number generator represented by the informa-
tion in buffer is initialized in a similar way to that of srand48. The state is
initialized from the parameter seedval, and the parameters for the congruential
formula are initialized to their default values.
If the return value is nonnegative, the function call succeeded.
This function is a GNU extension and should not be used in portable programs.

Functionint seed48 r (unsigned short int seed16v[3], struct
drand48_data *buffer)

This function is similar to srand48_r, but like seed48 it initializes all 48
bits of the state from the parameter seed16v.
If the return value is nonnegative, the function call succeeded. It does not return
a pointer to the previous state of the random-number generator like the seed48

242 The GNU C Library: Application Fundamentals

function does. If the user wants to preserve the state for a later rerun, she can
copy the whole buffer pointed to by buffer.
This function is a GNU extension and should not be used in portable programs.

Functionint lcong48 r (unsigned short int param[7], struct
drand48_data *buffer)

This function initializes all aspects of the random-number generator described
in buffer with the data in param. Here it is especially true that the function
does more than just copying the contents of param and buffer. More work is
required and therefore it is important to use this function rather than initializing
the random-number generator directly.
If the return value is nonnegative, the function call succeeded.
This function is a GNU extension and should not be used in portable programs.

8.9 Is Fast Code or Small Code Preferred?
If an application uses many floating-point functions, it is often the case that the

cost of the function calls themselves is not negligible. Modern processors can of-
ten execute the operations themselves very fast, but the function call disrupts the
instruction pipeline.

For this reason, the GNU C Library provides optimizations for many of the fre-
quently used math functions. When GNU CC is used and the user activates the op-
timizer, several new in-line functions and macros are defined. These new functions
and macros have the same names as the library functions and so are used instead
of the latter. In the case of in-line functions, the compiler will decide whether it is
reasonable to use them, and this decision is usually correct.

This means that calls to the library functions may be unnecessary, and can in-
crease the speed of generated code significantly. The drawback is that code size
will increase, and the increase is not always negligible.

There are two kind of in-line functions: those that give the same result as the
library functions, and others that might not set errno and might have a reduced
precision or argument range in comparison with the library functions. The latter
in-line functions are only available if the flag -ffast-math is given to GNU
CC.

In cases where the in-line functions and macros are not wanted, the symbol _
_NO_MATH_INLINES should be defined before any system header is included.
This will ensure that only library functions are used. Of course, it can be determined
for each file in the project whether giving this option is preferable or not.

Not all hardware implements the entire IEEE 754 standard, and even if it does
there may be a substantial performance penalty for using some of its features. For
example, enabling traps on some processors forces the FPU to run unpipelined,
which can more than double calculation time.

Chapter 9: Arithmetic Functions 243

9 Arithmetic Functions
This chapter contains information about functions for doing basic arithmetic op-

erations, such as splitting a float into its integer and fractional parts or retrieving
the imaginary part of a complex value. These functions are declared in the header
files ‘math.h’ and ‘complex.h’.

9.1 Integers
The C language defines several integer data types: integer, short integer, long in-

teger, and character; all in both signed and unsigned varieties. The GNU C Compiler
extends the language to contain long long integers as well.

The C integer types were intended to allow code to be portable among machines
with different inherent data sizes (word sizes), so each type may have different
ranges on different machines. The problem with this is that a program often needs
to be written for a particular range of integers, and sometimes must be written for
a particular size of storage, regardless of what machine the program runs on.

To address this problem, the GNU C Library contains C type definitions you
can use to declare integers that meet your exact needs. Because the GNU C Library
header files are customized to a specific machine, your program source code doesn’t
have to be.

These typedefs are in ‘stdint.h’.
If you require that an integer be represented in exactly N bits, use one of the

following types, with the obvious mapping to bit size and signedness:
• int8 t
• int16 t
• int32 t
• int64 t
• uint8 t
• uint16 t
• uint32 t
• uint64 t

If your C compiler and target machine do not allow integers of a certain size, the
corresponding above type does not exist.

If you don’t need a specific storage size, but want the smallest data structure with
at least N bits, use one of these:

• int least8 t
• int least16 t
• int least32 t
• int least64 t
• uint least8 t

244 The GNU C Library: Application Fundamentals

• uint least16 t
• uint least32 t
• uint least64 t
If you don’t need a specific storage size, but want the data structure that allows

the fastest access while having at least N bits (and among data structures with the
same access speed, the smallest one), use one of these:

• int fast8 t
• int fast16 t
• int fast32 t
• int fast64 t
• uint fast8 t
• uint fast16 t
• uint fast32 t
• uint fast64 t
If you want an integer with the widest range possible on the platform on which

it is being used, use one of the following. If you use these, you should write code
that takes into account the variable size and range of the integer.

• intmax t
• uintmax t
The GNU C Library also provides macros that tell you the maximum and min-

imum possible values for each integer data type. The macro names follow these
examples: INT32_MAX, UINT8_MAX, INT_FAST32_MIN, INT_LEAST64_
MIN, UINTMAX_MAX, INTMAX_MAX, INTMAX_MIN. There are no macros for
unsigned integer minima. These are always zero.

There are similar macros for use with C’s built in integer types that should come
with your C compiler.1

Don’t forget that you can use the C sizeof function with any of these data
types to get the number of bytes of storage each uses.

9.2 Integer Division
This section describes functions for performing integer division. These functions

are redundant when GNU CC is used, because in GNU C the ‘/’ operator always
rounds toward zero. But in other C implementations, ‘/’ may round differently with
negative arguments. div and ldiv are useful because they specify how to round
the quotient—toward zero. The remainder has the same sign as the numerator.

These functions are specified to return a result r such that the value
r.quot*denominator + r.rem equals numerator.

To use these facilities, you should include the header file ‘stdlib.h’ in your
program.

1 See Loosemore, et al., “Data Type Measurements” (see chap. 1, n. 1).

Chapter 9: Arithmetic Functions 245

Data Typediv t
This is a structure type used to hold the result returned by the div function. It
has the following members:

int quot The quotient from the division

int rem The remainder from the division

Functiondiv_t div (int numerator, int denominator)
This function div computes the quotient and remainder from the division of
numerator by denominator, returning the result in a structure of type div_t.
If the result cannot be represented (as in a division by zero), the behavior is
undefined.
Here is an example, albeit not a very useful one:

div_t result;

result = div (20, -6);

Now result.quot is -3 and result.rem is 2.

Data Typeldiv t
This is a structure type used to hold the result returned by the ldiv function. It
has the following members:

long int quot
The quotient from the division

long int rem
The remainder from the division

This is identical to div_t, except that the components are of type long int
rather than int.

Functionldiv_t ldiv (long int numerator, long int denominator)
The ldiv function is similar to div, except that the arguments are of type
long int and the result is returned as a structure of type ldiv_t.

Data Typelldiv t
This is a structure type used to hold the result returned by the lldiv function.
It has the following members:

long long int quot
The quotient from the division

long long int rem
The remainder from the division

This is identical to div_t, except that the components are of type long long
int rather than int.

246 The GNU C Library: Application Fundamentals

Functionlldiv_t lldiv (long long int numerator, long long int
denominator)

The lldiv function is like the div function, but the arguments are of type
long long int and the result is returned as a structure of type lldiv_t.
The lldiv function was added in ISO C99.

Data Typeimaxdiv t
This is a structure type used to hold the result returned by the imaxdiv func-
tion. It has the following members:

intmax_t quot
The quotient from the division

intmax_t rem
The remainder from the division

This is identical to div_t, except that the components are of type intmax_t
rather than int (see Section 9.1 [Integers], page 243 for a description of the
intmax_t type).

Functionimaxdiv_t imaxdiv (intmax_t numerator, intmax_t
denominator)

The imaxdiv function is like the div function, but the arguments are of type
intmax_t and the result is returned as a structure of type imaxdiv_t (see
Section 9.1 [Integers], page 243 for a description of the intmax_t type).
The imaxdiv function was added in ISO C99.

9.3 Floating-Point Numbers
Most computer hardware has support for two different kinds of numbers: integers

(. . . −3,−2,−1, 0, 1, 2, 3 . . .) and floating-point numbers. Floating-point numbers
have three parts: the mantissa, the exponent and the sign bit. The real number
represented by a floating-point value is given by (s ? −1 : 1) · 2e ·M where s is
the sign bit, e the exponent, and M the mantissa.2 It is possible to have a different
base for the exponent, but all modern hardware uses 2.

Floating-point numbers can represent a finite subset of the real numbers. While
this subset is large enough for most purposes, it is important to remember that the
only reals that can be represented exactly are rational numbers that have a terminat-
ing binary expansion shorter than the width of the mantissa. Even simple fractions
such as 1/5 can only be approximated by floating point.

Mathematical operations and functions frequently need to produce values that
are not representable. Often these values can be approximated closely enough for
practical purposes, but sometimes they can’t. Historically there was no way to tell
when the results of a calculation were inaccurate. Modern computers implement

2 Ibid., “Floating-Point Representation Concepts”.

Chapter 9: Arithmetic Functions 247

the IEEE 754 standard for numerical computations, which defines a framework for
indicating to the program when the results of calculation are not trustworthy. This
framework consists of a set of exceptions that indicate why a result could not be
represented, and the special values infinity and not a number (NaN).

9.4 Floating-Point Number Classification Functions
ISO C99 defines macros that let you determine what sort of floating-point number

a variable holds.

Macroint fpclassify (float-type x)
This is a generic macro that works on all floating-point types and that returns a
value of type int. The possible values are

FP_NAN The floating-point number x is Not a Number (see Section 9.5.2
[Infinity and NaN], page 250).

FP_INFINITE
The value of x is either plus or minus infinity (see Section 9.5.2
[Infinity and NaN], page 250).

FP_ZERO The value of x is zero. In floating-point formats like IEEE 754,
where zero can be signed, this value is also returned if x is negative
zero.

FP_SUBNORMAL
Numbers whose absolute value is too small to be represented in
the normal format are represented in an alternate, de-normalized
format.3 This format is less precise but can represent values closer
to zero. fpclassify returns this value for values of x in this
alternate format.

FP_NORMAL
This value is returned for all other values of x. It indicates that
there is nothing special about the number.

fpclassify is most useful if more than one property of a number must be
tested. There are more specific macros, which only test one property at a time.
Generally these macros execute faster than fpclassify, since there is special
hardware support for them. You should therefore use the specific macros whenever
possible.

Macroint isfinite (float-type x)
This macro returns a nonzero value if x is finite—not plus or minus infinity, and
not NaN. It is equivalent to:

3 Ibid., “Floating-Point Representation Concepts”.

248 The GNU C Library: Application Fundamentals

(fpclassify (x) != FP_NAN && fpclassify (x) != FP_INFINITE)

isfinite is implemented as a macro that accepts any floating-point type.

Macroint isnormal (float-type x)
This macro returns a nonzero value if x is finite and normalized. It is equivalent
to:

(fpclassify (x) == FP_NORMAL)

Macroint isnan (float-type x)
This macro returns a nonzero value if x is NaN. It is equivalent to:

(fpclassify (x) == FP_NAN)

Another set of floating-point classification functions was provided by BSD. The
GNU C Library also supports these functions; however, we recommend that you use
the ISO C99 macros in new code. Those are standard and will be available more
widely. Also, since they are macros, you do not have to worry about the type of
their argument.

Functionint isinf (double x)
Functionint isinff (float x)
Functionint isinfl (long double x)

This function returns -1 if x represents negative infinity, 1 if x represents posi-
tive infinity, and 0 otherwise.

Functionint isnan (double x)
Functionint isnanf (float x)
Functionint isnanl (long double x)

This function returns a nonzero value if x is a Not a Number value, and zero
otherwise.
The isnan macro defined by ISO C99 overrides the BSD function. This is
normally not a problem, because the two routines behave identically. However,
if you really need to get the BSD function for some reason, you can write:

(isnan) (x)

Functionint finite (double x)
Functionint finitef (float x)
Functionint finitel (long double x)

This function returns a nonzero value if x is finite or a Not a Number value, and
zero otherwise.

Portability Note: The functions listed in this section are BSD extensions.

Chapter 9: Arithmetic Functions 249

9.5 Errors in Floating-Point Calculations

9.5.1 FP Exceptions

The IEEE 754 standard defines five exceptions that can occur during a calcula-
tion. Each corresponds to a particular sort of error, such as overflow.

When exceptions occur (when exceptions are raised, in the language of the stan-
dard), one of two things can happen. By default, the exception is simply noted in
the floating-point status word, and the program continues as if nothing had hap-
pened. The operation produces a default value, which depends on the exception
(see the table below). Your program can check the status word to find out which
exceptions happened.

Alternatively, you can enable traps for exceptions. In that case, when an excep-
tion is raised, your program will receive the SIGFPE signal. The default action for
this signal is to terminate the program.4

In the System V math library, the user-defined function matherr is called when
certain exceptions occur inside math library functions. However, the Unix98 stan-
dard deprecates this interface. We support it for historical compatibility, but rec-
ommend that you do not use it in new programs.
The exceptions defined in IEEE 754 are

‘Invalid Operation’
This exception is raised if the given operands are invalid for the oper-
ation to be performed. Examples are (see IEEE 754, section 7):

1. Addition or subtraction: ∞−∞ (but∞ +∞ =∞)
2. Multiplication: 0·∞
3. Division: 0/0 or∞/∞
4. Remainder: x REM y, where y is zero or x is infinite
5. Square root if the operand is less then zero; more generally, any

mathematical function evaluated outside its domain produces this
exception

6. Conversion of a floating-point number to an integer or decimal
string, when the number cannot be represented in the target for-
mat (due to overflow, infinity, or NaN)

7. Conversion of an unrecognizable input string
8. Comparison via predicates involving < or >, when one or the

other of the operands is NaN; you can prevent this exception
by using the unordered comparison functions instead (see Sec-
tion 9.8.6 [Floating-Point Comparison Functions], page 264)

If the exception does not trap, the result of the operation is NaN.

4 For how you can change the effect of the signal, see Loosemore et al., “Signal Handling”.

250 The GNU C Library: Application Fundamentals

‘Division by Zero’
This exception is raised when a finite nonzero number is divided by
zero. If no trap occurs, the result is either +∞ or −∞, depending on
the signs of the operands.

‘Overflow’
This exception is raised whenever the result cannot be represented as
a finite value in the precision format of the destination. If no trap
occurs, the result depends on the sign of the intermediate result and
the current rounding mode (IEEE 754, section 7.3):

1. Round to nearest carries all overflows to∞ with the sign of the
intermediate result.

2. Round toward 0 carries all overflows to the largest representable
finite number with the sign of the intermediate result.

3. Round toward −∞ carries positive overflows to the largest rep-
resentable finite number and negative overflows to −∞.

4. Round toward∞ carries negative overflows to the most negative
representable finite number and positive overflows to∞.

Whenever the overflow exception is raised, the inexact exception is
also raised.

‘Underflow’
The underflow exception is raised when an intermediate result is too
small to be calculated accurately, or if the operation’s result rounded
to the destination precision is too small to be normalized.
When no trap is installed for the underflow exception, underflow is
signaled (via the underflow flag) only when both tininess and loss of
accuracy have been detected. If no trap handler is installed, the opera-
tion continues with an imprecise small value, or zero if the destination
precision cannot hold the small exact result.

‘Inexact’
This exception is signalled if a rounded result is not exact (such as
when calculating the square root of two) or a result overflows without
an overflow trap.

9.5.2 Infinity and NaN

IEEE 754 floating-point numbers can represent positive or negative infinity, and
NaN (not a number). These three values arise from calculations whose result is
undefined or cannot be represented accurately. You can also deliberately set a
floating-point variable to any of them, which is sometimes useful. Some exam-
ples of calculations that produce infinity or NaN:

1
0

=∞

Chapter 9: Arithmetic Functions 251

log 0 = −∞
√
−1 = NaN

When a calculation produces any of these values, an exception also occurs (see
Section 9.5.1 [FP Exceptions], page 249).

The basic operations and math functions all accept infinity and NaN and produce
sensible output. Infinities propagate through calculations as one would expect: for
example, 2 +∞ = ∞, 4/∞ = 0, atan (∞) = π/2. NaN, on the other hand, infects
any calculation that involves it. Unless the calculation would produce the same
result no matter what real value replaced NaN, the result is NaN.

In comparison operations, positive infinity is larger than all values except itself
and NaN, and negative infinity is smaller than all values except itself and NaN. NaN
is unordered : it is not equal to, greater than, or less than anything, including itself.
x == x is false if the value of x is NaN. You can use this to test whether a value is
NaN or not, but the recommended way to test for NaN is with the isnan function
(see Section 9.4 [Floating-Point Number Classification Functions], page 247). In
addition, <, >, <= and >= will raise an exception when applied to NaNs.

‘math.h’ defines macros that allow you to explicitly set a variable to infinity or
NaN.

Macrofloat INFINITY
An expression representing positive infinity. It is equal to the value produced
by mathematical operations like 1.0 / 0.0. -INFINITY represents negative
infinity.
You can test whether a floating-point value is infinite by comparing it to this
macro. However, this is not recommended; you should use the isfinite
macro instead (see Section 9.4 [Floating-Point Number Classification Func-
tions], page 247).
This macro was introduced in the ISO C99 standard.

Macrofloat NAN
An expression representing a value which is not a number. This macro is a GNU
extension, available only on machines that support the not a number value—that
is to say, on all machines that support IEEE floating point.
You can use ‘#ifdef NAN’ to test whether the machine supports NaN. (Of
course, you must arrange for GNU extensions to be visible, such as by defining
_GNU_SOURCE, and then you must include ‘math.h’.)

IEEE 754 also allows for another unusual value: negative zero. This value is pro-
duced when you divide a positive number by negative infinity, or when a negative
result is smaller than the limits of representation. Negative zero behaves identically
to zero in all calculations, unless you explicitly test the sign bit with signbit or
copysign.

252 The GNU C Library: Application Fundamentals

9.5.3 Examining the FPU Status Word

ISO C99 defines functions to query and manipulate the floating-point status word.
You can use these functions to check for untrapped exceptions when it’s convenient,
rather than worrying about them in the middle of a calculation.

These constants represent the various IEEE 754 exceptions. Not all FPUs report
all the different exceptions. Each constant is defined if and only if the FPU you
are compiling for supports that exception, so you can test for FPU support with
‘#ifdef’. They are defined in ‘fenv.h’.

FE_INEXACT
The inexact exception

FE_DIVBYZERO
The divide by zero exception

FE_UNDERFLOW
The underflow exception

FE_OVERFLOW
The overflow exception

FE_INVALID
The invalid exception

The macro FE_ALL_EXCEPT is the bit-wise OR of all exception macros that
are supported by the FP implementation.

These functions allow you to clear exception flags, test for exceptions, and save
and restore the set of exceptions flagged.

Functionint feclearexcept (int excepts)
This function clears all of the supported exception flags indicated by excepts.
The function returns zero when the operation was successful and a nonzero
value otherwise.

Functionint feraiseexcept (int excepts)
This function raises the supported exceptions indicated by excepts. If more
than one exception bit in excepts is set, the order in which the exceptions are
raised is undefined except that overflow (FE_OVERFLOW) or underflow (FE_
UNDERFLOW) are raised before inexact (FE_INEXACT). For overflow or un-
derflow, whether the inexact exception is also raised is implementation depen-
dent.
The function returns zero when the operation was successful and a nonzero
value otherwise.

Functionint fetestexcept (int excepts)
Test whether the exception flags indicated by the parameter except are currently
set. If any of them are, a nonzero value is returned, which specifies which
exceptions are set. Otherwise, the result is zero.

Chapter 9: Arithmetic Functions 253

To understand these functions, imagine that the status word is an integer variable
named status. feclearexcept is then equivalent to ‘status &= ˜excepts’
and fetestexcept is equivalent to ‘(status & excepts)’. The actual im-
plementation may be very different, of course.

Exception flags are only cleared when the program explicitly requests it, by call-
ing feclearexcept. If you want to check for exceptions from a set of calcula-
tions, you should clear all the flags first. Here is a simple example of the way to
use fetestexcept:

{

double f;

int raised;

feclearexcept (FE_ALL_EXCEPT);

f = compute ();

raised = fetestexcept (FE_OVERFLOW | FE_INVALID);

if (raised & FE_OVERFLOW) { /* ... */ }

if (raised & FE_INVALID) { /* ... */ }

/* ... */

}

You cannot explicitly set bits in the status word. You can, however, save the
entire status word and restore it later. This is done with the following functions:

Functionint fegetexceptflag (fexcept_t *flagp, int excepts)
This function stores in the variable pointed to by flagp an implementation-
defined value representing the current setting of the exception flags indicated
by excepts.
The function returns zero if the operation was successful and a nonzero value
otherwise.

Functionint fesetexceptflag (const fexcept_t *flagp, int excepts)

This function restores the flags for the exceptions indicated by excepts to the
values stored in the variable pointed to by flagp.
The function returns zero if the operation was successful and a nonzero value
otherwise.

The value stored in fexcept_t bears no resemblance to the bit mask returned
by fetestexcept. The type may not even be an integer. Do not attempt to
modify an fexcept_t variable.

9.5.4 Error Reporting by Mathematical Functions

Many of the math functions are defined only over a subset of the real or com-
plex numbers. Even if they are mathematically defined, their result may be larger
or smaller than the range representable by their return type. These are known as
domain errors, overflows, and underflows, respectively. Math functions do several

254 The GNU C Library: Application Fundamentals

things when one of these errors occurs. In this manual we will refer to the complete
response as signalling a domain error, overflow, or underflow.

When a math function suffers a domain error, it raises the invalid exception and
returns NaN. It also sets errno to EDOM; this is for compatibility with old systems
that do not support IEEE 754 exception handling. Likewise, when overflow occurs,
math functions raise the overflow exception and return ∞ or −∞ as appropriate.
They also set errno to ERANGE. When underflow occurs, the underflow exception
is raised, and zero (appropriately signed) is returned. errno may be set to ERANGE,
but this is not guaranteed.

Some of the math functions are defined mathematically to result in a complex
value over parts of their domains. The most familiar example of this is taking the
square root of a negative number. The complex math functions, such as csqrt,
will return the appropriate complex value in this case. The real-valued functions,
such as sqrt, will signal a domain error.

Some older hardware does not support infinities. On that hardware, overflows in-
stead return a particular very large number (usually the largest representable num-
ber). ‘math.h’ defines macros you can use to test for overflow on both old and
new hardware.

Macrodouble HUGE VAL
Macrofloat HUGE VALF
Macrolong double HUGE VALL

An expression representing a particular very large number. On machines that
use IEEE 754 floating-point format, HUGE_VAL is infinity. On other machines,
it’s typically the largest positive number that can be represented.
Mathematical functions return the appropriately typed version of HUGE_VAL or
−HUGE_VAL when the result is too large to be represented.

9.6 Rounding Modes
Floating-point calculations are carried out internally with extra precision, and

then rounded to fit into the destination type. This ensures that results are as precise
as the input data. IEEE 754 defines four possible rounding modes:

Round to nearest
This is the default mode. It should be used unless there is a specific
need for one of the others. In this mode, results are rounded to the
nearest representable value. If the result is midway between two rep-
resentable values, the even representable is chosen. Even here means
the lowest-order bit is zero. This rounding mode prevents statistical
bias and guarantees numeric stability—round-off errors in a lengthy
calculation will remain smaller than half of FLT_EPSILON.

Round toward plus Infinity.
All results are rounded to the smallest representable value that is
greater than the result.

Chapter 9: Arithmetic Functions 255

Round toward minus Infinity.
All results are rounded to the largest representable value that is less
than the result.

Round toward zero
All results are rounded to the largest representable value whose mag-
nitude is less than that of the result. In other words, if the result is
negative, it is rounded up; if it is positive, it is rounded down.

‘fenv.h’ defines constants which you can use to refer to the various rounding
modes. Each one will be defined if and only if the FPU supports the corresponding
rounding mode.

FE_TONEAREST
Round to nearest

FE_UPWARD
Round toward +∞

FE_DOWNWARD
Round toward −∞

FE_TOWARDZERO
Round toward zero

Underflow is an unusual case. Normally, IEEE 754 floating-point numbers are
always normalized.5 Numbers smaller than 2r (where r is the minimum expo-
nent, FLT_MIN_RADIX-1 for float) cannot be represented as normalized num-
bers. Rounding all such numbers to zero or 2r would cause some algorithms to
fail at 0. Therefore, they are left in de-normalized form. That produces loss of
precision, since some bits of the mantissa are stolen to indicate the decimal point.

If a result is too small to be represented as a de-normalized number, it is rounded
to zero. However, the sign of the result is preserved; if the calculation was negative,
the result is negative zero. Negative zero can also result from some operations on
infinity, such as 4/−∞. Negative zero behaves identically to zero except when the
copysign or signbit functions are used to check the sign bit directly.

At any time one of the above four rounding modes is selected. You can find out
which one with this function:

Functionint fegetround (void)
Returns the currently selected rounding mode, represented by one of the values
of the defined rounding mode macros.

To change the rounding mode, use this function:

Functionint fesetround (int round)
Changes the currently selected rounding mode to round. If round does not
correspond to one of the supported rounding modes nothing is changed.

5 Ibid., “Floating-Point Representation Concepts”.

256 The GNU C Library: Application Fundamentals

fesetround returns zero if it changed the rounding mode and a nonzero
value if the mode is not supported.

You should avoid changing the rounding mode if possible. It can be an expensive
operation; also, some hardware requires you to compile your program differently
for it to work. The resulting code may run slower. See your compiler documenta-
tion for details.

9.7 Floating-Point Control Functions
IEEE 754 floating-point implementations allow the programmer to decide

whether traps will occur for each of the exceptions, by setting bits in the control
word. In C, traps result in the program receiving the SIGFPE signal.6

IEEE 754 says that trap handlers are given details of the exceptional situation
and can set the result value. C signals do not provide any mechanism to pass this
information back and forth. Trapping exceptions in C is therefore not very useful.

It is sometimes necessary to save the state of the floating-point unit while you
perform some calculation. The library provides functions that save and restore the
exception flags, the set of exceptions that generate traps, and the rounding mode.
This information is known as the floating-point environment.

The functions to save and restore the floating-point environment all use a variable
of type fenv_t to store information. This type is defined in ‘fenv.h’. Its size
and contents are implementation defined. You should not attempt to manipulate a
variable of this type directly.

To save the state of the FPU, use one of these functions:

Functionint fegetenv (fenv_t *envp)
Store the floating-point environment in the variable pointed to by envp.
The function returns zero if the operation was successful and a nonzero value
otherwise.

Functionint feholdexcept (fenv_t *envp)
Store the current floating-point environment in the object pointed to by envp.
Then clear all exception flags, and set the FPU to trap no exceptions. Not all
FPUs support trapping no exceptions; if feholdexcept cannot set this mode,
it returns a nonzero value. If it succeeds, it returns zero.

The functions that restore the floating-point environment can take these kinds of
arguments:

• Pointers to fenv_t objects that were initialized previously by a call to
fegetenv or feholdexcept.

• The special macro FE_DFL_ENV, which represents the floating-point envi-
ronment as it was available at program start.

6 Ibid., “Signal Handling”.

Chapter 9: Arithmetic Functions 257

• Implementation-defined macros with names starting with FE_ and having type
fenv_t *.
If possible, the GNU C Library defines a macro FE_NOMASK_ENV, which
represents an environment where every exception raised causes a trap to oc-
cur. You can test for this macro using #ifdef. It is only defined if _GNU_
SOURCE is defined.
Some platforms might define other predefined environments.

To set the floating-point environment, you can use either of these functions:

Functionint fesetenv (const fenv_t *envp)
Set the floating-point environment to that described by envp.
The function returns zero if the operation was successful and a nonzero value
otherwise.

Functionint feupdateenv (const fenv_t *envp)
Like fesetenv, this function sets the floating-point environment to that de-
scribed by envp. However, if any exceptions were flagged in the status word
before feupdateenv was called, they remain flagged after the call. In other
words, after feupdateenv is called, the status word is the bit-wise OR of the
previous status word and the one saved in envp.
The function returns zero if the operation was successful and a nonzero value
otherwise.

To control for individual exceptions if raising them causes a trap to occur, you can
use the following two functions.

Portability Note: These functions are all GNU extensions.

Functionint feenableexcept (int excepts)
This function enables traps for each of the exceptions as indicated by the pa-
rameter except. The individual exceptions are described in Section 9.5.3 [Ex-
amining the FPU Status Word], page 252. Only the specified exceptions are
enabled—the status of the other exceptions is not changed.
The function returns the previously enabled exceptions if the operation was suc-
cessful, -1 otherwise.

Functionint fedisableexcept (int excepts)
This function disables traps for each of the exceptions as indicated by the pa-
rameter except. The individual exceptions are described in Section 9.5.3 [Ex-
amining the FPU Status Word], page 252. Only the specified exceptions are
disabled—the status of the other exceptions is not changed.
The function returns the previously enabled exceptions if the operation was suc-
cessful and -1 otherwise.

258 The GNU C Library: Application Fundamentals

Functionint fegetexcept (int excepts)
The function returns a bitmask of all currently enabled exceptions. It returns -1
in case of failure.

9.8 Arithmetic Functions
The C library provides functions to do basic operations on floating-point num-

bers. These include absolute value, maximum and minimum, normalization, bit
twiddling, rounding and a few others.

9.8.1 Absolute Value

These functions are provided for obtaining the absolute value (or magnitude) of
a number. The absolute value of a real number x is x if x is positive, −x if x is
negative. For a complex number z, whose real part is x and whose imaginary part
is y, the absolute value is sqrt (x*x + y*y).

Prototypes for abs, labs and llabs are in ‘stdlib.h’; imaxabs is de-
clared in ‘inttypes.h’; fabs, fabsf and fabsl are declared in ‘math.h’.
cabs, cabsf and cabsl are declared in ‘complex.h’.

Functionint abs (int number)
Functionlong int labs (long int number)
Functionlong long int llabs (long long int number)
Functionintmax_t imaxabs (intmax_t number)

These functions return the absolute value of number.
Most computers use a two’s complement integer representation, in which the
absolute value of INT_MIN (the smallest possible int) cannot be represented;
thus, abs (INT_MIN) is not defined.
llabs and imaxdiv are new to ISO C99.
See Section 9.1 [Integers], page 243 for a description of the intmax_t type.

Functiondouble fabs (double number)
Functionfloat fabsf (float number)
Functionlong double fabsl (long double number)

This function returns the absolute value of the floating-point number number.

Functiondouble cabs (complex double z)
Functionfloat cabsf (complex float z)
Functionlong double cabsl (complex long double z)

These functions return the absolute value of the complex number z (see Sec-
tion 9.9 [Complex Numbers], page 266). The absolute value of a complex num-
ber is

sqrt (creal (z) * creal (z) + cimag (z) * cimag (z))

Chapter 9: Arithmetic Functions 259

This function should always be used instead of the direct formula because it
takes special care to avoid losing precision. It may also take advantage of hard-
ware support for this operation (see hypot in Section 8.4 [Exponentiation and
Logarithms], page 207).

9.8.2 Normalization Functions

The functions described in this section are primarily provided as a way to effi-
ciently perform certain low-level manipulations on floating-point numbers that are
represented internally using a binary radix.7 These functions are required to have
equivalent behavior even if the representation does not use a radix of 2, but of
course they are unlikely to be particularly efficient in those cases.

All these functions are declared in ‘math.h’.

Functiondouble frexp (double value, int *exponent)
Functionfloat frexpf (float value, int *exponent)
Functionlong double frexpl (long double value, int *exponent)

These functions are used to split the number value into a normalized fraction
and an exponent.
If the argument value is not zero, the return value is value times a power of two,
and is always in the range 1/2 (inclusive) to 1 (exclusive). The corresponding
exponent is stored in *exponent ; the return value multiplied by 2 raised to this
exponent equals the original number value.
For example, frexp (12.8, &exponent) returns 0.8 and stores 4 in
exponent.
If value is zero, then the return value is zero, and zero is stored in *exponent .

Functiondouble ldexp (double value, int exponent)
Functionfloat ldexpf (float value, int exponent)
Functionlong double ldexpl (long double value, int exponent)

These functions return the result of multiplying the floating-point number value
by 2 raised to the power exponent. (It can be used to reassemble floating-point
numbers that were taken apart by frexp.)
For example, ldexp (0.8, 4) returns 12.8.

The following functions, which come from BSD, provide facilities equivalent to
those of ldexp and frexp. See also the ISO C function logb, which originally
also appeared in BSD.

Functiondouble scalb (double value, int exponent)
Functionfloat scalbf (float value, int exponent)
Functionlong double scalbl (long double value, int exponent)

The scalb function is the BSD name for ldexp.

7 Ibid., “Floating-Point Representation Concepts”.

260 The GNU C Library: Application Fundamentals

Functionlong long int scalbn (double x, int n)
Functionlong long int scalbnf (float x, int n)
Functionlong long int scalbnl (long double x, int n)

scalbn is identical to scalb, except that the exponent n is an int instead of
a floating-point number.

Functionlong long int scalbln (double x, long int n)
Functionlong long int scalblnf (float x, long int n)
Functionlong long int scalblnl (long double x, long int n)

scalbln is identical to scalb, except that the exponent n is a long int
instead of a floating-point number.

Functionlong long int significand (double x)
Functionlong long int significandf (float x)
Functionlong long int significandl (long double x)

significand returns the mantissa of x scaled to the range [1, 2). It is equiv-
alent to scalb (x, (double) -ilogb (x)).
This function exists mainly for use in certain standardized tests of IEEE 754
conformance.

9.8.3 Rounding Functions

The functions listed here perform operations such as rounding and truncation of
floating-point values. Some of these functions convert floating-point numbers to
integer values. They are all declared in ‘math.h’.

You can also convert floating-point numbers to integers simply by casting them to
int. This discards the fractional part, effectively rounding toward zero. However,
this only works if the result can actually be represented as an int—for very large
numbers, this is impossible. The functions listed here return the result as a double
instead to get around this problem:

Functiondouble ceil (double x)
Functionfloat ceilf (float x)
Functionlong double ceill (long double x)

These functions round x upward to the nearest integer, returning that value as a
double. Thus, ceil (1.5) is 2.0.

Functiondouble floor (double x)
Functionfloat floorf (float x)
Functionlong double floorl (long double x)

These functions round x downward to the nearest integer, returning that value
as a double. Thus, floor (1.5) is 1.0 and floor (-1.5) is -2.0.

Chapter 9: Arithmetic Functions 261

Functiondouble trunc (double x)
Functionfloat truncf (float x)
Functionlong double truncl (long double x)

The trunc functions round x toward zero to the nearest integer (returned in
floating-point format). Thus, trunc (1.5) is 1.0 and trunc (-1.5) is
-1.0.

Functiondouble rint (double x)
Functionfloat rintf (float x)
Functionlong double rintl (long double x)

These functions round x to an integer value according to the current rounding
mode.8 The default rounding mode is to round to the nearest integer; some
machines support other modes, but round-to-nearest is always used unless you
explicitly select another.
If x was not initially an integer, these functions raise the inexact exception.

Functiondouble nearbyint (double x)
Functionfloat nearbyintf (float x)
Functionlong double nearbyintl (long double x)

These functions return the same value as the rint functions, but do not raise
the inexact exception if x is not an integer.

Functiondouble round (double x)
Functionfloat roundf (float x)
Functionlong double roundl (long double x)

These functions are similar to rint, but they round halfway cases away from
zero instead of to the nearest even integer.

Functionlong int lrint (double x)
Functionlong int lrintf (float x)
Functionlong int lrintl (long double x)

These functions are just like rint, but they return a long int instead of a
floating-point number.

Functionlong long int llrint (double x)
Functionlong long int llrintf (float x)
Functionlong long int llrintl (long double x)

These functions are just like rint, but they return a long long int instead
of a floating-point number.

8 See Loosemore et al., “Floating-Point Parameters”, for information about the various rounding
modes.

262 The GNU C Library: Application Fundamentals

Functionlong int lround (double x)
Functionlong int lroundf (float x)
Functionlong int lroundl (long double x)

These functions are just like round, but they return a long int instead of a
floating-point number.

Functionlong long int llround (double x)
Functionlong long int llroundf (float x)
Functionlong long int llroundl (long double x)

These functions are just like round, but they return a long long int instead
of a floating-point number.

Functiondouble modf (double value, double *integer-part)
Functionfloat modff (float value, float *integer-part)
Functionlong double modfl (long double value, long double

*integer-part)
These functions break the argument value into an integer part and a fractional
part (between -1 and 1, exclusive). Their sum equals value. Each of the parts
has the same sign as value, and the integer part is always rounded toward zero.
modf stores the integer part in *integer-part and returns the fractional part.
For example, modf (2.5, &intpart) returns 0.5 and stores 2.0 into
intpart.

9.8.4 Remainder Functions

The functions in this section compute the remainder on division of two floating-
point numbers. Each is a little different; pick the one that suits your problem.

Functiondouble fmod (double numerator, double denominator)
Functionfloat fmodf (float numerator, float denominator)
Functionlong double fmodl (long double numerator, long

double denominator)
These functions compute the remainder from the division of numerator by
denominator. Specifically, the return value is numerator - n * denominator ,
where n is the quotient of numerator divided by denominator, rounded toward
zero to an integer. Thus, fmod (6.5, 2.3) returns 1.9, which is 6.5 minus
4.6.
The result has the same sign as the numerator and has magnitude less than the
magnitude of the denominator.
If denominator is zero, fmod signals a domain error.

Chapter 9: Arithmetic Functions 263

Functiondouble drem (double numerator, double denominator)
Functionfloat dremf (float numerator, float denominator)
Functionlong double dreml (long double numerator, long

double denominator)
These functions are like fmod except that they round the internal quotient n
to the nearest integer instead of toward zero to an integer. For example, drem
(6.5, 2.3) returns -0.4, which is 6.5 minus 6.9.
The absolute value of the result is less than or equal to half the absolute value
of the denominator. The difference between fmod (numerator, denominator)
and drem (numerator, denominator) is always either denominator, minus de-
nominator, or zero.
If denominator is zero, drem signals a domain error.

Functiondouble remainder (double numerator, double
denominator)

Functionfloat remainderf (float numerator, float denominator)
Functionlong double remainderl (long double numerator, long

double denominator)
This function is another name for drem.

9.8.5 Setting and Modifying Single Bits of FP Values

There are some operations that are too complicated or expensive to perform by
hand on floating-point numbers. ISO C99 defines functions to do these operations,
which mostly involve changing single bits.

Functiondouble copysign (double x, double y)
Functionfloat copysignf (float x, float y)
Functionlong double copysignl (long double x, long double y)

These functions return x but with the sign of y. They work even if x or y are
NaN or zero. Both of these can carry a sign (although not all implementations
support it), and this is one of the few operations that can tell the difference.
copysign never raises an exception.
This function is defined in IEC 559 (and the appendix with recommended func-
tions in IEEE 754/IEEE 854).

Functionint signbit (float-type x)
signbit is a generic macro that can work on all floating-point types. It returns
a nonzero value if the value of x has its sign bit set.
This is not the same as x < 0.0, because IEEE 754 floating-point allows zero to
be signed. The comparison -0.0 < 0.0 is false, but signbit (-0.0) will
return a nonzero value.

264 The GNU C Library: Application Fundamentals

Functiondouble nextafter (double x, double y)
Functionfloat nextafterf (float x, float y)
Functionlong double nextafterl (long double x, long double y)

The nextafter function returns the next representable neighbor of x in the
direction toward y. The size of the step between x and the result depends on
the type of the result. If x = y, the function simply returns y. If either value is
NaN, NaN is returned. Otherwise, a value corresponding to the value of the least
significant bit in the mantissa is added or subtracted, depending on the direction.
nextafter will signal overflow or underflow if the result goes outside of the
range of normalized numbers.
This function is defined in IEC 559 (and the appendix with recommended func-
tions in IEEE 754/IEEE 854).

Functiondouble nexttoward (double x, long double y)
Functionfloat nexttowardf (float x, long double y)
Functionlong double nexttowardl (long double x, long double

y)
These functions are identical to the corresponding versions of nextafter ex-
cept that their second argument is a long double.

Functiondouble nan (const char *tagp)
Functionfloat nanf (const char *tagp)
Functionlong double nanl (const char *tagp)

The nan function returns a representation of NaN, provided that NaN is sup-
ported by the target platform. nan ("n-char-sequence") is equivalent to
strtod ("NAN(n-char-sequence)").
The argument tagp is used in an unspecified manner. On IEEE 754 systems,
there are many representations of NaN, and tagp selects one. On other systems
it may do nothing.

9.8.6 Floating-Point Comparison Functions

The standard C comparison operators provoke exceptions when one or other of
the operands is NaN. For example:

int v = a < 1.0;

will raise an exception if a is NaN (this does not happen with == and !=; those
merely return false and true, respectively, when NaN is examined). Frequently, this
exception is undesirable. ISO C99 therefore defines comparison functions that do
not raise exceptions when NaN is examined. All of the functions are implemented
as macros that allow their arguments to be of any floating-point type. The macros
are guaranteed to evaluate their arguments only once.

Chapter 9: Arithmetic Functions 265

Macroint isgreater (real-floating x, real-floating y)
This macro determines whether the argument x is greater than y. It is equivalent
to (x) > (y), but no exception is raised if x or y are NaN.

Macroint isgreaterequal (real-floating x, real-floating y)
This macro determines whether the argument x is greater than or equal to y. It
is equivalent to (x) >= (y), but no exception is raised if x or y are NaN.

Macroint isless (real-floating x, real-floating y)
This macro determines whether the argument x is less than y. It is equivalent to
(x) < (y), but no exception is raised if x or y are NaN.

Macroint islessequal (real-floating x, real-floating y)
This macro determines whether the argument x is less than or equal to y. It is
equivalent to (x) <= (y), but no exception is raised if x or y are NaN.

Macroint islessgreater (real-floating x, real-floating y)
This macro determines whether the argument x is less than or greater than y. It
is equivalent to (x) < (y) || (x) > (y) (although it only evaluates x and y
once), but no exception is raised if x or y are NaN.
This macro is not equivalent to x != y, because that expression is true if x or y
are NaN.

Macroint isunordered (real-floating x, real-floating y)
This macro determines whether its arguments are unordered. In other words, it
is true if x or y are NaN and false otherwise.

Not all machines provide hardware support for these operations. On machines
that do not, the macros can be very slow. Therefore, you should not use these
functions when NaN is not a concern.

There are no macros isequal or isunequal. They are unnecessary, because
the == and != operators do not throw an exception if one or both of the operands
are NaN.

9.8.7 Miscellaneous FP Arithmetic Functions

The functions in this section perform miscellaneous but common operations that
are awkward to express with C operators. On some processors, these functions
can use special machine instructions to perform these operations faster than the
equivalent C code.

Functiondouble fmin (double x, double y)
Functionfloat fminf (float x, float y)
Functionlong double fminl (long double x, long double y)

The fmin function returns the lesser of the two values x and y. It is similar to
the expression:

266 The GNU C Library: Application Fundamentals

((x) < (y) ? (x) : (y))

except that x and y are only evaluated once.
If an argument is NaN, the other argument is returned. If both arguments are
NaN, NaN is returned.

Functiondouble fmax (double x, double y)
Functionfloat fmaxf (float x, float y)
Functionlong double fmaxl (long double x, long double y)

The fmax function returns the greater of the two values x and y.
If an argument is NaN, the other argument is returned. If both arguments are
NaN, NaN is returned.

Functiondouble fdim (double x, double y)
Functionfloat fdimf (float x, float y)
Functionlong double fdiml (long double x, long double y)

The fdim function returns the positive difference between x and y. The positive
difference is x − y if x is greater than y, and 0 otherwise.
If x, y, or both are NaN, NaN is returned.

Functiondouble fma (double x, double y, double z)
Functionfloat fmaf (float x, float y, float z)
Functionlong double fmal (long double x, long double y,

long double z)
The fma function performs floating-point multiply-add. This is the operation
(x·y) + z, but the intermediate result is not rounded to the destination type. This
can sometimes improve the precision of a calculation.
This function was introduced because some processors have a special instruction
to perform multiply-add. The C compiler cannot use it directly, because the
expression ‘x*y + z’ is defined to round the intermediate result. fma lets you
choose when you want to round only once.
On processors that do not implement multiply-add in hardware, fma can be
very slow since it must avoid intermediate rounding. ‘math.h’ defines the
symbols FP_FAST_FMA, FP_FAST_FMAF, and FP_FAST_FMAL when the
corresponding version of fma is no slower than the expression ‘x*y + z’. In
the GNU C Library, this always means the operation is implemented in hardware.

9.9 Complex Numbers
ISO C99 introduces support for complex numbers in C. This is done with a new

type qualifier, complex. It is a keyword if and only if ‘complex.h’ has been
included. There are three complex types, corresponding to the three real types:
float complex, double complex and long double complex.

To construct complex numbers, you need a way to indicate the imaginary part of
a number. There is no standard notation for an imaginary floating-point constant.

Chapter 9: Arithmetic Functions 267

Instead, ‘complex.h’ defines two macros that can be used to create complex
numbers.

Macroconst float complex Complex I
This macro is a representation of the complex number "0 + 1i". Multiplying
a real floating-point value by _Complex_I gives a complex number whose
value is purely imaginary. You can use this to construct complex constants:

3.0 + 4.0i = 3.0 + 4.0 * _Complex_I

Note that _Complex_I * _Complex_I has the value -1, but the type of that
value is complex.

_Complex_I is a bit of a mouthful. ‘complex.h’ also defines a shorter name
for the same constant.

Macroconst float complex I
This macro has exactly the same value as _Complex_I. Most of the time it is
preferable. However, it causes problems if you want to use the identifier I for
something else. You can safely write:

#include <complex.h>

#undef I

if you need I for your own purposes. In that case, we recommend you also
define some other short name for _Complex_I, such as J.

9.10 Projections, Conjugates and Decomposing of
Complex Numbers

ISO C99 also defines functions that perform basic operations on complex num-
bers, such as decomposition and conjugation. The prototypes for all these functions
are in ‘complex.h’. All functions are available in three variants, one for each of
the three complex types.

Functiondouble creal (complex double z)
Functionfloat crealf (complex float z)
Functionlong double creall (complex long double z)

These functions return the real part of the complex number z.

Functiondouble cimag (complex double z)
Functionfloat cimagf (complex float z)
Functionlong double cimagl (complex long double z)

These functions return the imaginary part of the complex number z.

268 The GNU C Library: Application Fundamentals

Functioncomplex double conj (complex double z)
Functioncomplex float conjf (complex float z)
Functioncomplex long double conjl (complex long double z)

These functions return the conjugate value of the complex number z. The con-
jugate of a complex number has the same real part and a negated imaginary part.
In other words, ‘conj(a + bi) = a + -bi’.

Functiondouble carg (complex double z)
Functionfloat cargf (complex float z)
Functionlong double cargl (complex long double z)

These functions return the argument of the complex number z. The argument of
a complex number is the angle in the complex plane between the positive real
axis and a line passing through zero and the number. This angle is measured in
the usual fashion and ranges from 0 to 2π.
carg has a branch cut along the positive real axis.

Functioncomplex double cproj (complex double z)
Functioncomplex float cprojf (complex float z)
Functioncomplex long double cprojl (complex long double z)

These functions return the projection of the complex value z onto the Riemann
sphere. Values with an infinite imaginary part are projected to positive infinity
on the real axis, even if the real part is NaN. If the real part is infinite, the result
is equivalent to:

INFINITY + I * copysign (0.0, cimag (z))

9.11 Parsing of Numbers
This section describes functions for “reading” integer and floating-point numbers

from a string. It may be more convenient in some cases to use sscanf or one of
the related functions (see Section 17.14 [Formatted Input], page 486). But often
you can make a program more robust by finding the tokens in the string by hand,
then converting the numbers one by one.

9.11.1 Parsing of Integers

The ‘str’ functions are declared in ‘stdlib.h’, and those beginning with
‘wcs’ are declared in ‘wchar.h’. You might wonder about the use of restrict
in the prototypes of the functions in this section. It is seemingly useless, but the
ISO C standard uses it (for the functions defined there), so we have to use it as well.

Functionlong int strtol (const char *restrict string, char
**restrict tailptr, int base)

The strtol (“string-to-long”) function converts the initial part of string to a
signed integer, which is returned as a value of type long int.
This function attempts to decompose string as follows:

Chapter 9: Arithmetic Functions 269

• A (possibly empty) sequence of white-space characters—which characters
are white space is determined by the isspace function (see Section 4.1
[Classification of Characters], page 79). These are discarded.

• An optional plus or minus sign (‘+’ or ‘-’)
• A nonempty sequence of digits in the radix specified by base—if base is

zero, decimal radix is assumed unless the series of digits begins with ‘0’
(specifying octal radix), or ‘0x’ or ‘0X’ (specifying hexadecimal radix); in
other words, the same syntax used for integer constants in C.
Otherwise base must have a value between 2 and 36. If base is 16, the
digits may optionally be preceded by ‘0x’ or ‘0X’. If base has no legal
value, the value returned is 0l, and the global variable errno is set to
EINVAL.

• Any remaining characters in the string—if tailptr is not a null pointer,
strtol stores a pointer to this tail in *tailptr .

If the string is empty, contains only white space, or does not contain an initial
substring that has the expected syntax for an integer in the specified base, no
conversion is performed. In this case, strtol returns a value of zero and the
value stored in *tailptr is the value of string.
In a locale other than the standard "C" locale, this function may recognize
additional implementation-dependent syntax.
If the string has valid syntax for an integer but the value is not representable
because of overflow, strtol returns either LONG_MAX or LONG_MIN, as ap-
propriate for the sign of the value.9 It also sets errno to ERANGE to indicate
there was overflow.
You should not check for errors by examining the return value of strtol,
because the string might be a valid representation of 0l, LONG_MAX, or LONG_
MIN. Instead, check whether tailptr points to what you expect after the number
(e.g., ’\0’ if the string should end after the number). You also need to clear
errno before the call and check it afterward, in case there was overflow.
There is an example at the end of this section.

Functionlong int wcstol (const wchar_t *restrict string,
wchar_t **restrict tailptr, int base)

The wcstol function is equivalent to the strtol function in nearly all as-
pects, but it handles wide-character strings.
The wcstol function was introduced in Amendment 1 of ISO C90.

Functionunsigned long int strtoul (const char *restrict
string, char **restrict tailptr, int base)

The strtoul (“string-to-unsigned-long”) function is like strtol except it
converts to an unsigned long int value. The syntax is the same as de-
scribed above for strtol. The value returned on overflow is ULONG_MAX.10

9 Ibid., “Range of an Integer Type”.
10 Ibid.

270 The GNU C Library: Application Fundamentals

If string depicts a negative number, strtoul acts the same as strtol but casts
the result to an unsigned integer. That means, for example, that strtoul on "-
1" returns ULONG_MAX, and an input more negative than LONG_MIN returns
(ULONG_MAX + 1) / 2.
strtoul sets errno to EINVAL if base is out of range, or to ERANGE on
overflow.

Functionunsigned long int wcstoul (const wchar_t
*restrict string, wchar_t **restrict tailptr, int base)

The wcstoul function is equivalent to the strtoul function in nearly all
aspects, but it handles wide-character strings.
The wcstoul function was introduced in Amendment 1 of ISO C90.

Functionlong long int strtoll (const char *restrict string,
char **restrict tailptr, int base)

The strtoll function is like strtol except that it returns a long long
int value and accepts numbers with a correspondingly larger range.
If the string has valid syntax for an integer but the value is not representable
because of overflow, strtoll returns either LONG_LONG_MAX or LONG_
LONG_MIN, as appropriate for the sign of the value.11 It also sets errno to
ERANGE to indicate there was overflow.
The strtoll function was introduced in ISO C99.

Functionlong long int wcstoll (const wchar_t *restrict
string, wchar_t **restrict tailptr, int base)

The wcstoll function is equivalent to the strtoll function in nearly all
aspects, but it handles wide-character strings.
The wcstoll function was introduced in Amendment 1 of ISO C90.

Functionlong long int strtoq (const char *restrict string,
char **restrict tailptr, int base)

strtoq (“string-to-quad-word”) is the BSD name for strtoll.

Functionlong long int wcstoq (const wchar_t *restrict
string, wchar_t **restrict tailptr, int base)

The wcstoq function is equivalent to the strtoq function in nearly all as-
pects, but it handles wide-character strings.
The wcstoq function is a GNU extension.

Functionunsigned long long int strtoull (const char
*restrict string, char **restrict tailptr, int base)

The strtoull function is related to strtoll the same way strtoul is
related to strtol.
The strtoull function was introduced in ISO C99.

11 Ibid.

Chapter 9: Arithmetic Functions 271

Functionunsigned long long int wcstoull (const wchar_t
*restrict string, wchar_t **restrict tailptr, int base)

The wcstoull function is equivalent to the strtoull function in nearly all
aspects, but it handles wide-character strings.
The wcstoull function was introduced in Amendment 1 of ISO C90.

Functionunsigned long long int strtouq (const char
*restrict string, char **restrict tailptr, int base)

strtouq is the BSD name for strtoull.

Functionunsigned long long int wcstouq (const wchar_t
*restrict string, wchar_t **restrict tailptr, int base)

The wcstouq function is equivalent to the strtouq function in nearly all
aspects, but it handles wide-character strings.
The wcstoq function is a GNU extension.

Functionintmax_t strtoimax (const char *restrict string,
char **restrict tailptr, int base)

The strtoimax function is like strtol except that it returns an intmax_t
value and accepts numbers of a corresponding range.
If the string has valid syntax for an integer but the value is not representable
because of overflow, strtoimax returns either INTMAX_MAX or INTMAX_
MIN (see Section 9.1 [Integers], page 243), as appropriate for the sign of the
value. It also sets errno to ERANGE to indicate there was overflow.
See Section 9.1 [Integers], page 243 for a description of the intmax_t type.
The strtoimax function was introduced in ISO C99.

Functionintmax_t wcstoimax (const wchar_t *restrict string,
wchar_t **restrict tailptr, int base)

The wcstoimax function is equivalent to the strtoimax function in nearly
all aspects, but it handles wide-character strings.
The wcstoimax function was introduced in ISO C99.

Functionuintmax_t strtoumax (const char *restrict string,
char **restrict tailptr, int base)

The strtoumax function is related to strtoimax the same way that
strtoul is related to strtol.
See Section 9.1 [Integers], page 243 for a description of the intmax_t type.
The strtoumax function was introduced in ISO C99.

Functionuintmax_t wcstoumax (const wchar_t *restrict
string, wchar_t **restrict tailptr, int base)

The wcstoumax function is equivalent to the strtoumax function in nearly
all aspects, but it handles wide-character strings.
The wcstoumax function was introduced in ISO C99.

272 The GNU C Library: Application Fundamentals

Functionlong int atol (const char *string)
This function is similar to the strtol function with a base argument of 10,
except that it need not detect overflow errors. The atol function is provided
mostly for compatibility with existing code; using strtol is more robust.

Functionint atoi (const char *string)
This function is like atol except that it returns an int. The atoi function is
also considered obsolete; use strtol instead.

Functionlong long int atoll (const char *string)
This function is similar to atol except that it returns a long long int.
The atoll function was introduced in ISO C99. It too is obsolete (despite
having just been added); use strtoll instead.

All the functions mentioned in this section so far do not handle alternative rep-
resentations of characters as described in the locale data. Some locales specify the
thousands-separator and the way they have to be used, which can help to make
large numbers more readable. To read such numbers, one has to use the scanf
functions with the ‘’’ flag.

Here is a function that parses a string as a sequence of integers and returns the
sum of them:

int

sum_ints_from_string (char *string)

{

int sum = 0;

while (1) {

char *tail;

int next;

/* Skip white space by hand, to detect the end. */

while (isspace (*string)) string++;

if (*string == 0)

break;

/* There is more non-white-space, */

/* so it ought to be another number. */

errno = 0;

/* Parse it. */

next = strtol (string, &tail, 0);

/* Add it in, if not overflow. */

if (errno)

printf ("Overflow\n");

else

sum += next;

Chapter 9: Arithmetic Functions 273

/* Advance past it. */

string = tail;

}

return sum;

}

9.11.2 Parsing of Floats

The ‘str’ functions are declared in ‘stdlib.h’, and those beginning with
‘wcs’ are declared in ‘wchar.h’. One might wonder about the use of restrict
in the prototypes of the functions in this section. It is seemingly useless, but the
ISO C standard uses it (for the functions defined there), so we have to use it as well.

Functiondouble strtod (const char *restrict string, char
**restrict tailptr)

The strtod (“string-to-double”) function converts the initial part of string to
a floating-point number, which is returned as a value of type double.
This function attempts to decompose string as follows:

• A (possibly empty) sequence of white-space characters—which characters
are white space is determined by the isspace function (see Section 4.1
[Classification of Characters], page 79). These are discarded.

• An optional plus or minus sign (‘+’ or ‘-’)
• A floating-point number in decimal or hexadecimal format; the decimal

format is:
− A nonempty sequence of digits optionally containing a decimal-

point character—normally ‘.’, but it depends on the locale (see Sec-
tion 7.6.1.1 [Generic Numeric Formatting Parameters], page 187).

− An optional exponent part, consisting of a character ‘e’ or ‘E’, an
optional sign and a sequence of digits

The hexadecimal format is as follows:
− A 0x or 0X followed by a nonempty sequence of hexadecimal digits

optionally containing a decimal-point character—normally ‘.’, but it
depends on the locale (see Section 7.6.1.1 [Generic Numeric Format-
ting Parameters], page 187)

− An optional binary-exponent part, consisting of a character ‘p’ or ‘P’,
an optional sign, and a sequence of digits

• Any remaining characters in the string. If tailptr is not a null pointer, a
pointer to this tail of the string is stored in *tailptr .

If the string is empty, contains only white space, or does not contain an initial
substring that has the expected syntax for a floating-point number, no conver-
sion is performed. In this case, strtod returns a value of zero and the value
returned in *tailptr is the value of string.

274 The GNU C Library: Application Fundamentals

In a locale other than the standard "C" or "POSIX" locales, this function may
recognize additional locale-dependent syntax.
If the string has valid syntax for a floating-point number but the value is outside
the range of a double, strtod will signal overflow or underflow as described
in Section 9.5.4 [Error Reporting by Mathematical Functions], page 253.
strtod recognizes four special input strings. The strings "inf" and
"infinity" are converted to ∞, or to the largest representable value if the
floating-point format doesn’t support infinities. You can prepend a "+" or "-"
to specify the sign. Case is ignored when scanning these strings.
The strings "nan" and "nan(chars. . .)" are converted to NaN. Again, case
is ignored. If chars. . . are provided, they are used in some unspecified fashion
to select a particular representation of NaN (there can be several).
Since zero is a valid result as well as the value returned on error, you should
check for errors in the same way as for strtol, by examining errno and tailptr.

Functionfloat strtof (const char *string, char **tailptr)
Functionlong double strtold (const char *string, char **tailptr)

These functions are analogous to strtod, but they return float and long
double values respectively. They report errors in the same way as strtod.
strtof can be substantially faster than strtod, but has less precision; con-
versely, strtold can be much slower, but has more precision (on systems
where long double is a separate type).
These functions have been GNU extensions and are new to ISO C99.

Functiondouble wcstod (const wchar_t *restrict string,
wchar_t **restrict tailptr)

Functionfloat wcstof (const wchar_t *string, wchar_t **tailptr)
Functionlong double wcstold (const wchar_t *string, wchar_t

**tailptr)
The wcstod, wcstof and wcstol functions are equivalent in nearly all as-
pect to the strtod, strtof and strtold functions, but they handle wide-
character strings.
The wcstod function was introduced in Amendment 1 of ISO C90. The
wcstof and wcstold functions were introduced in ISO C99.

Functiondouble atof (const char *string)
This function is similar to the strtod function, except that it need not de-
tect overflow and underflow errors. The atof function is provided mostly for
compatibility with existing code; using strtod is more robust.

The GNU C Library also provides ‘_l’ versions of these functions, which take
an additional argument, the locale to use in conversion (see Section 9.11.1 [Parsing
of Integers], page 268).

Chapter 9: Arithmetic Functions 275

9.12 Old-fashioned System V Number-to-String
Functions

The old System V C library provided three functions to convert numbers to
strings, with unusual and hard-to-use semantics. The GNU C library also provides
these functions and some natural extensions.

These functions are only available in glibc and on systems descended from
AT&T Unix. Therefore, unless these functions do precisely what you need, it is
better to use sprintf, which is standard.

All these functions are defined in ‘stdlib.h’.

Functionchar * ecvt (double value, int ndigit, int *decpt, int
*neg)

The function ecvt converts the floating-point number value to a string with at
most ndigit decimal digits. The returned string contains no decimal point or
sign. The first digit of the string is nonzero (unless value is actually zero) and
the last digit is rounded to nearest. *decpt is set to the index in the string of
the first digit after the decimal point. *neg is set to a nonzero value if value is
negative and zero otherwise.
If ndigit decimal digits would exceed the precision of a double, it is reduced
to a system-specific value.
The returned string is statically allocated and overwritten by each call to ecvt.
If value is zero, whether *decpt is 0 or 1 is implementation defined.
For example: ecvt (12.3, 5, &d, &n) returns "12300" and sets d to 2
and n to 0.

Functionchar * fcvt (double value, int ndigit, int *decpt, int
*neg)

The function fcvt is like ecvt, but ndigit specifies the number of digits after
the decimal point. If ndigit is less than zero, value is rounded to the ndigit +1’th
place to the left of the decimal point. For example, if ndigit is -1, value will
be rounded to the nearest 10. If ndigit is negative and larger than the number
of digits to the left of the decimal point in value, value will be rounded to one
significant digit.
If ndigit decimal digits would exceed the precision of a double, it is reduced
to a system-specific value.
The returned string is statically allocated and overwritten by each call to fcvt.

Functionchar * gcvt (double value, int ndigit, char *buf)
gcvt is functionally equivalent to ‘sprintf(buf, "%*g", ndigit,
value)’. It is provided only for compatibility’s sake. It returns buf.
If ndigit decimal digits would exceed the precision of a double, it is reduced
to a system-specific value.

276 The GNU C Library: Application Fundamentals

As extensions, the GNU C Library provides versions of these three functions that
take long double arguments.

Functionchar * qecvt (long double value, int ndigit, int *decpt,
int *neg)

This function is equivalent to ecvt, except that it takes a long double for the
first parameter and that ndigit is restricted by the precision of a long double.

Functionchar * qfcvt (long double value, int ndigit, int *decpt,
int *neg)

This function is equivalent to fcvt, except that it takes a long double for the
first parameter, and that ndigit is restricted by the precision of a long double.

Functionchar * qgcvt (long double value, int ndigit, char *buf)
This function is equivalent to gcvt, except that it takes a long double for the
first parameter, and that ndigit is restricted by the precision of a long double.

The ecvt and fcvt functions, and their long double equivalents, all return
a string located in a static buffer, which is overwritten by the next call to the func-
tion. The GNU C Library provides another set of extended functions that write the
converted string into a user-supplied buffer. These have the conventional _r suffix.
gcvt_r is not necessary, because gcvt already uses a user-supplied buffer.

Functionchar * ecvt r (double value, int ndigit, int *decpt, int
*neg, char *buf, size_t len)

The ecvt_r function is the same as ecvt, except that it places its result into
the user-specified buffer pointed to by buf, with length len.
This function is a GNU extension.

Functionchar * fcvt r (double value, int ndigit, int *decpt, int
*neg, char *buf, size_t len)

The fcvt_r function is the same as fcvt, except that it places its result into
the user-specified buffer pointed to by buf, with length len.
This function is a GNU extension.

Functionchar * qecvt r (long double value, int ndigit, int
*decpt, int *neg, char *buf, size_t len)

The qecvt_r function is the same as qecvt, except that it places its result
into the user-specified buffer pointed to by buf, with length len.
This function is a GNU extension.

Functionchar * qfcvt r (long double value, int ndigit, int
*decpt, int *neg, char *buf, size_t len)

The qfcvt_r function is the same as qfcvt, except that it places its result
into the user-specified buffer pointed to by buf, with length len.
This function is a GNU extension.

Chapter 10: Date and Time 277

10 Date and Time
This chapter describes functions for manipulating dates and times, including

functions for determining what time it is and conversion between different time
representations.

10.1 Time Basics
Discussing time in a technical manual can be difficult because the word time

in English refers to lots of different things. In this manual, we use a rigorous
terminology to avoid confusion, and the only thing we use the simple word time
for is to talk about the abstract concept.

A calendar time is a point in the time continuum, for example November 4, 1990
at 18:02.5 UTC. Sometimes this is called absolute time.

We don’t speak of a date, because that is inherent in a calendar time.
An interval is a contiguous part of the time continuum between two calendar

times, such as the hour between 9:00 and 10:00 on July 4, 1980.
An elapsed time is the length of an interval, such as 35 minutes. People some-

times sloppily use the word interval to refer to the elapsed time of some interval.

An amount of time is a sum of elapsed times, which need not be of any specific
intervals. For example, the amount of time it takes to read a book might be 9 hours,
independently of when and in how many sittings it is read.

A period is the elapsed time of an interval between two events, especially when
they are part of a sequence of regularly repeating events.

CPU time is like calendar time, except that it is based on the subset of the time
continuum when a particular process is actively using a CPU. CPU time is therefore
relative to a process.

Processor time is an amount of time that a CPU is in use. In fact, it’s a basic
system resource, since there is a limit to how much can exist in any given interval
(that limit is the elapsed time of the interval multiplied by the number of CPUs in
the processor). People often call this CPU time, but we reserve the latter term in
this manual for the definition above.

10.2 Elapsed Time
One way to represent an elapsed time is with a simple arithmetic data type, as

with the following function to compute the elapsed time between two calendar
times. This function is declared in ‘time.h’:

Functiondouble difftime (time_t time1, time_t time0)
The difftime function returns the number of seconds of elapsed time be-
tween calendar time time1 and calendar time time0, as a value of type double.
The difference ignores leap seconds unless leap second support is enabled.

278 The GNU C Library: Application Fundamentals

In the GNU system, you can simply subtract time_t values. But on other sys-
tems, the time_t data type might use some other encoding where subtraction
doesn’t work directly.

The GNU C Library provides two data types specifically for representing an
elapsed time. They are used by various GNU C Library functions, and you can
use them for your own purposes too. They’re exactly the same, except that one has
a resolution in microseconds, and the other, newer one, has a resolution in nanosec-
onds.

Data Typestruct timeval
The struct timeval structure represents an elapsed time. It is declared in
‘sys/time.h’ and has the following members:

long int tv_sec
This represents the number of whole seconds of elapsed time.

long int tv_usec
This is the rest of the elapsed time (a fraction of a second), repre-
sented as the number of microseconds. It is always less than one
million.

Data Typestruct timespec
The struct timespec structure represents an elapsed time. It is declared in
‘time.h’ and has the following members:

long int tv_sec
This represents the number of whole seconds of elapsed time.

long int tv_nsec
This is the rest of the elapsed time (a fraction of a second), repre-
sented as the number of nanoseconds. It is always less than one
billion.

It is often necessary to subtract two values of type struct timeval or
struct timespec. Here is the best way to do this (it works even on some
peculiar operating systems where the tv_sec member has an unsigned type):

/* Subtract the ‘struct timeval’ values X and Y,

storing the result in RESULT.

Return 1 if the difference is negative, otherwise 0. */

int

timeval_subtract (result, x, y)

struct timeval *result, *x, *y;

{

/* Perform the carry for the later subtraction by updating y. */

if (x->tv_usec < y->tv_usec) {

int nsec = (y->tv_usec - x->tv_usec) / 1000000 + 1;

Chapter 10: Date and Time 279

y->tv_usec -= 1000000 * nsec;

y->tv_sec += nsec;

}

if (x->tv_usec - y->tv_usec > 1000000) {

int nsec = (x->tv_usec - y->tv_usec) / 1000000;

y->tv_usec += 1000000 * nsec;

y->tv_sec -= nsec;

}

/* Compute the time remaining to wait.

tv_usec is certainly positive. */

result->tv_sec = x->tv_sec - y->tv_sec;

result->tv_usec = x->tv_usec - y->tv_usec;

/* Return 1 if result is negative. */

return x->tv_sec < y->tv_sec;

}

Common functions that use struct timeval are gettimeofday and
settimeofday.

There are no GNU C Library functions specifically oriented toward dealing with
elapsed times, but the calendar time, processor time and alarm and sleeping func-
tions have a lot to do with them.

10.3 Processor and CPU Time

If you are trying to optimize your program or measure its efficiency, it’s very
useful to know how much processor time it uses. For that, calendar time and elapsed
times are useless because a process may spend time waiting for I/O or for other
processes to use the CPU. However, you can get the information with the functions
in this section.

CPU time (see Section 10.1 [Time Basics], page 277) is represented by the data
type clock_t, which is a number of clock ticks. It gives the total amount of time
a process has actively used a CPU since some arbitrary event. On the GNU system,
that event is the creation of the process. While arbitrary in general, the event is
always the same event for any particular process, so you can always measure how
much time on the CPU a particular computation takes by examinining the process’
CPU time before and after the computation.

In the GNU system, clock_t is equivalent to long int and CLOCKS_PER_
SEC is an integer value. But in other systems, both clock_t and the macro
CLOCKS_PER_SEC can be either integer or floating-point types. Casting CPU
time values to double, as in the example above, makes sure that operations such
as arithmetic and printing work properly and consistently no matter what the un-
derlying representation is.

280 The GNU C Library: Application Fundamentals

Note that the clock can wrap around. On a 32-bit system with CLOCKS_PER_
SEC set to one million, this function will return the same value approximately every
72 minutes.1

10.3.1 CPU Time Inquiry

To get a process’ CPU time, you can use the clock function. This facility is
declared in the header file ‘time.h’.

In typical usage, you call the clock function at the beginning and end of the
interval you want to time, subtract the values and then divide by CLOCKS_PER_
SEC (the number of clock ticks per second) to get processor time, like this:

#include <time.h>

clock_t start, end;

double cpu_time_used;

start = clock();

... /* Do the work. */

end = clock();

cpu_time_used = ((double) (end - start)) / CLOCKS_PER_SEC;

Do not use a single CPU time as an amount of time; it doesn’t work that way.
Either do a subtraction as shown above or query processor time directly (see Sec-
tion 10.3.2 [Processor Time Inquiry], page 281).

Different computers and operating systems vary wildly in how they keep track
of CPU time. It’s common for the internal processor clock to have a resolution
somewhere between a hundredth and millionth of a second.

Macroint CLOCKS PER SEC
The value of this macro is the number of clock ticks per second measured by
the clock function. POSIX requires that this value be one million independent
of the actual resolution.

Macroint CLK TCK
This is an obsolete name for CLOCKS_PER_SEC.

Data Typeclock t
This is the type of the value returned by the clock function. Values of type
clock_t are numbers of clock ticks.

1 See Loosemore et al., “Resource Usage and Limitation”, for additional functions to examine a
process’ use of processor time and to control it.

Chapter 10: Date and Time 281

Functionclock_t clock (void)
This function returns the calling process’ current CPU time. If the CPU time
is not available or cannot be represented, clock returns the value (clock_
t)(-1).

10.3.2 Processor Time Inquiry

The times function returns information about a process’ consumption of pro-
cessor time in a struct tms object, in addition to the process’ CPU time (see
Section 10.1 [Time Basics], page 277). You should include the header file
‘sys/times.h’ to use this facility.

Data Typestruct tms
The tms structure is used to return information about process times. It contains
at least the following members:

clock_t tms_utime
This is the total processor time the calling process has used in ex-
ecuting the instructions of its program.

clock_t tms_stime
This is the processor time the system has used on behalf of the
calling process.

clock_t tms_cutime
This is the sum of the tms_utime values and the tms_cutime
values of all terminated child processes of the calling process,
whose status has been reported to the parent process by wait or
waitpid.2 In other words, it represents the total processor time
used in executing the instructions of all the terminated child pro-
cesses of the calling process, excluding child processes that have
not yet been reported by wait or waitpid.

clock_t tms_cstime
This is similar to tms_cutime, but represents the total proces-
sor time the system has used on behalf of all the terminated child
processes of the calling process.

All of the times are given in numbers of clock ticks. Unlike CPU time, these are
the actual amounts of time; they are not relative to any event.3

Functionclock_t times (struct tms *buffer)
The times function stores the processor time information for the calling pro-
cess in buffer.
The return value is the calling process’ CPU time (the same value you get from
clock()). times returns (clock_t)(-1) to indicate failure.

2 Ibid., “Process Completion”.
3 Ibid., “Creating a Process”.

282 The GNU C Library: Application Fundamentals

Portability Note: The clock function described in Section 10.3.1 [CPU Time
Inquiry], page 280, is specified by the ISO C standard. The times function is a
feature of POSIX.1. In the GNU system, the CPU time is defined to be equivalent to
the sum of the tms_utime and tms_stime fields returned by times.

10.4 Calendar Time
This section describes facilities for keeping track of calendar time (see Sec-

tion 10.1 [Time Basics], page 277).
The GNU C Library represents calendar time three ways:
• Simple time (the time_t data type) is a compact representation, typically

giving the number of seconds of elapsed time since some implementation-
specific base time.

• There is also a high-resolution time representation. Like simple time, this
represents a calendar time as an elapsed time since a base time, but instead of
measuring in whole seconds, it uses a struct timeval data type, which
includes fractions of a second. Use this time representation instead of simple
time when you need greater precision.

• Local time or broken-down time (the struct tm data type) represents a cal-
endar time as a set of components specifying the year, month, etc., in the
Gregorian calendar for a specific time zone. This calendar time representation
is usually used only to communicate with people.

10.4.1 Simple Calendar Time

This section describes the time_t data type for representing calendar time as
simple time, and the functions that operate on simple time objects. These facilities
are declared in the header file ‘time.h’.

Data Typetime t
This is the data type used to represent simple time. Sometimes, it also represents
an elapsed time. When interpreted as a calendar time value, it represents the
number of seconds elapsed since 00:00:00 on January 1, 1970, Coordinated Uni-
versal Time (this calendar time is sometimes referred to as the epoch). POSIX
requires that this count not include leap seconds, but on some systems this count
includes leap seconds if you set TZ to certain values (see Section 10.4.7 [Spec-
ifying the Time Zone with TZ], page 306).
A simple time has no concept of local time zone. Calendar Time T is the same
instant in time regardless of where on the globe the computer is.
In the GNU C Library, time_t is equivalent to long int. In other systems,
time_t might be either an integer or floating-point type.

The function difftime tells you the elapsed time between two simple calendar
times, which is not always as easy to compute as just subtracting (see Section 10.2
[Elapsed Time], page 277).

Chapter 10: Date and Time 283

Functiontime_t time (time_t *result)
The time function returns the current calendar time as a value of type time_
t. If the argument result is not a null pointer, the calendar time value is
also stored in *result . If the current calendar time is not available, the value
(time_t)(-1) is returned.

Functionint stime (time_t *newtime)
stime sets the system clock, i.e., it tells the system that the current calendar
time is newtime, where newtime is interpreted as described in the above defi-
nition of time_t.
settimeofday is a newer function that sets the system clock to better than
one second precision. settimeofday is generally a better choice than
stime (see Section 10.4.2 [High-Resolution Calendar], page 283).
Only the superuser can set the system clock.
If the function succeeds, the return value is zero. Otherwise, it is -1 and errno
is set accordingly:

EPERM The process is not superuser.

10.4.2 High-Resolution Calendar

The time_t data type used to represent simple times has a resolution of only 1
second. Some applications need more precision.

So, the GNU C Library also contains functions that are capable of representing
calendar times to a higher resolution than 1 second. The functions and the associ-
ated data types described in this section are declared in ‘sys/time.h’.

Data Typestruct timezone
The struct timezone structure is used to hold minimal information about
the local time zone. It has the following members:

int tz_minuteswest
This is the number of minutes west of UTC.

int tz_dsttime
If nonzero, daylight saving time applies during some part of the
year.

The struct timezone type is obsolete and should never be used. Instead,
use the facilities described in Section 10.4.8 [Functions and Variables for Time
Zones], page 308.

Functionint gettimeofday (struct timeval *tp, struct
timezone *tzp)

The gettimeofday function returns the current calendar time as the elapsed
time since the epoch in the struct timeval structure indicated by tp.
(see Section 10.2 [Elapsed Time], page 277 for a description of struct

284 The GNU C Library: Application Fundamentals

timeval). Information about the time zone is returned in the structure pointed
at tzp. If the tzp argument is a null pointer, time zone information is ignored.
The return value is 0 on success and -1 on failure. The following errno error
condition is defined for this function:

ENOSYS The operating system does not support getting time zone informa-
tion, and tzp is not a null pointer. The GNU operating system does
not support using struct timezone to represent time zone in-
formation; that is an obsolete feature of 4.3 BSD. Instead, use the
facilities described in Section 10.4.8 [Functions and Variables for
Time Zones], page 308.

Functionint settimeofday (const struct timeval *tp, const
struct timezone *tzp)

The settimeofday function sets the current calendar time in the system
clock according to the arguments. As for gettimeofday, the calendar time
is represented as the elapsed time since the epoch. As for gettimeofday,
time zone information is ignored if tzp is a null pointer.
You must be a privileged user in order to use settimeofday.
Some kernels automatically set the system clock from some source such as a
hardware clock when they start up. Others, including Linux, place the system
clock in an invalid state (in which attempts to read the clock fail). A call of
stime removes the system clock from an invalid state, and system start-up
scripts typically run a program that calls stime.
settimeofday causes a sudden jump forward or backward, which can cause
a variety of problems in a system. Use adjtime (below) to make a smooth
transition from one time to another by temporarily speeding up or slowing down
the clock.
With a Linux kernel, adjtimex does the same thing and can also make per-
manent changes to the speed of the system clock so that it doesn’t need to be
corrected as often.
The return value is 0 on success and -1 on failure. The following errno error
conditions are defined for this function:

EPERM This process cannot set the clock because it is not privileged.

ENOSYS The operating system does not support setting time zone informa-
tion, and tzp is not a null pointer.

Functionint adjtime (const struct timeval *delta, struct
timeval *olddelta)

This function speeds up or slows down the system clock in order to make a
gradual adjustment. This ensures that the calendar time reported by the system
clock is always monotonically increasing, which might not happen if you simply
set the clock.

Chapter 10: Date and Time 285

The delta argument specifies a relative adjustment to be made to the clock time.
If negative, the system clock is slowed down for a while until it has lost this
much elapsed time. If positive, the system clock is speeded up for a while.
If the olddelta argument is not a null pointer, the adjtime function returns
information about any previous time adjustment that has not yet been completed.
This function is typically used to synchronize the clocks of computers in a local
network. You must be a privileged user to use it.
With a Linux kernel, you can use the adjtimex function to permanently
change the clock speed.
The return value is 0 on success and -1 on failure. The following errno error
condition is defined for this function:

EPERM You do not have privilege to set the time.

Portability Note: The gettimeofday, settimeofday and adjtime
functions are derived from BSD.

Symbols for the following function are declared in ‘sys/timex.h’:

Functionint adjtimex (struct timex *timex)
adjtimex is functionally identical to ntp_adjtime (see Section 10.4.4
[High-Accuracy Clock], page 288).
This function is present only with a Linux kernel.

10.4.3 Broken-Down Time

Calendar time is represented by the usual GNU C Library functions as an elapsed
time since a fixed base calendar time. This is convenient for computation, but has
no relation to the way people normally think of calendar time. By contrast, broken-
down time is a binary representation of calendar time separated into year, month,
day and so on. Broken-down time values are not useful for calculations, but they
are useful for printing human-readable time information.

A broken-down time value is always relative to a choice of time zone, and it also
indicates which time zone that is.

The symbols in this section are declared in the header file ‘time.h’.

Data Typestruct tm
This is the data type used to represent a broken-down time. The structure con-
tains at least the following members, which can appear in any order:

int tm_sec
This is the number of full seconds since the top of the minute (nor-
mally in the range 0 through 59, but the actual upper limit is 60,
to allow for leap seconds if leap second support is available).

int tm_min
This is the number of full minutes since the top of the hour (in the
range 0 through 59).

286 The GNU C Library: Application Fundamentals

int tm_hour
This is the number of full hours past midnight (in the range 0
through 23).

int tm_mday
This is the ordinal day of the month (in the range 1 through 31).
Watch out for this one! As the only ordinal number in the structure,
it is inconsistent with the rest of the structure.

int tm_mon
This is the number of full calendar months since the beginning of
the year (in the range 0 through 11). Watch out for this one! Peo-
ple usually use ordinal numbers for month-of-year (where January
= 1).

int tm_year
This is the number of full calendar years since 1900.

int tm_wday
This is the number of full days since Sunday (in the range 0
through 6).

int tm_yday
This is the number of full days since the beginning of the year (in
the range 0 through 365).

int tm_isdst
This is a flag that indicates whether daylight saving time is (or was,
or will be) in effect at the time described. The value is positive if
daylight saving time is in effect, zero if it is not and negative if the
information is not available.

long int tm_gmtoff
This field describes the time zone that was used to compute this
broken-down time value, including any adjustment for daylight
saving; it is the number of seconds that you must add to UTC
to get local time. You can also think of this as the number of sec-
onds east of UTC. For example, for US eastern standard time, the
value is -5*60*60. The tm_gmtoff field is derived from BSD
and is a GNU library extension; it is not visible in a strict ISO C
environment.

const char *tm_zone
This field is the name for the time zone that was used to compute
this broken-down time value. Like tm_gmtoff, this field is a BSD
and GNU extension, and is not visible in a strict ISO C environment.

Functionstruct tm * localtime (const time_t *time)
The localtime function converts the simple time pointed to by time to
broken-down time representation, expressed relative to the user’s specified time
zone.

Chapter 10: Date and Time 287

The return value is a pointer to a static broken-down time structure, which might
be overwritten by subsequent calls to ctime, gmtime, or localtime (but
no other library function overwrites the contents of this object).
The return value is the null pointer if time cannot be represented as a broken-
down time; typically this is because the year cannot fit into an int.
Calling localtime has one other effect: it sets the variable tzname with in-
formation about the current time zone (see Section 10.4.8 [Functions and Vari-
ables for Time Zones], page 308).

Using the localtime function is a big problem in multithreaded programs.
The result is returned in a static buffer and this is used in all threads. POSIX.1c
introduced a variant of this function.

Functionstruct tm * localtime r (const time_t *time, struct
tm *resultp)

The localtime_r function works just like the localtime function. It takes
a pointer to a variable containing a simple time and converts it to the broken-
down time format.
But the result is not placed in a static buffer. Instead it is placed in the object of
type struct tm to which the parameter resultp points.
If the conversion is successful the function returns a pointer to the object the
result was written into, i.e., it returns resultp.

Functionstruct tm * gmtime (const time_t *time)
This function is similar to localtime, except that the broken-down time is
expressed as Coordinated Universal Time (UTC) (formerly called Greenwich
mean time (GMT)) rather than relative to a local time zone.

As for the localtime function, we have the problem that the result is placed
in a static variable. POSIX.1c also provides a replacement for gmtime.

Functionstruct tm * gmtime r (const time_t *time, struct tm
*resultp)

This function is similar to localtime_r, except that it converts, just like
gmtime, the given time as Coordinated Universal Time.
If the conversion is successful, the function returns a pointer to the object the
result was written into, i.e., it returns resultp.

Functiontime_t mktime (struct tm *brokentime)
The mktime function is used to convert a broken-down time structure to a
simple time representation. It also normalizes the contents of the broken-down
time structure, by filling in the day of week and day of year based on the other
date and time components.
The mktime function ignores the specified contents of the tm_wday and tm_
yday members of the broken-down time structure. It uses the values of the

288 The GNU C Library: Application Fundamentals

other components to determine the calendar time; it’s permissible for these com-
ponents to have unnormalized values outside their normal ranges. The last thing
that mktime does is adjust the components of the brokentime structure (includ-
ing the tm_wday and tm_yday).
If the specified broken-down time cannot be represented as a simple time,
mktime returns a value of (time_t)(-1) and does not modify the contents
of brokentime.
Calling mktime also sets the variable tzname with information about the cur-
rent time zone (see Section 10.4.8 [Functions and Variables for Time Zones],
page 308).

Functiontime_t timelocal (struct tm *brokentime)
timelocal is functionally identical to mktime, but more mnemonically
named. It is the inverse of the localtime function.
Portability Note: mktime is essentially universally available. timelocal is
rather rare.

Functiontime_t timegm (struct tm *brokentime)
timegm is functionally identical to mktime, except that it always takes the
input values to be Coordinated Universal Time (UTC) regardless of any local
time zone setting.
timegm is the inverse of gmtime.
Portability Note: mktime is essentially universally available. timegm is
rather rare. For the most portable conversion from a UTC broken-down time
to a simple time, set the TZ environment variable to UTC, call mktime, then
set TZ back.

10.4.4 High-Accuracy Clock

The ntp_gettime and ntp_adjtime functions provide an interface to mon-
itor and manipulate the system clock to maintain high-accuracy time. For example,
you can fine-tune the speed of the clock or synchronize it with another time source.

A typical use of these functions is by a server implementing the Network Time
Protocol to synchronize the clocks of multiple systems and high-precision clocks.

These functions are declared in ‘sys/timex.h’.

Data Typestruct ntptimeval
This structure is used for information about the system clock. It contains the
following members:

struct timeval time
This is the current calendar time, expressed as the elapsed time
since the epoch. The struct timeval data type is described in
Section 10.2 [Elapsed Time], page 277.

Chapter 10: Date and Time 289

long int maxerror
This is the maximum error, measured in microseconds. Unless up-
dated via ntp_adjtime periodically, this value will reach some
platform-specific maximum value.

long int esterror
This is the estimated error, measured in microseconds. This value
can be set by ntp_adjtime to indicate the estimated offset of
the system clock from the true calendar time.

Functionint ntp gettime (struct ntptimeval *tptr)
The ntp_gettime function sets the structure pointed to by tptr to current
values. The elements of the structure afterwards contain the values the timer
implementation in the kernel assumes. They might or might not be correct. If
they are not, an ntp_adjtime call is necessary.
The return value is 0 on success and other values on failure. The following
errno error conditions are defined for this function:

TIME_ERROR
The precision clock model is not properly set up at the moment,
thus the clock must be considered unsynchronized, and the values
should be treated with care.

Data Typestruct timex
This structure is used to control and monitor the system clock. It contains the
following members:

unsigned int modes
This variable controls whether and which values are set. Several
symbolic constants have to be combined with binary or to specify
the effective mode. These constants start with MOD_.

long int offset
This value indicates the current offset of the system clock from
the true calendar time. The value is given in microseconds. If
bit MOD_OFFSET is set in modes, the offset (and possibly other
dependent values) can be set. The offset’s absolute value must not
exceed MAXPHASE.

long int frequency
This value indicates the difference in frequency between the true
calendar time and the system clock. The value is expressed as
scaled PPM (parts per million, 0.0001%). The scaling is 1 <<
SHIFT_USEC. The value can be set with bit MOD_FREQUENCY,
but the absolute value must not exceed MAXFREQ.

long int maxerror
This is the maximum error, measured in microseconds. A new
value can be set using bit MOD_MAXERROR. Unless updated via

290 The GNU C Library: Application Fundamentals

ntp_adjtime periodically, this value will increase steadily and
reach some platform-specific maximum value.

long int esterror
This is the estimated error, measured in microseconds. This value
can be set using bit MOD_ESTERROR.

int status
This variable reflects the various states of the clock machinery.
There are symbolic constants for the significant bits, starting with
STA_. Some of these flags can be updated using the MOD_
STATUS bit.

long int constant
This value represents the bandwidth or stiffness of the PLL (phase
locked loop) implemented in the kernel. The value can be changed
using bit MOD_TIMECONST.

long int precision
This value represents the accuracy or the maximum error when
reading the system clock. The value is expressed in microseconds.

long int tolerance
This value represents the maximum frequency error of the system
clock in scaled PPM. This value is used to increase the maxerror
every second.

struct timeval time
This is the current calendar time.

long int tick
This is the elapsed time between clock ticks in microseconds. A
clock tick is a periodic timer interrupt on which the system clock
is based.

long int ppsfreq
This is the first of a few optional variables that are present only if
the system clock can use a PPS (pulse per second) signal to disci-
pline the system clock. The value is expressed in scaled PPM and
it denotes the difference in frequency between the system clock
and the PPS signal.

long int jitter
This value expresses a median filtered average of the PPS signal’s
dispersion in microseconds.

int shift
This value is a binary exponent for the duration of the PPS calibra-
tion interval, ranging from PPS_SHIFT to PPS_SHIFTMAX.

long int stabil
This value represents the median filtered dispersion of the PPS fre-
quency in scaled PPM.

Chapter 10: Date and Time 291

long int jitcnt
This counter represents the number of pulses where the jitter ex-
ceeded the allowed maximum MAXTIME.

long int calcnt
This counter reflects the number of successful calibration intervals.

long int errcnt
This counter represents the number of calibration errors (caused
by large offsets or jitter).

long int stbcnt
This counter denotes the number of calibrations where the stability
exceeded the threshold.

Functionint ntp adjtime (struct timex *tptr)
The ntp_adjtime function sets the structure specified by tptr to current val-
ues.
In addition, ntp_adjtime updates some settings to match what you pass to it
in *tptr. Use the modes element of *tptr to select what settings to update. You
can set offset, freq, maxerror, esterror, status, constant and
tick.
modes = zero means set nothing.
Only the superuser can update settings.
The return value is 0 on success and other values on failure. The following
errno error conditions are defined for this function:

TIME_ERROR
The high-accuracy clock model is not properly set up at the mo-
ment, thus the clock must be considered unsynchronized, and the
values should be treated with care. Another reason could be that
the specified new values are not allowed.

EPERM The process specified a settings update but is not superuser.

For more details see RFC1305 (Network Time Protocol, Version 3) and related
documents.
Portability Note: Early versions of the GNU C Library did not have this func-
tion but did have the synonymous adjtimex.

10.4.5 Formatting Calendar Time

The functions described in this section format calendar time values as strings.
These functions are declared in the header file ‘time.h’.

Functionchar * asctime (const struct tm *brokentime)
The asctime function converts the broken-down time value that brokentime
points to into a string in a standard format:

292 The GNU C Library: Application Fundamentals

"Tue May 21 13:46:22 1991\n"

The abbreviations for the days of week are: ‘Sun’, ‘Mon’, ‘Tue’, ‘Wed’, ‘Thu’,
‘Fri’ and ‘Sat’.
The abbreviations for the months are: ‘Jan’, ‘Feb’, ‘Mar’, ‘Apr’, ‘May’,
‘Jun’, ‘Jul’, ‘Aug’, ‘Sep’, ‘Oct’, ‘Nov’ and ‘Dec’.
The return value points to a statically allocated string, which might be overwrit-
ten by subsequent calls to asctime or ctime (but no other library function
overwrites the contents of this string).

Functionchar * asctime r (const struct tm *brokentime, char
*buffer)

This function is similar to asctime, but instead of placing the result in a static
buffer it writes the string in the buffer pointed to by the parameter buffer. This
buffer should have room for at least 26 bytes, including the terminating null.
If no error occurred, the function returns a pointer to the string the result was
written into, i.e., it returns buffer. Otherwise, it returns NULL.

Functionchar * ctime (const time_t *time)
The ctime function is similar to asctime, except that you specify the calen-
dar time argument as a time_t simple time value rather than in broken-down
local time format. It is equivalent to:

asctime (localtime (time))

ctime sets the variable tzname, because localtime does so (see Sec-
tion 10.4.8 [Functions and Variables for Time Zones], page 308).

Functionchar * ctime r (const time_t *time, char *buffer)
This function is similar to ctime but places the result in the string pointed to
by buffer. It is equivalent to:4

({ struct tm tm; asctime_r (localtime_r (time, &tm), buf); })

If no error occurred the function returns a pointer to the string the result was
written into, i.e., it returns buffer. Otherwise, it returns a NULL.

Functionsize_t strftime (char *s, size_t size, const char
*template, const struct tm *brokentime)

This function is similar to the sprintf function (see Section 17.14 [Formatted
Input], page 486), but the conversion specifications that can appear in the format
template template are specialized for printing components of the date and time
brokentime according to the locale currently specified for time conversion (see
Chapter 7 [Locales and Internationalization], page 181).
Ordinary characters appearing in the template are copied to the output string
s; this can include multibyte-character sequences. Conversion specifiers are

4 This was written using GCC extensions. See Richard M. Stallman, “Statements and Declarations
in Expressions” in Using and Porting GCC (Boston, MA: GNU Press, July 1999), http://
gcc.gnu.org/ onlinedocs/ gcc-2.95.3/ gcc.htm.

http:// gcc.gnu.org/ onlinedocs/ gcc-2.95.3/ gcc.htm
http:// gcc.gnu.org/ onlinedocs/ gcc-2.95.3/ gcc.htm

Chapter 10: Date and Time 293

introduced by a ‘%’ character, followed by an optional flag, which can be one of
the following. These flags are all GNU extensions. The first three affect only the
output of numbers:

_ The number is padded with spaces.

- The number is not padded at all.

0 The number is padded with zeros even if the format specifies
padding with spaces.

ˆ The output uses uppercase characters, but only if this is possible
(see Section 4.2 [Case Conversion], page 81).

The default action is to pad the number with zeros to keep it a constant width.
Numbers that do not have a range indicated below are never padded, since there
is no natural width for them.
Following the flag, an optional specification of the width is possible. This is
specified in decimal notation. If the natural size of the output of the field has
less than the specified number of characters, the result is written right-adjusted
and space padded to the given size.
An optional modifier can follow the optional flag and width specification. The
modifiers, which were first standardized by POSIX.2-1992 and by ISO C99, are

E Use the locale’s alternate representation for date and time. This
modifier applies to the %c, %C, %x, %X, %y and %Y format spec-
ifiers. In a Japanese locale, for example, %Ex might yield a date
format based on the Japanese Emperors’ reigns.

O Use the locale’s alternate numeric symbols for numbers. This
modifier applies only to numeric format specifiers.

If the format supports the modifier but no alternate representation is available, it
is ignored.
The conversion specifier ends with a format specifier taken from the following
list. The whole ‘%’ sequence is replaced in the output string as follows:

%a This is the abbreviated weekday name according to the current lo-
cale.

%A This is the full weekday name according to the current locale.

%b This is the abbreviated month name according to the current locale.

%B This is the full month name according to the current locale.

%c This is the preferred calendar time representation for the current
locale.

%C This is the century of the year. This is equivalent to the greatest
integer not greater than the year divided by 100. This format was
first standardized by POSIX.2-1992 and by ISO C99.

294 The GNU C Library: Application Fundamentals

%d This is the day of the month as a decimal number (range 01
through 31).

%D This is the date using the format %m/%d/%y. This format was first
standardized by POSIX.2-1992 and by ISO C99.

%e This is the day of the month like with %d, but padded with blank
(range 1 through 31).
This format was first standardized by POSIX.2-1992 and by
ISO C99.

%F This is the date using the format %Y-%m-%d. This is the form
specified in the ISO 8601 standard and is the preferred form for
all uses. This format was first standardized by ISO C99 and by
POSIX.1-2001.

%g This is the year corresponding to the ISO week number, but without
the century (range 00 through 99). This has the same format and
value as %y, except that if the ISO week number (see %V) belongs
to the previous or next year, that year is used instead. This format
was first standardized by ISO C99 and by POSIX.1-2001.

%G This is the year corresponding to the ISO week number. This has
the same format and value as %Y, except that if the ISO week num-
ber (see %V) belongs to the previous or next year, that year is used
instead. This format was first standardized by ISO C99 and by
POSIX.1-2001 but was previously available as a GNU extension.

%h This is the abbreviated month name according to the current locale.
The action is the same as for %b. This format was first standardized
by POSIX.2-1992 and by ISO C99.

%H This is the hour as a decimal number, using a 24-hour clock (range
00 through 23).

%I This is the hour as a decimal number, using a 12-hour clock (range
01 through 12).

%j This is the day of the year as a decimal number (range 001 through
366).

%k This is the hour as a decimal number, using a 24-hour clock like
%H, but padded with blank (range 0 through 23). This format is a
GNU extension.

%l This is the hour as a decimal number, using a 12-hour clock like
%I, but padded with blank (range 1 through 12). This format is a
GNU extension.

%m This is the month as a decimal number (range 01 through 12).

%M This is the minute as a decimal number (range 00 through 59).

Chapter 10: Date and Time 295

%n This is a single ‘\n’ (newline) character. This format was first
standardized by POSIX.2-1992 and by ISO C99.

%p This is either ‘AM’ or ‘PM’, according to the given time value; or
the corresponding strings for the current locale. Noon is treated as
‘PM’ and midnight as ‘AM’. In most locales ‘AM’/‘PM’ format is
not supported; in such cases, "%p" yields an empty string.

%P This is either ‘am’ or ‘pm’, according to the given time value; or the
corresponding strings for the current locale, printed in lowercase
characters. Noon is treated as ‘pm’ and midnight as ‘am’. In most
locales ‘AM’/‘PM’ format is not supported; in such cases, "%P"
yields an empty string. This format is a GNU extension.

%r This is the complete calendar time using the a.m./p.m. format of
the current locale. This format was first standardized by POSIX.2-
1992 and by ISO C99. In the POSIX locale, this format is equivalent
to %I:%M:%S %p.

%R This is the hour and minute in decimal numbers using the format
%H:%M. This format was first standardized by ISO C99 and by
POSIX.1-2001 but was previously available as a GNU extension.

%s This is the number of seconds since the epoch, i.e., since 1970-
01-01 00:00:00 UTC. Leap seconds are not counted unless leap
second support is available. This format is a GNU extension.

%S This is the seconds as a decimal number (range 00 through 60).

%t This is a single ‘\t’ (tabulator) character. This format was first
standardized by POSIX.2-1992 and by ISO C99.

%T This is the time of day using decimal numbers, in the format
%H:%M:%S. This format was first standardized by POSIX.2-1992
and by ISO C99.

%u This is the day of the week as a decimal number (range 1 through
7), Monday being 1. This format was first standardized by
POSIX.2-1992 and by ISO C99.

%U This is the week number of the current year as a decimal number
(range 00 through 53), starting with the first Sunday as the first
day of the first week. Days preceding the first Sunday in the year
are considered to be in week 00.

%V This is the ISO 8601:1988 week number as a decimal number
(range 01 through 53). ISO weeks start with Monday and end with
Sunday. Week 01 of a year is the first week that has the majority
of its days in that year; this is equivalent to the week containing
the year’s first Thursday, and it is also equivalent to the week con-
taining January 4. Week 01 of a year can contain days from the
previous year. The week before week 01 of a year is the last week

296 The GNU C Library: Application Fundamentals

(52 or 53) of the previous year even if it contains days from the
new year. This format was first standardized by POSIX.2-1992 and
by ISO C99.

%w This is the day of the week as a decimal number (range 0 through
6), Sunday being 0.

%W This is the week number of the current year as a decimal number
(range 00 through 53), starting with the first Monday as the first
day of the first week. All days preceding the first Monday in the
year are considered to be in week 00.

%x This is the preferred date representation for the current locale.

%X This is the preferred time of day representation for the current lo-
cale.

%y This is the year without a century as a decimal number (range 00
through 99). This is equivalent to the year modulo 100.

%Y This is the year as a decimal number, using the Gregorian calendar.
Years before the year 1 are numbered 0, -1, and so on.

%z This is the RFC 822/ISO 8601:1988 numeric time zone (e.g., -
0600 or +0100), or nothing if no time zone is determinable. This
format was first standardized by ISO C99 and by POSIX.1-2001 but
was previously available as a GNU extension.
In the POSIX locale, a full RFC 822 time stamp is generated by
the format ‘"%a, %d %b %Y %H:%M:%S %z"’ (or the equivalent
‘"%a, %d %b %Y %T %z"’).

%Z This is the time zone abbreviation (empty if the time zone can’t be
determined).

%% This is a literal ‘%’ character.

The size parameter can be used to specify the maximum number of characters
to be stored in the array s, including the terminating null character. If the for-
matted time requires more than size characters, strftime returns zero and the
contents of the array s are undefined. Otherwise, the return value indicates the
number of characters placed in the array s, not including the terminating null
character.
Warning: This convention for the return value, prescribed in ISO C, can lead to
problems in some situations. For certain format strings and certain locales, the
output really can be the empty string, and this cannot be discovered by testing
the return value only. For example, in most locales the a.m./p.m. time format
is not supported (most of the world uses the 24-hour time representation). In
such locales, "%p" will return the empty string, i.e., the return value is zero.
To detect situations like this, something similar to the following code should be
used:

Chapter 10: Date and Time 297

buf[0] = ’\1’;

len = strftime (buf, bufsize, format, tp);

if (len == 0 && buf[0] != ’\0’)

{

/* Something went wrong in the strftime call. */

...

}

If s is a null pointer, strftime does not actually write anything, but instead
returns the number of characters it would have written.
According to POSIX.1, every call to strftime implies a call to tzset. So
the contents of the environment variable TZ are examined before any output is
produced.
For an example of strftime, see Section 10.4.9 [Time Functions Example],
page 309.

Functionsize_t wcsftime (wchar_t *s, size_t size, const
wchar_t *template, const struct tm *brokentime)

The wcsftime function is equivalent to the strftime function with the dif-
ference that it operates on wide-character strings. The buffer where the result
is stored, pointed to by s, must be an array of wide characters. The parame-
ter size, which specifies the size of the output buffer, gives the number of wide
characters, not the number of bytes.
Also, the format string template is a wide-character string. Since all characters
needed to specify the format string are in the basic character set, it is portably
possible to write format strings in the C source code using the L"..." notation.
The parameter brokentime has the same meaning as in the strftime call.
The wcsftime function supports the same flags, modifiers, and format speci-
fiers as the strftime function.
The return value of wcsftime is the number of wide characters stored in s.
When more characters would have to be written than can be placed in the buffer
s the return value is zero, with the same problems indicated in the strftime
documentation.

10.4.6 Convert Textual Time and Date Information Back

The ISO C standard does not specify any functions that can convert the output of
the strftime function back into a binary format. This led to a variety of more-
or-less successful implementations with different interfaces over the years. Then
the Unix standard was extended by the addition of two functions: strptime and
getdate. Both have strange interfaces, but at least they are widely available.

10.4.6.1 Interpret String According to Given Format

The first function is rather low-level. It is nevertheless frequently used in soft-
ware since it is better known. Its interface and implementation are heavily influ-

298 The GNU C Library: Application Fundamentals

enced by the getdate function, which is defined and implemented in terms of
calls to strptime.

Functionchar * strptime (const char *s, const char *fmt,
struct tm *tp)

The strptime function parses the input string s according to the format string
fmt and stores its results in the structure tp.
The input string could be generated by a strftime call or obtained any other
way. It does not need to be in a human-recognizable format; e.g. a date passed as
"02:1999:9" is acceptable, even though it is ambiguous without context. As
long as the format string fmt matches the input string, the function will succeed.
The user has to make sure, though, that the input can be parsed in a unambiguous
way. The string "1999112" can be parsed using the format "%Y%m%d" as
1999-1-12, 1999-11-2, or even 19991-1-2. It is necessary to add appropriate
separators to reliably get results.
The format string consists of the same components as the format string of the
strftime function. The only difference is that the flags _, -, 0 and ˆ are
not allowed. Several of the distinct formats of strftime do the same work in
strptime, since differences like case of the input do not matter. For reasons
of symmetry, though, all formats are supported.
The modifiers E and O are also allowed everywhere the strftime function
allows them.
The formats are

%a
%A This is the weekday name according to the current locale, in ab-

breviated form or the full name.

%b
%B
%h This is the month name according to the current locale, in abbrevi-

ated form or the full name.

%c This is the date and time representation for the current locale.

%Ec This is like %c, but the locale’s alternative date and time format is
used.

%C This is the century of the year.
It makes sense to use this format only if the format string also
contains the %y format.

%EC This is the locale’s representation of the period.
Unlike %C, it sometimes makes sense to use this format since some
cultures represent years relative to the beginning of eras instead of
using the Gregorian years.

%d

Chapter 10: Date and Time 299

%e This is the day of the month as a decimal number (range 1 through
31). Leading zeros are permitted but not required.

%Od
%Oe This is same as %d but using the locale’s alternative numeric sym-

bols.
Leading zeros are permitted but not required.

%D Equivalent to %m/%d/%y.

%F This is equivalent to %Y-%m-%d, which is the ISO 8601 date for-
mat.
This is a GNU extension following an ISO C99 extension to
strftime.

%g This is the year corresponding to the ISO week number, but without
the century (range 00 through 99).
Currently, this is not fully implemented. The format is recognized,
input is consumed, but no field in tm is set.
This format is a GNU extension following a GNU extension of
strftime.

%G This is the year corresponding to the ISO week number.
Currently, this is not fully implemented. The format is recognized,
input is consumed, but no field in tm is set.
This format is a GNU extension following a GNU extension of
strftime.

%H
%k This is the hour as a decimal number, using a 24-hour clock (range

00 through 23).
%k is a GNU extension following a GNU extension of strftime.

%OH This is the same as %H but using the locale’s alternative numeric
symbols.

%I
%l This is the hour as a decimal number, using a 12-hour clock (range

01 through 12).
%l is a GNU extension following a GNU extension of strftime.

%OI This is the same as %I but using the locale’s alternative numeric
symbols.

%j This is the day of the year as a decimal number (range 1 through
366).
Leading zeros are permitted but not required.

%m This is the month as a decimal number (range 1 through 12).
Leading zeros are permitted but not required.

300 The GNU C Library: Application Fundamentals

%Om This is the same as %m but using the locale’s alternative numeric
symbols.

%M This is the minute as a decimal number (range 0 through 59).
Leading zeros are permitted but not required.

%OM This is the same as %M but using the locale’s alternative numeric
symbols.

%n
%t This matches any white space.

%p

%P This is the locale-dependent equivalent to ‘AM’ or ‘PM’.
This format is not useful unless %I or %l is also used. Another
complication is that the locale might not define these values at all,
and therefore the conversion fails.
%P is a GNU extension following a GNU extension to strftime.

%r This is the complete time using the a.m./p.m. format of the current
locale.
A complication is that the locale might not define this format at all,
and therefore the conversion fails.

%R This is the hour and minute in decimal numbers using the format
%H:%M.
%R is a GNU extension following a GNU extension to strftime.

%s This is the number of seconds since the epoch, i.e., since 1970-
01-01 00:00:00 UTC. Leap seconds are not counted unless leap
second support is available.
%s is a GNU extension following a GNU extension to strftime.

%S This is the seconds as a decimal number (range 0 through 60).
Leading zeros are permitted but not required.
The Unix specification says the upper bound on this value is 61, a
result of a decision to allow double leap seconds. You will not see
the value 61, because no minute has more than one leap second,
but the myth persists.

%OS This is the same as %S but using the locale’s alternative numeric
symbols.

%T This is equivalent to the use of %H:%M:%S in this place.

%u This is the day of the week as a decimal number (range 1 through
7), Monday being 1.
Leading zeros are permitted but not required.
Currently, this is not fully implemented. The format is recognized,
input is consumed, but no field in tm is set.

Chapter 10: Date and Time 301

%U This is the week number of the current year as a decimal number
(range 0 through 53).
Leading zeros are permitted but not required.

%OU This is the same as %U but using the locale’s alternative numeric
symbols.

%V This is the ISO 8601:1988 week number as a decimal number
(range 1 through 53).
Leading zeros are permitted but not required.
Currently, this is not fully implemented. The format is recognized,
input is consumed, but no field in tm is set.

%w This is the day of the week as a decimal number (range 0 through
6), Sunday being 0.
Leading zeros are permitted but not required.
Currently, this is not fully implemented. The format is recognized,
input is consumed but no field in tm is set.

%Ow This is the same as %w but using the locale’s alternative numeric
symbols.

%W This is the week number of the current year as a decimal number
(range 0 through 53).
Leading zeros are permitted but not required.
Currently, this is not fully implemented. The format is recognized,
input is consumed, but no field in tm is set.

%OW This is the same as %W but using the locale’s alternative numeric
symbols.

%x This is the date using the locale’s date format.

%Ex This is like %x, but the locale’s alternative data representation is
used.

%X This is the time using the locale’s time format.

%EX This is like %X, but the locale’s alternative time representation is
used.

%y This is the year without a century as a decimal number (range 0
through 99).
Leading zeros are permitted but not required.
It is questionable to use this format without the %C format. The
strptime function does regard input values in the range 68 to
99 as the years 1969 to 1999 and the values 0 to 68 as the years
2000 to 2068. But maybe this heuristic fails for some input data.
Therefore, it is best to avoid %y completely and use %Y instead.

302 The GNU C Library: Application Fundamentals

%Ey This is the offset from %EC in the locale’s alternative representa-
tion.

%Oy This is the offset of the year (from %C) using the locale’s alternative
numeric symbols.

%Y This is the year as a decimal number, using the Gregorian calendar.

%EY This is the full alternative year representation.

%z This is the offset from GMT in ISO 8601/RFC822 format.

%Z This is the time zone name.
Currently, this is not fully implemented. The format is recognized,
input is consumed, but no field in tm is set.

%% This is a literal ‘%’ character.

All other characters in the format string must have a matching character in the
input string. Exceptions are white spaces in the input string that can match zero
or more white-space characters in the format string.
Portability Note: The XPG standard advises applications to use at least one
white-space character (as specified by isspace) or other nonalphanumeric
characters between any two conversion specifications. The GNU C Library does
not have this limitation, but other libraries might have trouble parsing formats
like "%d%m%Y%H%M%S".
The strptime function processes the input string from right to left. Each of
the three possible input elements (white space, literal, or format) are handled
one after the other. If the input cannot be matched to the format string, the
function stops. The remainder of the format and input strings are not processed.
The function returns a pointer to the first character it was unable to process. If
the input string contains more characters than required by the format string, the
return value points right after the last consumed input character. If the whole
input string is consumed, the return value points to the NULL byte at the end of
the string. If an error occurs, i.e., strptime fails to match all of the format
string, the function returns NULL.

The specification of the function in the XPG standard is rather vague, leaving out
a few important pieces of information. Most importantly, it does not specify what
happens to those elements of tm that are not directly initialized by the different
formats. The implementations on different Unix systems vary here.

The GNU libc implementation does not touch those fields that are not directly
initialized. Exceptions are the tm_wday and tm_yday elements, which are re-
computed if any of the year, month, or date elements changed. This has two impli-
cations:

• Before calling the strptime function for a new input string, you should
prepare the tm structure you pass. Normally this will mean initializing all
values to zero. Alternatively, you can set all fields to values like INT_MAX,

Chapter 10: Date and Time 303

allowing you to determine which elements were set by the function call. Zero
does not work here, since it is a valid value for many of the fields.
Careful initialization is necessary if you want to find out whether a certain
field in tm was initialized by the function call.

• You can construct a struct tm value with several consecutive strptime
calls. A useful application of this is the parsing of two separate strings, one
containing date information and the other time information. By parsing one
after the other without clearing the structure in between, you can construct a
complete broken-down time.

The following example shows a function that parses a string that contains the
date information in either US style or ISO 8601 form:

const char *

parse_date (const char *input, struct tm *tm)

{

const char *cp;

/* First clear the result structure. */

memset (tm, ’\0’, sizeof (*tm));

/* Try the ISO format first. */

cp = strptime (input, "%F", tm);

if (cp == NULL)

{

/* Does not match. Try the US form. */

cp = strptime (input, "%D", tm);

}

return cp;

}

10.4.6.2 A More User-Friendly Way to Parse Times and Dates

The Unix standard defines another function for parsing date strings. The inter-
face is weird, but if the function happens to suit your application, it is just fine. It
is problematic to use this function in multithreaded programs or libraries, since it
returns a pointer to a static variable and uses a global variable and global state (an
environment variable).

Variablegetdate err
This variable of type int contains the error code of the last unsuccessful call to
getdate. Defined values are:
1 The environment variable DATEMSK is not defined or is null.
2 The template file denoted by the DATEMSK environment variable

cannot be opened.

304 The GNU C Library: Application Fundamentals

3 Information about the template file cannot retrieved.

4 The template file is not a regular file.

5 An I/O error occurred while reading the template file.

6 Not enough memory is available to execute the function.

7 The template file contains no matching template.

8 The input date is invalid, but would match a template otherwise.
This includes dates like February 31st, and dates that cannot be
represented in a time_t variable.

Functionstruct tm * getdate (const char *string)
The interface to getdate is the simplest possible way for a function to parse
a string and return the value. string is the input string, and the result is returned
in a statically allocated variable.
The details about how the string is processed are hidden from the user. In fact,
they can be outside the control of the program. Which formats are recognized
is controlled by the file named by the environment variable DATEMSK. This file
should contain lines of valid format strings that could be passed to strptime.
The getdate function reads these format strings one after the other and tries
to match the input string. The first line that completely matches the input string
is used.
Elements not initialized through the format string retain the values present at the
time of the getdate function call.
The formats recognized by getdate are the same as for strptime. See
above for an explanation. There are only a few extensions to the strptime
behavior:

• If the %Z format is given, the broken-down time is based on the current
time of the time zone matched, not of the current time zone of the run-time
environment.
Currently, this is not implemented. The problem is that time zone names
are not unique. If a fixed time zone is assumed for a given string (say EST
meaning US East Coast time), then uses for countries other than the United
States will fail. So far, we have found no good solution to this.

• If only the weekday is specified, the selected day depends on the current
date. If the current weekday is greater or equal to the tm_wday value, the
current week’s day is chosen, otherwise the day next week is chosen.

• A similar heuristic is used when only the month is given and not the year.
If the month is greater than or equal to the current month, then the current
year is used. Otherwise, it wraps to next year. The first day of the month is
assumed if one is not explicitly specified.

• The current hour, minute and second are used if the appropriate value is
not set through the format.

Chapter 10: Date and Time 305

• If no date is given, tomorrow’s date is used if the time is smaller than the
current time. Otherwise, today’s date is taken.

The format in the template file need not contain only format elements. The
following is a list of possible format strings (taken from the Unix standard):

%m

%A %B %d, %Y %H:%M:%S

%A

%B

%m/%d/%y %I %p

%d,%m,%Y %H:%M

at %A the %dst of %B in %Y

run job at %I %p,%B %dnd

%A den %d. %B %Y %H.%M Uhr

As you can see, the template list can contain very specific strings like run
job at %I %p,%B %dnd. Using the above list of templates and assuming the
current time is Mon Sep 22 12:19:47 EDT 1986, we can obtain the following
results for the given input.
‘Input’ Match Result
‘Mon’ %a ‘Mon Sep 22 12:19:47 EDT 1986’
‘Sun’ %a ‘Sun Sep 28 12:19:47 EDT 1986’
‘Fri’ %a ‘Fri Sep 26 12:19:47 EDT 1986’
‘September’ %B ‘Mon Sep 1 12:19:47 EDT 1986’
‘January’ %B ‘Thu Jan 1 12:19:47 EST 1987’
‘December’ %B ‘Mon Dec 1 12:19:47 EST 1986’
‘Sep Mon’ %b %a ‘Mon Sep 1 12:19:47 EDT 1986’
‘Jan Fri’ %b %a ‘Fri Jan 2 12:19:47 EST 1987’
‘Dec Mon’ %b %a ‘Mon Dec 1 12:19:47 EST 1986’
‘Jan Wed
1989’

%b %a %Y ‘Wed Jan 4 12:19:47 EST 1989’

‘Fri 9’ %a %H ‘Fri Sep 26 09:00:00 EDT 1986’
‘Feb 10:30’ %b %H:%S ‘Sun Feb 1 10:00:30 EST 1987’
‘10:30’ %H:%M ‘Tue Sep 23 10:30:00 EDT 1986’
‘13:30’ %H:%M ‘Mon Sep 22 13:30:00 EDT 1986’
The return value of the function is a pointer to a static variable of type
struct tm, or a null pointer if an error occurred. The result is only valid
until the next getdate call, making this function unusable in multithreaded
applications.
The errno variable is not changed. Error conditions are stored in the global
variable getdate_err. See the description above for a list of the possible
error values.
Warning: The getdate function should never be used in SUID-programs.
Using the DATEMSK environment variable, you can get the function to open
any arbitrary file, and chances are high that with some bogus input (such as a
binary file), the program will crash.

306 The GNU C Library: Application Fundamentals

Functionint getdate r (const char *string, struct tm *tp)
The getdate_r function is the reentrant counterpart of getdate. It does
not use the global variable getdate_err to signal an error, but instead re-
turns an error code. The same error codes as described in the getdate_err
documentation above are used, with 0 meaning success.
Moreover, getdate_r stores the broken-down time in the variable of type
struct tm pointed to by the second argument, rather than in a static variable.
This function is not defined in the Unix standard. Nevertheless, it is available
on some other Unix systems as well.
The warning against using getdate in SUID-programs applies to getdate_
r.

10.4.7 Specifying the Time Zone with TZ

In POSIX systems, a user can specify the time zone by means of the TZ envi-
ronment variable. For information about how to set environment variables, see
Section 14.4 [Environment Variables], page 418. The functions for accessing the
time zone are declared in ‘time.h’.

You should not normally need to set TZ. If the system is configured properly,
the default time zone will be correct. You might set TZ if you are using a computer
over a network from a different time zone, and would like times reported to you in
the time zone local to you, rather than what is local to the computer.

In POSIX.1 systems the value of the TZ variable can be in one of three formats.
With the GNU C Library, the most common format is the last one, which can spec-
ify a selection from a large database of time zone information for many regions of
the world. The first two formats are used to describe the time zone information di-
rectly, which is both more cumbersome and less precise. But the POSIX.1 standard
only specifies the details of the first two formats, so it is good to be familiar with
them in case you come across a POSIX.1 system that doesn’t support a time zone
information database.

The first format is used when there is no daylight saving time (or summer time)
in the local time zone:

std offset

The std string specifies the name of the time zone. It must be three or more
characters long and must not contain a leading colon, embedded digits, commas, or
plus or minus signs. There is no space character separating the time zone name from
the offset, so these restrictions are necessary to parse the specification correctly.

The offset specifies the time value you must add to the local time to get a Co-
ordinated Universal Time value. It has syntax like [+|-]hh [:mm[:ss]]. This is
positive if the local time zone is west of the prime meridian and negative if it is
east. The hour must be between 0 and 23 and the minute and seconds between 0
and 59.

For example, here is how we would specify eastern standard time, but without
any daylight saving time alternative:

Chapter 10: Date and Time 307

EST+5

The second format is used when there is daylight saving time:
std offset dst [offset],start[/time],end [/time]

The initial std and offset specify the standard time zone, as described above.
The dst string and offset specify the name and offset for the corresponding daylight
saving time zone; if the offset is omitted, it defaults to one hour ahead of standard
time.

The remainder of the specification describes when daylight saving time is in
effect. The start field is when daylight saving time goes into effect, and the end
field is when the change is made back to standard time. The following formats are
recognized for these fields:

Jn This specifies the Julian day, with n between 1 and 365. February 29
is never counted, even in leap years.

n This specifies the Julian day, with n between 0 and 365. February 29
is counted in leap years.

Mm.w.d This specifies day d of week w of month m. The day d must be
between 0 (Sunday) and 6. The week w must be between 1 and 5;
week 1 is the first week in which day d occurs, and week 5 specifies
the last d day in the month. The month m should be between 1 and
12.

The time fields specify when, in the local time currently in effect, the change to
the other time occurs. If omitted, the default is 02:00:00.

For example, here is how you would specify the eastern time zone in the United
States, including the appropriate daylight saving time and its dates of applicability.
The normal offset from UTC is five hours; since this is west of the prime meridian,
the sign is positive. Summer time begins on the first Sunday in April at 2:00 a.m.,
and ends on the last Sunday in October at 2:00 a.m.

EST+5EDT,M4.1.0/2,M10.5.0/2

The schedule of daylight saving time in any particular jurisdiction has changed
over the years. To be strictly correct, the conversion of dates and times in the past
should be based on the schedule that was in effect then. However, this format has
no facilities to let you specify how the schedule has changed from year to year.
The most you can do is specify one particular schedule—usually the present day
schedule—and this is used to convert any date, no matter when. For precise time
zone specifications, it is best to use the time zone information database (see below).

The third format looks like this:
:characters

Each operating system interprets this format differently; in the GNU C Library,
characters is the name of a file that describes the time zone.

If the TZ environment variable does not have a value, the opera-
tion chooses a time zone by default. In the GNU C Library, the de-
fault time zone is like the specification ‘TZ=:/etc/localtime’ (or

308 The GNU C Library: Application Fundamentals

‘TZ=:/usr/local/etc/localtime’, depending on how GNU C Library
was configured.5 Other C libraries use their own rule for choosing the default time
zone, so there is little we can say about them.

If characters begins with a slash, it is an absolute file name; otherwise the library
looks for the file ‘/share/lib/zoneinfo/characters’. The ‘zoneinfo’
directory contains data files describing local time zones in many different parts
of the world. The names represent major cities, with subdirectories for ge-
ographical areas; for example, ‘America/New_York’, ‘Europe/London’,
‘Asia/Hong_Kong’. These data files are installed by the system administra-
tor, who also sets ‘/etc/localtime’ to point to the data file for the local time
zone. The GNU C Library comes with a large database of time zone information for
most regions of the world, which is maintained by a community of volunteers and
put in the public domain.

10.4.8 Functions and Variables for Time Zones

Variablechar * tzname [2]
The array tzname contains two strings, which are the standard names of the
pair of time zones (standard and daylight saving) that the user has selected.
tzname[0] is the name of the standard time zone (for example, "EST"), and
tzname[1] is the name for the time zone when daylight saving time is in use
(for example, "EDT"). These correspond to the std and dst strings (respec-
tively) from the TZ environment variable. If daylight saving time is never used,
tzname[1] is the empty string.
The tzname array is initialized from the TZ environment variable whenever
tzset, ctime, strftime, mktime or localtime is called. If multiple
abbreviations have been used (e.g., "EWT" and "EDT" for US eastern war time
and eastern daylight time), the array contains the most recent abbreviation.
The tzname array is required for POSIX.1 compatibility, but in GNU programs
it is better to use the tm_zone member of the broken-down time structure,
since tm_zone reports the correct abbreviation even when it is not the latest
one.
Though the strings are declared as char *, the user must refrain from modify-
ing these strings. Modifying the strings will almost certainly lead to trouble.

Functionvoid tzset (void)
The tzset function initializes the tzname variable from the value of the TZ
environment variable. It is not usually necessary for your program to call this
function, because it is called automatically when you use the other time conver-
sion functions that depend on the time zone.

The following variables are defined for compatibility with System V Unix. Like
tzname, these variables are set by calling tzset or the other time conversion
functions.

5 Ibid., “Installing the GNU C Library”.

Chapter 10: Date and Time 309

Variablelong int timezone
This contains the difference between UTC and the latest local standard time, in
seconds west of UTC. For example, in the US eastern time zone, the value is
5*60*60. Unlike the tm_gmtoff member of the broken-down time struc-
ture, this value is not adjusted for daylight saving, and its sign is reversed. In
GNU programs it is better to use tm_gmtoff, since it contains the correct offset
even when it is not the latest one.

Variableint daylight
This variable has a nonzero value if daylight saving time rules apply. A nonzero
value does not necessarily mean that daylight saving time is now in effect; it
means only that daylight saving time is sometimes in effect.

10.4.9 Time Functions Example

Here is an example program showing the use of some of the calendar time func-
tions:

#include <time.h>

#include <stdio.h>

#define SIZE 256

int

main (void)

{

char buffer[SIZE];

time_t curtime;

struct tm *loctime;

/* Get the current time. */

curtime = time (NULL);

/* Convert it to local time representation. */

loctime = localtime (&curtime);

/* Print out the date and time in the standard format. */

fputs (asctime (loctime), stdout);

/* Print it out in a nice format. */

strftime (buffer, SIZE, "Today is %A, %B %d.\n", loctime);

fputs (buffer, stdout);

strftime (buffer, SIZE, "The time is %I:%M %p.\n", loctime);

fputs (buffer, stdout);

return 0;

310 The GNU C Library: Application Fundamentals

}

It produces output like this:
Wed Jul 31 13:02:36 1991

Today is Wednesday, July 31.

The time is 01:02 PM.

10.5 Setting an Alarm
The alarm and setitimer functions provide a mechanism for a process to

interrupt itself in the future. They do this by setting a timer; when the timer expires,
the process receives a signal.

Each process has three independent interval timers available:
• A real-time timer that counts elapsed time. This timer sends a SIGALRM

signal to the process when it expires.
• A virtual timer that counts processor time used by the process. This timer

sends a SIGVTALRM signal to the process when it expires.
• A profiling timer that counts both processor time used by the process and

processor time spent in system calls on behalf of the process. This timer sends
a SIGPROF signal to the process when it expires.
This timer is useful for profiling in interpreters. The interval timer mechanism
does not have the fine granularity necessary for profiling native code.

You can only have one timer of each kind set at any given time. If you set a timer
that has not yet expired, that timer is simply reset to the new value.

You should establish a handler for the appropriate alarm signal using signal
or sigaction before issuing a call to setitimer or alarm. Otherwise, an
unusual chain of events could cause the timer to expire before your program es-
tablishes the handler. In this case it would be terminated, since termination is the
default action for the alarm signals.6

To be able to use the alarm function to interrupt a system call that might other-
wise block indefinitely, it is important to not set the SA_RESTART flag when regis-
tering the signal handler using sigaction. When not using sigaction, things
get even uglier—the signal function has to fix semantics with respect to restarts.
The BSD semantics for this function is to set the flag. Therefore, if sigaction
for whatever reason cannot be used, it is necessary to use sysv_signal and not
signal.

The setitimer function is the primary means for setting an alarm. This facil-
ity is declared in the header file ‘sys/time.h’. The alarm function, declared
in ‘unistd.h’, provides a somewhat simpler interface for setting the real-time
timer.

6 Ibid., “Signal Handling”.

Chapter 10: Date and Time 311

Data Typestruct itimerval
This structure is used to specify when a timer should expire. It contains the
following members:

struct timeval it_interval
This is the period between successive timer interrupts. If zero, the
alarm will only be sent once.

struct timeval it_value
This is the period between now and the first timer interrupt. If zero,
the alarm is disabled.

The struct timeval data type is described in Section 10.2 [Elapsed Time],
page 277.

Functionint setitimer (int which, struct itimerval *new,
struct itimerval *old)

The setitimer function sets the timer specified by which according to
new. The which argument can have a value of ITIMER_REAL, ITIMER_
VIRTUAL, or ITIMER_PROF.
If old is not a null pointer, setitimer returns information about any previous
unexpired timer of the same kind in the structure it points to.
The return value is 0 on success and -1 on failure. The following errno error
conditions are defined for this function:

EINVAL The timer period is too large.

Functionint getitimer (int which, struct itimerval *old)
The getitimer function stores information about the timer specified by
which in the structure pointed at by old.
The return value and error conditions are the same as for setitimer.

ITIMER_REAL
This constant can be used as the which argument to the setitimer
and getitimer functions to specify the real-time timer.

ITIMER_VIRTUAL
This constant can be used as the which argument to the setitimer
and getitimer functions to specify the virtual timer.

ITIMER_PROF
This constant can be used as the which argument to the setitimer
and getitimer functions to specify the profiling timer.

312 The GNU C Library: Application Fundamentals

Functionunsigned int alarm (unsigned int seconds)
The alarm function sets the real-time timer to expire in seconds seconds.7 If
you want to cancel any existing alarm, you can do this by calling alarm with a
seconds argument of zero.
The return value indicates how many seconds remain before the previous alarm
would have been sent. If there is no previous alarm, alarm returns zero.

The alarm function could be defined in terms of setitimer like this:
unsigned int

alarm (unsigned int seconds)

{

struct itimerval old, new;

new.it_interval.tv_usec = 0;

new.it_interval.tv_sec = 0;

new.it_value.tv_usec = 0;

new.it_value.tv_sec = (long int) seconds;

if (setitimer (ITIMER_REAL, &new, &old) < 0)

return 0;

else

return old.it_value.tv_sec;

}

If you simply want your process to wait for a given number of seconds, you
should use the sleep function (see Section 10.6 [Sleeping], page 312).

You shouldn’t count on the signal arriving precisely when the timer expires. In a
multiprocessing environment, there is typically some amount of delay involved.

Portability Note: The setitimer and getitimer functions are derived
from BSD Unix, while the alarm function is specified by the POSIX.1 standard.
setitimer is more powerful than alarm, but alarm is more widely used.

10.6 Sleeping
The function sleep gives a simple way to make the program wait for a short

interval. If your program doesn’t use signals (except to terminate), then you can ex-
pect sleep to wait reliably throughout the specified interval. Otherwise, sleep
can return sooner if a signal arrives; if you want to wait for a given interval regard-
less of signals, use select and don’t specify any descriptors to wait for.8

Functionunsigned int sleep (unsigned int seconds)
The sleep function waits for seconds or until a signal is delivered, whichever
happens first.

7 See Loosemore et al., “Signal Handlers That Return”, for an example showing the use of the
alarm function.

8 Ibid., “Waiting for Input or Output”.

Chapter 10: Date and Time 313

If the sleep function returns because the requested interval is over, it returns a
value of zero. If it returns because of delivery of a signal, its return value is the
remaining time in the sleep interval.
The sleep function is declared in ‘unistd.h’.

Resist the temptation to implement a sleep for a fixed amount of time by using
the return value of sleep, when nonzero, to call sleep again. This will work
with a certain amount of accuracy as long as signals arrive infrequently. But each
signal can cause the eventual wake-up time to be off by an additional second or so.
Suppose a few signals happen to arrive in rapid succession by bad luck—there is
no limit on how much this could shorten or lengthen the wait.

Instead, compute the calendar time at which the program should stop waiting,
and keep trying to wait until that calendar time. This won’t be off by more than a
second. With just a little more work, you can use select and make the waiting
period quite accurate. Of course, heavy system load can cause additional unavoid-
able delays—unless the machine is dedicated to one application, there is no way
you can avoid this.

On some systems, sleep can do strange things if your program uses SIGALRM
explicitly. Even if SIGALRM signals are being ignored or blocked when sleep
is called, sleep might return prematurely on delivery of a SIGALRM signal. If
you have established a handler for SIGALRM signals and a SIGALRM signal is
delivered while the process is sleeping, the action taken might be just to cause
sleep to return instead of to invoke your handler. And, if sleep is interrupted
by delivery of a signal whose handler requests an alarm or alters the handling of
SIGALRM, this handler and sleep will interfere.

On the GNU system, it is safe to use sleep and SIGALRM in the same program,
because sleep does not work by means of SIGALRM.

Functionint nanosleep (const struct timespec *requested time,
struct timespec *remaining)

If resolution to seconds is not enough, the nanosleep function can be used.
As the name suggests, the sleep interval can be specified in nanoseconds. The
actual elapsed time of the sleep interval might be longer, since the system rounds
the elapsed time you request up to the next integer multiple of the actual resolu-
tion the system can deliver.
*requested_time is the elapsed time of the interval you want to sleep.
The function returns as *remaining the elapsed time left in the interval for
which you requested to sleep. If the interval completed without getting inter-
rupted by a signal, this is zero.
struct timespec is described in Section 10.2 [Elapsed Time], page 277.
If the function returns because the interval is over, the return value is zero. If
the function returns −1, the global variable errno is set to the following values:

EINTR The call was interrupted because a signal was delivered to the
thread. If the remaining parameter is not the null pointer, the struc-

314 The GNU C Library: Application Fundamentals

ture pointed to by remaining is updated to contain the remaining
elapsed time.

EINVAL The nanosecond value in the requested time parameter contains an
illegal value. Either the value is negative or greater than or equal
to 1000 million.

This function is a cancellation point in multithreaded programs. This is a
problem if the thread allocates some resources (like memory, file descriptors,
semaphores or whatever) at the time nanosleep is called. If the thread gets
canceled, these resources stay allocated until the program ends. To avoid this,
calls to nanosleep should be protected using cancellation handlers.
The nanosleep function is declared in ‘time.h’.

Chapter 11: Message Translation 315

11 Message Translation

The program’s interface with a user should be designed to make tasks easier for
the user. One way it can do this is to use messages in whichever language the user
prefers.

Printing messages in different languages can be implemented in different ways.
You could add all the different languages in the source code and add among the
variants every time a message has to be printed. This is certainly not a good solu-
tion, since extending the set of languages is difficult (the code must be changed),
and the code itself can become really big with dozens of message sets.

A better solution is to keep the message sets for each language in separate files
that are loaded at run time depending on the language selection of the user.

The GNU C Library provides two different sets of functions to support message
translation. The problem is that neither of the interfaces is officially defined by
the POSIX standard. The catgets family of functions is defined in the X/Open
standard, but this is derived from industry decisions and therefore not necessarily
based on reasonable decisions.

As mentioned above, the message catalog handling provides easy extendability
by using external data files that contain the message translations. These files con-
tain for each of the messages used in the program a translation for the appropriate
language. So the tasks of the message handling functions are

• Locate the external data file with the appropriate translations.
• Load the data and make it possible to address the messages.
• Map a given key to the translated message.

The two approaches mainly differ in the implementation of this last step. The
design decisions made for this step influence the rest.

11.1 X/Open Message Catalog Handling
The catgets functions are based on the simple scheme:

Associate every message to translate in the source code with a unique
identifier. To retrieve a message from a catalog file, just the identifier is
used.

This means for the author of the program that he will have to make sure the mean-
ing of the identifier in the program code and in the message catalogs are always the
same.

Before a message can be translated, the catalog file must be located. The user
of the program must be able to guide the responsible function to find whichever
catalog she wants.

All the types, constants and functions for the catgets functions are de-
fined/declared in the ‘nl_types.h’ header file.

316 The GNU C Library: Application Fundamentals

11.1.1 The catgets Function Family

Functionnl_catd catopen (const char *cat name, int flag)
The catgets function tries to locate the message data file name cat name and
loads it when found. The return value is of an opaque type and can be used in
calls to the other functions to refer to this loaded catalog.
The return value is (nl_catd) -1 in case the function failed and no catalog
was loaded. The global variable errno contains a code for the error causing
the failure. But even if the function call succeeded, this does not mean that all
messages can be translated.
Locating the catalog file must happen in a way that lets the user of the program
influence the decision. It is up to the user to decide about the language to use,
and sometimes it is useful to use alternate catalog files. All this can be specified
by the user by setting some environment variables.
The first problem is to find out where all the message catalogs are stored. Every
program could have its own place to keep all the different files, but usually the
catalog files are grouped by languages and the catalogs for all programs are kept
in the same place.
To tell the catopen function where the catalog for the program can be found,
the user can set the environment variable NLSPATH to a value that describes her
choice. Since this value must be usable for different languages and locales, it
cannot be a simple string. Instead, it is a format string (similar to printf’s).
An example is

/usr/share/locale/%L/%N:/usr/share/locale/%L/LC_MESSAGES/%N

First, one can see that more than one directory can be specified (with the usual
syntax of separating them by colons). The next things to observe are the format
strings, %L and %N in this case. The catopen function knows about several of
them, and the replacement for all of them is of course different.

%N This format element is substituted with the name of the catalog file.
This is the value of the cat name argument given to catgets.

%L This format element is substituted with the name of the currently
selected locale for translating messages. How this is determined is
explained below.

%l This is the lowercase ell. This format element is substituted
with the language element of the locale name. The string de-
scribing the selected locale is expected to have the form lang[_
terr[.codeset]], and this format uses the first part lang.

%t This format element is substituted by the territory part terr of the
name of the currently selected locale. See the explanation of the
format above.

%c This format element is substituted by the codeset part codeset of
the name of the currently selected locale. See the explanation of
the format above.

Chapter 11: Message Translation 317

%% Since % is used in a meta character, there must be a way to express
the % character in the result itself. Using %% does this just like it
works for printf.

Using NLSPATH allows arbitrary directories to be searched for message cata-
logs while still allowing different languages to be used. If the NLSPATH envi-
ronment variable is not set, the default value is

prefix/share/locale/%L/%N:prefix/share/locale/%L/LC_MESSAGES/%N

where prefix is given to configure while installing the GNU C Library (this
value is in many cases /usr or the empty string).
The remaining problem is to decide which must be used. The value decides
about the substitution of the format elements mentioned above. First of all, the
user can specify a path in the message catalog name (i.e., the name contains
a slash character). In this situation the NLSPATH environment variable is not
used. The catalog must exist as specified in the program, perhaps relative to
the current working directory. This situation in not desirable and catalog names
should never be written this way. Besides this, this behavior is not portable to
all other platforms providing the catgets interface.
Otherwise, the values of environment variables from the standard environment
are examined (see Section 14.4.2 [Standard Environment Variables], page 421).
Which variables are examined is decided by the flag parameter of catopen.
If the value is NL_CAT_LOCALE (which is defined in ‘nl_types.h’), then
the catopen function uses the name of the locale currently selected for the
LC_MESSAGES category.
If flag is zero, the LANG environment variable is examined. This is a leftover
from the early days where the concept of the locales had not even reached the
level of POSIX locales.
The environment variable and the locale name should have a value of the form
lang[_terr[.codeset]] as explained above. If no environment variable is set,
the "C" locale is used, which prevents any translation.
The return value of the function is in any case a valid string. Either it is a
translation from a message catalog or it is the same as the string parameter. So
a piece of code to decide whether a translation actually happened must look like
this:

{

char *trans = catgets (desc, set, msg, input_string);

if (trans == input_string)

{

/* Something went wrong. */

}

}

When an error occurred the global variable errno is set to:

EBADF The catalog does not exist.

318 The GNU C Library: Application Fundamentals

ENOMSG The set/message tuple does not name an existing element in the
message catalog.

While it sometimes can be useful to test for errors, programs normally will avoid
any test. If the translation is not available, it is not a big problem if the original,
untranslated message is printed. Either the user understands this as well, or he
will look for the reason why the messages are not translated.

The currently selected locale does not depend on a call to the setlocale func-
tion. It is not necessary for the locale data files for this locale to exist and for calling
setlocale to succeed. The catopen function directly reads the values of the
environment variables.

Functionchar * catgets (nl_catd catalog desc, int set, int
message, const char *string)

The function catgets has to be used to access the massage catalog previously
opened using the catopen function. The catalog desc parameter must be a
value previously returned by catopen.
The next two parameters, set and message, reflect the internal organization of
the message catalog files. This will be explained in detail below. For now it is
interesting to know that a catalog can consist of several sets and the messages in
each thread are individually numbered using numbers. Neither the set number
nor the message number must be consecutive. They can be arbitrarily chosen.
But each message (unless equal to another one) must have its own unique pair
of set and message number.
Since it is not guaranteed that the message catalog for the language selected by
the user exists, the last parameter string helps to handle this case gracefully. If
no matching string can be found, string is returned. This means for the pro-
grammer that:

• The string parameters should contain reasonable text (this also helps to
understand the program, since otherwise there would be no hint as to the
string that is expected to be returned.

• All string arguments should be written in the same language.

It is somewhat uncomfortable to write a program using the catgets functions
if no supporting functionality is available. Since each set/message number tuple
must be unique, the programmer must keep lists of the messages at the same time
the code is written. And the work between several people working on the same
project must be coordinated. We will see how these problems can be relaxed a bit
(see Section 11.1.4 [How to Use the catgets Interface], page 322).

Functionint catclose (nl_catd catalog desc)
The catclose function can be used to free the resources associated with a
message catalog that previously was opened by a call to catopen. If the re-
sources can be successfully freed, the function returns 0. Otherwise, it returns
−1 and the global variable errno is set. Errors can occur if the catalog descriptor
catalog desc is not valid, in which case errno is set to EBADF.

Chapter 11: Message Translation 319

11.1.2 Format of the Message Catalog Files

The only reasonable way to translate all the messages of a function and store the
result in a message catalog file that can be read by the catopen function is to write
all the message text to the translator and let her translate them all; we must have a
file with entries that associate the set/message tuple with a specific translation. This
file format is specified in the X/Open standard and is as follows:

• Lines containing only white-space characters or empty lines are ignored.
• Lines that contain as the first non-white-space character a $ followed by a

white-space character are comment and are also ignored.
• If a line contains as the first non-white-space characters the sequence $set

followed by a white-space character, an additional argument is required to
follow. This argument can either be
− A number; in this case, the value of this number determines the set to

which the following messages are added.
− An identifier consisting of alphanumeric characters plus the underscore

character; in this case, the set automatically gets a number assigned. This
value is one added to the largest set number that has appeared so far.
How to use the symbolic names is explained in Section 11.1.4 [How to
Use the catgets Interface], page 322.
It is an error if a symbol name appears more than once. All following
messages are placed in a set with this number.

• If a line contains as the first non-white-space characters the sequence
$delset followed by a white-space character, an additional argument is
required to follow. This argument can either be
− A number; in this case, the value of this number determines the set that

will be deleted.
− An identifier consisting of alphanumeric characters plus the underscore

character; this symbolic identifier must match a name for a set that was
previously defined. It is an error if the name is unknown.

In both cases, all messages in the specified set will be removed. They will
not appear in the output. But if this set is selected again later with a $set
command, messages could be added again, and these messages will appear in
the output.

• If a line contains after leading white spaces the sequence $quote, the quot-
ing character used for this input file is changed to the first non-white-space
character following the $quote. If no non-white-space character is present
before the line ends, quoting is disabled.
By default, no quoting character is used. In this mode, strings are terminated
with the first unescaped line break. If there is a $quote sequence present,
newline need not be escaped. Instead, a string is terminated with the first
unescaped appearance of the quote character.

320 The GNU C Library: Application Fundamentals

A common usage of this feature would be to set the quote character to ‘"’.
Then any appearance of the ‘"’ in the strings must be escaped using the back-
slash (i.e., ‘\"’ must be written).

• Any other line must start with a number or an alphanumeric identifier (with
the underscore character included). The following characters (starting after
the first white-space character) will form the string that gets associated with
the currently selected set and the message number represented by the number
and identifier respectively.
If the start of the line is a number, the message number is obvious. It is an
error if the same message number already appeared for this set.
If the leading token was an identifier, the message number gets automatically
assigned. The value is the current maximum messages number for this set
plus one. It is an error if the identifier was already used for a message in this
set. It is OK to reuse the identifier for a message in another thread. How to
use the symbolic identifiers will be explained below (see Section 11.1.4 [How
to Use the catgets Interface], page 322). There is one limitation with the
identifier: it must not be Set. The reason will be explained below.
The text of the messages can contain escape characters. The usual bunch of
characters known from the ISO C language are recognized (‘\n’, ‘\t’, ‘\v’,
‘\b’, ‘\r’, ‘\f’, ‘\\’, and ‘\nnn’, where nnn is the octal coding of a char-
acter code).

Important: The handling of identifiers instead of numbers for the set and mes-
sages is a GNU extension. Systems strictly following the X/Open specification do
not have this feature. An example for a message catalog file is this:

$ This is a leading comment.

$quote "

$set SetOne

1 Message with ID 1.

two " Message with ID \"two\", which gets the value 2 assigned"

$set SetTwo

$ Since the last set got the number 1 assigned this set has number 2.

4000 "The numbers can be arbitrary, they need not start at one."

This small example shows various aspects:
• Lines 1 and 9 are comments, since they start with $ followed by a white space.
• The quoting character is set to ‘"’. Otherwise, the quotes in the message

definition would have to be left away, and in this case, the message with the
identifier two would lose its leading white space.

• Mixing numbered messages with messages having symbolic names is no prob-
lem, and the numbering happens automatically.

While this file format is pretty easy, it is not the best possible for use in a running
program. The catopen function would have to parse the file and handle syn-

Chapter 11: Message Translation 321

tactic errors gracefully. This is not so easy, and the whole process is pretty slow.
Therefore, the catgets functions expect the data in another more compact and
ready-to-use file format. There is a special program gencat, which is explained
in detail in the next section.

Files in this other format are not human readable. To be easy to use for programs,
it is a binary file. But the format is byte-order independent, so translation files
can be shared by systems of arbitrary architecture (as long as they use the GNU C
Library).

Details about the binary file format are not important to know, since these files
are always created by the gencat program. The sources of the GNU C Library
also provide the sources for the gencat program, so the interested reader can
look through these source files to learn about the file format.

11.1.3 Generate Message Catalogs Files

The gencat program is specified in the X/Open standard, and the GNU im-
plementation follows this specification, so it processes all correctly formed input
files. Additionally, some extension are implemented that help to work in a more
reasonable way with the catgets functions.

The gencat program can be invoked in two ways:
‘gencat [Option]... [Output-File [Input-File]...]‘

This is the interface defined in the X/Open standard. If no Input-File parameter
is given, input will be read from standard input. Multiple input files will be read as
if they are concatenated. If Output-File is also missing, the output will be written
to standard output. To provide the interface one is used to from other programs, a
second interface is provided.

‘gencat [Option]... -o Output-File [Input-File]...‘

The option ‘-o’ is used to specify the output file, and all file arguments are used
as input files.

Besides this, you can use ‘-’ or ‘/dev/stdin’ for Input-File to denote the
standard input. Correspondingly, one can use ‘-’ and ‘/dev/stdout’ for
Output-File to denote standard output. Using ‘-’ as a file name is allowed in
X/Open, while using the device names is a GNU extension.

The gencat program works by concatenating all input files and then merging
the resulting collection of message sets with a possibly existing output file. This is
done by removing all messages with set/message number tuples matching any of
the generated messages from the output file, and then adding all the new messages.
To regenerate a catalog file while ignoring the old contents therefore requires you
to remove the output file if it exists. If the output is written to standard output, no
merging takes place.
The following table shows the options understood by the gencat program; the
X/Open standard does not specify any option for the program, so all of these are
GNU extensions:

322 The GNU C Library: Application Fundamentals

‘-V’
‘--version’

Print the version information and exit.

‘-h’
‘--help’ Print a usage message listing all available options, then exit success-

fully.

‘--new’ Never merge the new messages from the input files with the old con-
tent of the output files. The old content of the output files is discarded.

‘-H’
‘--header=name’

This option is used to emit the symbolic names given to sets and mes-
sages in the input files for use in the program. Details about how to
use this are given in the next section. The name parameter to this op-
tion specifies the name of the output file. It will contain a number of
C preprocessor #defines to associate a name with a number.
The generated file only contains the symbols from the input files. If
the output is merged with the previous content of the output file, the
possibly existing symbols from the file(s) that generated the old output
files are not in the generated header file.

11.1.4 How to Use the catgets Interface

The catgets functions can be used in two different ways: by slavishly fol-
lowing the X/Open specs and not relying on the extensions or by using the GNU
extensions. We will take a look at the former method first to understand the bene-
fits of extensions.

11.1.4.1 Not Using Symbolic Names

Since the X/Open format of the message catalog files does not allow symbol
names, we have to work with numbers all the time. When we start writing a pro-
gram, we have to replace all appearances of translatable strings with something
like:

catgets (catdesc, set, msg, "string")

catgets is retrieved from a call to catopen, which is normally done once at the
program start. The "string" is the string we want to translate. The problems
start with the set and message numbers.

In a bigger program, several programmers usually work at the same time on the
program, so coordinating the number allocation is crucial. Though no two different
strings must be indexed by the same tuple of numbers, it is highly desirable to reuse
the numbers for equal strings with equal translations (there might be strings that are
equal in one language but have different translations due to different contexts).

The allocation process can be relaxed a bit by different set numbers for different
parts of the program. So the number of developers who have to coordinate the allo-

Chapter 11: Message Translation 323

cation can be reduced. But still, lists must be made to keep track of the allocation,
and errors can easily happen. These errors cannot be discovered by the compiler or
the catgets functions. Only the user of the program might see wrong messages
printed. In the worst cases, the messages are so irritating that they cannot be rec-
ognized as wrong. Think about the translations for "true" and "false" being
exchanged. This could result in a disaster.

11.1.4.2 Using Symbolic Names

The problems mentioned in the last section derive from the fact that:
1. The numbers are allocated once, and due to the possibly frequent use of them,

it is difficult to change a number later.
2. The numbers do not allow you to guess anything about the string, and therefore

collisions can easily happen.
By constantly using symbolic names and by providing a method that maps the

string content to a symbolic name (however this will happen), you can prevent
both of the above problems. The cost of this is that the programmer has to write a
complete message catalog file while she is writing the program itself.

This is necessary since the symbolic names must be mapped to numbers before
the program sources can be compiled. In the last section, it was described how to
generate a header containing the mapping of the names. For the example message
file given in the last section, we could call the gencat program as follows (assume
‘ex.msg’ contains the sources):

gencat -H ex.h -o ex.cat ex.msg

This generates a header file with the following content:
#define SetTwoSet 0x2 /* ex.msg:8 */

#define SetOneSet 0x1 /* ex.msg:4 */

#define SetOnetwo 0x2 /* ex.msg:6 */

As can be seen, the various symbols given in the source file are mangled to
generate unique identifiers and these identifiers get numbers assigned. Reading the
source file and knowing about the rules will allow you to predict the content of the
header file (it is deterministic), but this is not necessary. The gencat program
can take care of everything. All the programmer has to do is put the generated
header file in the dependency list of the source files of his project and add a rule to
regenerate the header of any of the input files change.

One word about the symbol mangling. Every symbol consists of two parts: the
name of the message set plus the name of the message or the special string Set. So
SetOnetwo means this macro can be used to access the translation with identifier
two in the message set SetOne.

The other names denote the names of the message sets. The special string Set
is used in the place of the message identifier.

If in the code the second string of the set SetOne is used, the C code should
look like this:

324 The GNU C Library: Application Fundamentals

catgets (catdesc, SetOneSet, SetOnetwo,

" Message with ID \"two\", which gets the value 2 assigned")

Writing the function this way will allow you to change the message number and
even the set number without any change in the C source code (the text of the string
is normally not the same; this is only for this example).

11.1.4.3 Using Symbolic Version Numbers

To illustrate the usual way to work with the symbolic version numbers, here is
a little example. Assume we want to write the very complex and famous greeting
program. We start by writing the code as usual:

#include <stdio.h>

int

main (void)

{

printf ("Hello, world!\n");

return 0;

}

Now we want to internationalize the message and therefore replace the message
with whatever the user wants:

#include <nl_types.h>

#include <stdio.h>

#include "msgnrs.h"

int

main (void)

{

nl_catd catdesc = catopen ("hello.cat", NL_CAT_LOCALE);

printf (catgets (catdesc, SetMainSet, SetMainHello,

"Hello, world!\n"));

catclose (catdesc);

return 0;

}

We see how the catalog object is opened and the returned descriptor used in
the other function calls. It is not really necessary to check for failure of any of
the functions, since even in these situations, the functions will behave reasonably.
They simply will be return a translation.

What remains unspecified here are the constants SetMainSet and
SetMainHello. These are the symbolic names describing the message. To get
the actual definitions that match the information in the catalog file, we have to
create the message catalog source file and process it using the gencat program:

$ Messages for the famous greeting program.

$quote "

$set Main

Chapter 11: Message Translation 325

Hello "Hallo, Welt!\n"

Now we can start building the program (assume the message catalog source file
is named ‘hello.msg’ and the program source file ‘hello.c’):� �

% gencat -H msgnrs.h -o hello.cat hello.msg

% cat msgnrs.h

#define MainSet 0x1 /* hello.msg:4 */

#define MainHello 0x1 /* hello.msg:5 */

% gcc -o hello hello.c -I.

% cp hello.cat /usr/share/locale/de/LC_MESSAGES

% echo $LC_ALL

de

% ./hello

Hallo, Welt!

%
 	
The call of the gencat program creates the missing header file ‘msgnrs.h’

as well as the message catalog binary. The former is used in the compilation of
‘hello.c’ while the latter is placed in a directory where the catopen function
will try to locate it. Please check the LC_ALL environment variable and the default
path for catopen presented in the description above.

11.2 The Uniforum Approach to Message Translation

Sun Microsystems tried to standardize a different approach to message trans-
lation in the Uniforum group. There never was a real standard defined, but the
interface was used in Sun’s operation systems. Since this approach fits better in the
development process of free software, it is also used throughout the GNU project
and the GNU ‘gettext’ package provides support for this outside the GNU C
Library.

The code of the ‘libintl’ from GNU ‘gettext’ is the same as the code
in the GNU C Library. So the documentation in the GNU ‘gettext’ manual is
also valid for the functionality here. The following text will describe the library
functions in detail. But the numerous helper programs are not described in this
manual. Instead, people should read the GNU ‘gettext’ manual.1 We will only
give a short overview.

Though the catgets functions are available by default on more systems, the
gettext interface is at least as portable as the former. The GNU ‘gettext’
package can be used wherever the functions are not available.

1 The GNU Project, GNU gettext Utilities (Free Software Foundation, May 6, 2003), http://
www.gnu.org/ software/ gettext/ manual/ gettext.

 http:// www.gnu.org/ software/ gettext/ manual/ gettext
 http:// www.gnu.org/ software/ gettext/ manual/ gettext

326 The GNU C Library: Application Fundamentals

11.2.1 The gettext Family of Functions

The paradigm underlying the gettext approach to message translation is dif-
ferent from that of the catgets functions, though the basic functionally is equiv-
alent.

11.2.1.1 What Has to Be Done to Translate a Message?

The gettext functions have a very simple interface. The most basic function
just takes the string that will be translated as the argument and returns the transla-
tion. This is fundamentally different from the catgets approach, where an extra
key is necessary and the original string is only used for the error case.

If the string that has to be translated is the only argument, this of course means
the string itself is the key—the translation will be selected based on the original
string. The message catalogs must therefore contain the original strings plus one
translation for any such string. The task of the gettext function is it to compare
the argument string with the available strings in the catalog and return the appropri-
ate translation. Of course this process is optimized so that it is not more expensive
than an access using an atomic key like in catgets.

The gettext approach has some advantages but also some disadvantages.
Please see the GNU ‘gettext’ manual for a detailed discussion of the pros and
cons.2

All the definitions and declarations for gettext can be found in the
‘libintl.h’ header file. On systems where these functions are not part of
the C library, they can be found in a separate library named ‘libintl.a’ (or
accordingly different for shared libraries).

Functionchar * gettext (const char *msgid)
The gettext function searches the currently selected message catalogs for a
string that is equal to msgid. If there is such a string available, it is returned.
Otherwise, the argument string msgid is returned.
Although the return value is char *, the returned string must not be changed.
This broken type results from the history of the function and does not reflect the
way the function should be used.
Above, we referred to “message catalogs” (plural). This is a specialty of the
GNU implementation of these functions, and we will say more about this when
we talk about the ways message catalogs are selected (see Section 11.2.1.2 [How
to Determine Which Catalog to Use], page 328).
The gettext function does not modify the value of the global errno variable.
This is necessary to make it possible to write something like:

printf (gettext ("Operation failed: %m\n"));

2 Ibid.

Chapter 11: Message Translation 327

Here the errno value is used in the printf function while processing the %m
format element, and if the gettext function would change this value (it is
called before printf is called), we would get a wrong message.
So there is no easy way to detect a missing message catalog besides comparing
the argument string with the result. But it is normally the task of the user to
react on missing catalogs. The program cannot guess when a message catalog
is really necessary, since no translation is necessary for a user who speaks the
language the program was developed in.

The remaining two functions to access the message catalog add some function-
ality to select a message catalog that is not the default one. This is important if
parts of the program are developed independently. Every part can have its own
message catalog and all of them can be used at the same time. The C library itself
is an example; internally it uses the gettext functions, but since it must not de-
pend on a currently selected default message catalog, it must specify all ambiguous
information.

Functionchar * dgettext (const char *domainname, const char
*msgid)

The dgettext function acts just like the gettext function. It only takes an
additional first argument domainname, which guides the selection of the mes-
sage catalogs that are searched for the translation. If the domainname parameter
is the null pointer, the dgettext function is exactly equivalent to gettext,
since the default value for the domain name is used.
As for gettext, the return value type is char *, which is an anachronism.
The returned string must never be modified.

Functionchar * dcgettext (const char *domainname, const char
*msgid, int category)

The dcgettext adds another argument to those that dgettext takes. This
argument category specifies the last piece of information needed to localize
the message catalog—the domain name and the locale category specify exactly
which message catalog has to be used (relative to a given directory, see below).
The dgettext function can be expressed in terms of dcgettext by using:

dcgettext (domain, string, LC_MESSAGES)

instead of:
dgettext (domain, string)

This also shows which values are expected for the third parameter. You have
to use the available selectors for the categories available in ‘locale.h’. Nor-
mally the available values are LC_CTYPE, LC_COLLATE, LC_MESSAGES,
LC_MONETARY, LC_NUMERIC and LC_TIME. LC_ALL must not be used,
and even though the names might suggest this, there is no relation to the envi-
ronment variables with the same names.
The dcgettext function is only implemented for compatibility with other
systems that have gettext functions. There is not really any situation where

328 The GNU C Library: Application Fundamentals

it is necessary (or useful) to use a value other than LC_MESSAGES for the
category parameter. We are dealing with messages here, and any other choice
can only be irritating.
As for gettext, the return value type is char *, which is an anachronism.
The returned string must never be modified.

When using the three functions above in a program, it is a frequent case that the
msgid argument is a constant string, so it is worthwhile to optimize this case. As
long as no new message catalog is loaded, the translation of a message will not
change. This optimization is actually implemented by the gettext, dgettext
and dcgettext functions.

11.2.1.2 How to Determine Which Catalog to Use

The functions to retrieve the translations for a given message have a remarkably
simple interface. But to provide the user of the program with the opportunity to
select exactly the translation she wants and also to provide the programmer the
ability to influence the way to locate the search for catalog files, there is a quite
complicated underlying control mechanism. The code is complicated, the use is
easy.

Basically, we have two different tasks to perform that can also be performed by
the catgets functions:

1. Locate the set of message catalogs. There are a number of files for different
languages and that all belong to the package. Usually they are all stored in the
file system below a certain directory.
There can be an arbitrary number of packages installed, and they can follow
different guidelines for the placement of their files.

2. Relative to the location specified by the package, the actual translation files
must be searched, based on the wishes of the user—for each language the user
selects, the program should be able to locate the appropriate file.

This is the functionality required by the specifications for gettext, and this is
also what the catgets functions are able to do. But there are some unresolved
problems:

• The language to be used can be specified in several different ways. There is no
generally accepted standard for this, and the user always expects the program
to understand what he means. For example, to select the German translation,
one could write de, german or deutsch, and the program should always
react the same.

• Sometimes the user’s specification is too detailed. If he for example, specifies
de_DE.ISO-8859-1, which means German, spoken in Germany, coded us-
ing the ISO 8859-1 character set, there is the possibility that an exact message
catalog match is not available. But there could be a catalog matching de, and
if the character set used on the machine is always ISO 8859-1, there is no rea-
son why this latter message catalog should not be used (we call this message
inheritance).

Chapter 11: Message Translation 329

• If a catalog for a desired language is not available, it is not always the second-
best choice to fall back on the language of the developer and simply not trans-
late any message. Instead, a user might be better able to read the messages in
another language, and so the user of the program should be able to define a
precedence order of languages.

We can divide the configuration actions into two parts: one is performed by
the programmer and the other by the user. We will start with the functions the
programmer can use since the user configuration will be based on this.

As the description of the functions in the previous sections already mentioned,
separate sets of messages can be selected by a domain name. This is a simple
string that should be unique for each program part that uses a separate domain.
It is possible to use in one program an arbitrary number of domains at the same
time. For example, the GNU C Library itself uses a domain named libc while the
program using the C Library could use a domain named foo. The important point
is that at any given time, exactly one domain is active. This is controlled with the
following function:

Functionchar * textdomain (const char *domainname)
The textdomain function sets the default domain, which is used in all fu-
ture gettext calls, to domainname. dgettext and dcgettext calls are
not influenced if the domainname parameter of these functions is not the null
pointer.
Before the first call to textdomain, the default domain is messages. This
is the name specified in the specification of the gettext API. This name is as
good as any other name. No program should ever really use a domain with this
name, since this can only lead to problems.
The function returns the value that is from now on taken as the default domain. If
the system ran out of memory, the returned value is NULL and the global variable
errno is set to ENOMEM. Despite the return value type being char *, the return
string must not be changed. It is allocated internally by the textdomain
function.
If the domainname parameter is the null pointer, no new default domain is set.
Instead, the currently selected default domain is returned.
If the domainname parameter is an empty string, the default domain is reset to
its initial value—the domain with the name messages. Note, though, that the
domain messages really never should be used.

Functionchar * bindtextdomain (const char *domainname, const
char *dirname)

The bindtextdomain function can be used to specify the directory that con-
tains the message catalogs for domain domainname for the different languages.
This is the directory where the hierarchy of directories is expected. Details are
explained below.
For the programmer, it is important to note that the translations that come
with the program have be placed in a directory hierarchy starting at, say,

330 The GNU C Library: Application Fundamentals

‘/foo/bar’. Then the program should make a bindtextdomain call to
bind the domain for the current program to this directory. So it is ensured that
the catalogs will be found. A correctly running program does not depend on the
user setting an environment variable.
The bindtextdomain function can be used several times and if the domain-
name argument is different, the previously bound domains will not be overwrit-
ten.
If a program that wishes to use bindtextdomain at some point uses the
chdir function to change the current working directory, it is important that the
dirname strings be an absolute pathname. Otherwise, the addressed directory
might vary with the time.
If the dirname parameter is the null pointer, bindtextdomain returns the
currently selected directory for the domain with the name domainname.
The bindtextdomain function returns a pointer to a string containing the
name of the selected directory name. The string is allocated internally in the
function and must not be changed by the user. If the system runs out of memory
during the execution of bindtextdomain, the return value is NULL, and the
global variable errno is set accordingly.

11.2.1.3 Additional Functions for More Complicated Situations

The functions of the gettext family described so far (and all the catgets
functions as well) have one problem in the real world that has been neglected com-
pletely in all existing approaches—the handling of plural forms.

Looking through Unix source code written before the time anybody thought
about internationalization (and, sadly, even afterwards), you can often find code
similar to the following:

printf ("%d file%s deleted", n, n == 1 ? "" : "s");

After the first complaints from people internationalizing the code, people either
completely avoided formulations like this, or used strings like "file(s)". Both
look unnatural and should be avoided. First attempts to solve the problem correctly
looked like this:

if (n == 1)

printf ("%d file deleted", n);

else

printf ("%d files deleted", n);

But this does not solve the problem. It helps languages where the plural form
of a noun is not simply constructed by adding an ‘s’, but that is all. Once again,
people fell into the trap of believing the rules their language is using are universal.
But the handling of plural forms differs widely between the language families (and
even inside language families). There are two things we can differentiate between:

• The form for how plural forms are built differs. This is a problem with lan-
guage that have many irregularities. German, for instance, is a drastic case.
Though English and German are part of the same language family (Germanic),

Chapter 11: Message Translation 331

the almost regular forming of plural noun forms (appending an ‘s’) is hardly
found in German.

• The number of plural forms differ. This is somewhat surprising for those who
only have experiences with Romanic and Germanic languages since here the
number is the same (there are two).
Other language families have only one form or many forms.

The consequence of this is that application writers should not try to solve the
problem in their code. This would be localization, since it is only usable for cer-
tain, hard-coded language environments. Instead, the extended gettext interface
should be used.

These extra functions are taking two strings and a numerical argument instead
of the one key string. The idea behind this is that using the numerical argument
and the first string as a key, the implementation can select, using rules specified by
the translator, the right plural form. The two string arguments then will be used to
provide a return value in case no message catalog is found (similar to the normal
gettext behavior). In this case, the rules for Germanic language are used, and it
is assumed that the first string argument is the singular form, the second the plural
form.

This has the consequence that programs without language catalogs can display
the correct strings only if the program itself is written using a Germanic language.
This is a limitation, but since the GNU C Library (as well as the GNU gettext
package) are written as part of the GNU package and the coding standards for the
GNU project require programs to be written in English, this solution nevertheless
fulfills its purpose.

Functionchar * ngettext (const char *msgid1, const char
*msgid2, unsigned long int n)

The ngettext function is similar to the gettext function, since it finds
the message catalogs in the same way. But it takes two extra arguments. The
msgid1 parameter must contain the singular form of the string to be converted.
It is also used as the key for the search in the catalog. The msgid2 parameter
is the plural form. The parameter n is used to determine the plural form. If no
message catalog is found, msgid1 is returned if n == 1, otherwise msgid2 is
returned.
An example for the us of this function is

printf (ngettext ("%d file removed", "%d files removed", n), n);

Please note that the numeric value n has to be passed to the printf function
as well. It is not sufficient to pass it only to ngettext.

Functionchar * dngettext (const char *domain, const char
*msgid1, const char *msgid2, unsigned long int n)

The dngettext is similar to the dgettext function in the way the message
catalog is selected. The difference is that it takes two extra parameters to provide

332 The GNU C Library: Application Fundamentals

the correct plural form. These two parameters are handled in the same way
ngettext handles them.

Functionchar * dcngettext (const char *domain, const char
*msgid1, const char *msgid2, unsigned long int n, int
category)

The dcngettext is similar to the dcgettext function in the way the mes-
sage catalog is selected. The difference is that it takes two extra parameter to
provide the correct plural form. These two parameters are handled in the same
way ngettext handles them.

The Problem of Plural Forms

A description of the problem can be found at the beginning of the last section.
Now there is the question how to solve it. Without the input of linguists (which
was not available), it was not possible to determine whether there are only a few
different ways in which plurals are formed or whether the number can increase with
every new supported language.

Therefore, the solution implemented is to allow the translator to specify the rules
for how to select the plural form. Since the formula varies with every language,
this is the only viable solution except for hard-coding the information in the code
(which still would require the possibility of extensions to not prevent the use of new
languages). The details are explained in the GNU gettext manual.3 Here, only a
a bit of information is provided.

The information about the plural form selection has to be stored in the header
entry (the one with the empty msgid string). It looks like this:

Plural-Forms: nplurals=2; plural=n == 1 ? 0 : 1;

The nplurals value must be a decimal number that specifies how many dif-
ferent plural forms exist for this language. The string following plural is an
expression that is using the C language syntax. Exceptions are that nonnegative
numbers are allowed, numbers must be decimal and the only variable allowed is
n. This expression will be evaluated whenever one of the functions ngettext,
dngettext or dcngettext is called. The numeric value passed to these func-
tions is then substituted for all uses of the variable n in the expression. The resulting
value then must be greater than or equal to zero and smaller than the value given as
the value of nplurals.
The following rules are known at this point. The languages with their families are
listed. But this does not necessarily mean that the information can be generalized
for the whole family (as can be easily seen in the table below).4

• Only one form:

3 The GNU Project, GNU gettext Utilities (Free Software Foundation, May 6, 2003), http://
www.gnu.org/ software/ gettext/ manual/ gettext.

4 Additions are welcome. Send appropriate information to bug-glibc-manual@gnu.org.

http:// www.gnu.org/ software/ gettext/ manual/ gettext
http:// www.gnu.org/ software/ gettext/ manual/ gettext
mailto:bug-glibc-manual@gnu.org

Chapter 11: Message Translation 333

− Some languages require only one single form. There is no distinction
between the singular and plural form. An appropriate header entry would
look like this:

Plural-Forms: nplurals=1; plural=0;

− Languages with this property include:
• Finno-Ugric family
− Hungarian

• Asian family
− Japanese
− Korean

• Turkic/Altaic family
− Turkish

• Two forms, singular used for one only:
− This is the form used in most existing programs since it is what English

is using. A header entry would look like this:
Plural-Forms: nplurals=2; plural=n != 1;

(Note: this uses the feature of C expressions that Boolean expressions
have to value zero or one.)

− Languages with this property include:
• Germanic family
− Danish
− Dutch
− English
− German
− Norwegian
− Swedish

• Finno-Ugric family
− Estonian
− Finnish

• Latin/Greek family
− Greek

• Semitic family
− Hebrew

• Romance family
− Italian
− Portuguese
− Spanish

• Artificial

334 The GNU C Library: Application Fundamentals

− Esperanto
• Two forms, singular used for zero and one:
− This is an exceptional case in the language family. The header entry

would be
Plural-Forms: nplurals=2; plural=n>1;

− Languages with this property include:
• Romanic family
− French
− Brazilian
− Portuguese

• Three forms, special case for zero:
− The header entry would be

Plural-Forms: nplurals=3; \

plural=n%10==1 && n%100!=11 ? 0 : n != 0 ? 1 : 2;

− Languages with this property include:
• Baltic family
− Latvian

• Three forms, special cases for one and two:
− The header entry would be

Plural-Forms: nplurals=3; plural=n==1 ? 0 : n==2 ? 1 : 2;

− Languages with this property include:
• Celtic
− Gaeilge (Irish)

• Three forms, special case for numbers ending in 1[2-9]:
− The header entry would look like this:

Plural-Forms: nplurals=3; \

plural=n%10==1 && n%100!=11 ? 0 : \

n%10>=2 && (n%100<10 || n%100>=20) ? 1 : 2;

− Languages with this property include:
• Baltic family
− Lithuanian

• Three forms, special cases for numbers ending in 1 and 2, 3, 4, except those
ending in 1[1-4]:
− The header entry would look like this:

Plural-Forms: nplurals=3; \

plural=n%100/10==1 ? 2 : n%10==1 ? 0 : (n+9)%10>3 ? 2 : 1;

− Languages with this property include:
• Slavic family

Chapter 11: Message Translation 335

− Croatian
− Czech
− Russian
− Ukrainian

• Three forms, special cases for 1 and 2, 3, 4:
− The header entry would look like this:

Plural-Forms: nplurals=3; \

plural=(n==1) ? 1 : (n>=2 && n<=4) ? 2 : 0;

− Languages with this property include:
• Slavic family
− Slovak

• Three forms, special case for one and some numbers ending in 2, 3, or 4:
− The header entry would look like this:

Plural-Forms: nplurals=3; \

plural= n ==1 ? 0 : \

n%10>=2 && n%10<=4 && (n%100<10 || n%100>=20) ? 1 : 2;

− Languages with this property include:
• Slavic family
− Polish

• Four forms, special case for one and all numbers ending in 02, 03, or 04:
− The header entry would look like this:

Plural-Forms: nplurals=4; \

plural= n%100 == 1 ? 0 : n%100==2 ? 1 : n%100 == 3

|| n%100 == 4 ? 2 : 3;

− Languages with this property include:
• Slavic family
− Slovenian

11.2.1.4 How to Specify the Output Character Set That
gettext Uses

gettext not only looks up a translation in a message catalog, it also converts
the translation on the fly to the desired output character set. This is useful if the user
is working in a different character set than the translator who created the message
catalog, because it avoids distributing variants of message catalogs that differ only
in the character set.

The output character set is, by default, the value of nl_langinfo
(CODESET), which depends on the LC_CTYPE part of the current locale. But
programs that store strings in a locale-independent way (e.g. UTF-8) can request
that gettext and related functions return the translations in that encoding, by
use of the bind_textdomain_codeset function.

336 The GNU C Library: Application Fundamentals

The msgid argument to gettext is not subject to character-set conversion.
Also, when gettext does not find a translation for msgid, it returns msgid
unchanged—independently of the current output character set. It is therefore rec-
ommended that all msgids be US-ASCII strings.

Functionchar * bind textdomain codeset (const char
*domainname, const char *codeset)

The bind_textdomain_codeset function can be used to specify the out-
put character set for message catalogs for domain domainname. The codeset
argument must be a valid codeset name that can be used for the iconv_open
function, or a null pointer.
If the codeset parameter is the null pointer, bind_textdomain_codeset
returns the currently selected codeset for the domain with the name domain-
name. It returns NULL if no codeset has yet been selected.
The bind_textdomain_codeset function can be used several times. If
used multiple times with the same domainname argument, the later call over-
rides the settings made by the earlier one.
The bind_textdomain_codeset function returns a pointer to a string
containing the name of the selected codeset. The string is allocated internally
in the function and must not be changed by the user. If the system runs out of
memory during the execution of bind_textdomain_codeset, the return
value is NULL and the global variable errno is set accordingly.

11.2.1.5 How to Use gettext in GUI Programs

One place where the gettext functions, if used normally, have big problems
is within programs with graphical user interfaces (GUIs). The problem is that many
of the strings that have to be translated are very short. They have to appear in pull-
down menus, which restricts their length. But strings that do not contain entire
sentences or at least large fragments of a sentence may appear in more than one
situation in the program with different translations. This is especially true for the
one-word strings that are frequently used in GUI programs.

As a consequence, many people say that the gettext approach is wrong and
that instead catgets, which indeed does not have this problem, should be used.
But there is a very simple and powerful method to handle this problem with the
gettext functions.
As as example, consider the following fictional situation. A GUI program has a
menu bar with the following entries:

+------------+------------+--------------------------------------+

| File | Printer | |

+------------+------------+--------------------------------------+

| Open | | Select |

| New | | Open |

+----------+ | Connect |

+----------+

Chapter 11: Message Translation 337

To have the strings File, Printer, Open, New, Select and Connect
translated, there has to be at some point in the code a call to a function of the
gettext family. But in two places the string passed into the function would be
Open. The translations might not be the same and therefore we are in the dilemma
described above.

One solution to this problem is to artificially lengthen the strings to make them
unambiguous. But what would the program do if no translation were available?
The lengthened string is not what should be printed. So we should use a modified
version of the functions.

To lengthen the strings, a uniform method should be used. In the example above,
the strings could be chosen as:

Menu|File

Menu|Printer

Menu|File|Open

Menu|File|New

Menu|Printer|Select

Menu|Printer|Open

Menu|Printer|Connect

Now all the strings are different, and if now instead of gettext the following
little wrapper function is used, everything works just fine:

char *

sgettext (const char *msgid)

{

char *msgval = gettext (msgid);

if (msgval == msgid)

msgval = strrchr (msgid, ’|’) + 1;

return msgval;

}

What this little function does is to recognize the case when no translation is
available. This can be done very efficiently by a pointer comparison since the
return value is the input value. If there is no translation, we know that the input
string is in the format we used for the Menu entries and therefore contains a ‘|’
character. We simply search for the last occurrence of this character and return a
pointer to the character following it. That’s it!

If one now consistently uses the lengthened-string form and replaces the
gettext calls with calls to sgettext (this is normally limited to very few
places in the GUI implementation), then it is possible to produce a program that
can be internationalized.

With advanced compilers (such as GNU C), one can write the sgettext func-
tions as an in-line function or as a macro like this:

#define sgettext(msgid) \

({ const char *__msgid = (msgid); \

char *__msgstr = gettext (__msgid); \

338 The GNU C Library: Application Fundamentals

if (__msgval == __msgid) \

__msgval = strrchr (__msgid, ’|’) + 1; \

__msgval; })

The other gettext functions (dgettext, dcgettext and the ngettext
equivalents) can and should have corresponding functions as well that look almost
identical, except for the parameters and the call to the underlying function.

Now, why do such functions not exist in the GNU C Library? There are two parts
to the answer for this question:

• They are easy to write and therefore can be provided by the project they are
used in. This is not an answer by itself and must be seen together with the
second part, which is

• There is no way the C library can contain a version that can work everywhere.
The problem is the selection of the character to separate the prefix from the
actual string in the lenghtened string. The examples above used ‘|’, which is
a good choice because it resembles a notation frequently used in this context
and it also is a character not often used in message strings. But, what if the
character is used in message strings? Or what if the chosen character is not
available in the character set on the machine one compiles on (e.g., ‘|’ is not
required to exist for ISO C; this is why the ‘iso646.h’ file exists in ISO C
programming environments)? So, even this method is not perfect.

There is only one more comment left to make. The wrapper function above
requires that the translation strings themselves not be lengthened. This is only
logical. There is no need to disambiguate the strings (since they are never used as
keys for a search), and one also saves some memory and disk space by doing this.

11.2.1.6 User Influence on gettext

The last sections described what the programmer can do to internationalize the
messages of the program. But it is up to the user in the end to select the message
she wants to see. She must understand them.

The POSIX locale model uses the environment variables LC_COLLATE, LC_
CTYPE, LC_MESSAGES, LC_MONETARY, NUMERIC and LC_TIME to select the
locale that is to be used. This way the user can influence lots of functions. As we
mentioned above, the gettext functions also take advantage of this.

To understand how this happens, it is necessary to take a look at the various
components of the file name that get computed to locate a message catalog. It is
composed as follows:

dir name/locale/LC_category/domain name.mo

The default value for dir name is system specific. It is computed from the value
given as the prefix while configuring the C library. This value normally is ‘/usr’
or ‘/’. For the former, the complete dir name is

/usr/share/locale

We can use ‘/usr/share’ since the ‘.mo’ files containing the message cata-
logs are system independent, so all systems can use the same files. If the program

Chapter 11: Message Translation 339

executed the bindtextdomain function for the message domain that is currently
handled, the dir_name component is exactly the value that was given to the func-
tion as the second parameter. bindtextdomain allows overwriting the only
system-dependent and fixed value to make it possible to address files anywhere in
the file system.

The category is the name of the locale category that was selected in the pro-
gram code. For gettext and dgettext, this is always LC_MESSAGES; for
dcgettext, this is selected by the value of the third parameter. As said above,
using a category other than LC_MESSAGES should be avoided.

The locale component is computed based on the category used. Just like for the
setlocale function, user selection comes into play. Some environment variables
are examined in a fixed order, and the first environment variable set determines the
return value of the lookup process. In detail, for the category LC_xxx the following
variables are examined in this order:

• LANGUAGE

• LC_ALL

• LC_xxx

• LANG

This looks very familiar. With the exception of the LANGUAGE environment
variable, this is exactly the lookup order the setlocale function uses. But why
introduce the LANGUAGE variable?

The reason is that the syntax of the values these variables can have is different
from what is expected by the setlocale function. If we would set LC_ALL to
a value following the extended syntax, that would mean the setlocale function
would never be able to use the value of this variable. An additional variable removes
this problem, plus we can select the language independently of the locale setting,
which is sometimes useful.

While for the LC_xxx variables, the value should consist of exactly one specifi-
cation of a locale, the LANGUAGE variable’s value can consist of a colon-separated
list of locale names. This is the way we manage to implement one of our additional
demands above, to be able to specify an ordered list of languages.

Back to the constructed file name. We have only one component missing. The
domain name part is the name that was either registered using the textdomain
function or that was given to dgettext or dcgettext as the first parameter.
Now it becomes obvious that a good choice for the domain name in the program
code is a string that is closely related to the program or package name. For example,
the domain name for the GNU C Library is libc.
A limited piece of example code should show how the programmer is supposed to
work:

{

setlocale (LC_ALL, "");

textdomain ("test-package");

bindtextdomain ("test-package", "/usr/local/share/locale");

340 The GNU C Library: Application Fundamentals

puts (gettext ("Hello, world!"));

}

At the program start, the default domain is messages, and the default locale
is ‘C’. The setlocale call sets the locale according to the user’s environment
variables; remember that correct functioning of gettext relies on the correct
setting of the LC_MESSAGES locale (for looking up the message catalog) and of
the LC_CTYPE locale (for the character-set conversion). The textdomain call
changes the default domain to test-package. The bindtextdomain call
specifies that the message catalogs for the domain test-package can be found
below the directory ‘/usr/local/share/locale’.

If now the user set in her environment the variable LANGUAGE to de, the
gettext function will try to use the translations from the file:

/usr/local/share/locale/de/LC_MESSAGES/test-package.mo

From the above descriptions, it should be clear which component of this file
name is determined by which source.

In the above example, we assumed that the LANGUAGE environment variable
was set to de. This might be an appropriate selection, but what happens if the user
wants to use LC_ALL because of the wider usability, and here the required value is
de_DE.ISO-8859-1? We already mentioned above that a situation like this is
not infrequent. For example, a person might prefer reading a dialect and, if this is
not available, falling back on the standard language.

The gettext functions know about situations like this and can handle them
gracefully. The functions recognize the format of the value of the environment
variable. It can split the value into different pieces and, by leaving out one or the
other part, it can construct new values. This happens of course in a predictable
way. To understand this, one must know the format of the environment variable
value. There is one more or less standardized form, originally from the X/Open
specification:
language[_territory[.codeset]][@modifier]
Less specific locale names will be stripped off in the order of the following list:

1. codeset

2. normalized codeset

3. territory

4. modifier

The language field will never be dropped for obvious reasons.
The only new thing is the normalized codeset entry. This is another

goodie, which is introduced to help reduce the chaos that derives from the inability
of people to standardize the names of character sets. Instead of ISO-8859-1, one can
often see 8859-1, 88591, iso8859-1 or iso 8859-1. The normalized codeset
value is generated from the user-provided character-set name by applying the fol-
lowing rules:

1. Remove all characters besides numbers and letters.
2. Fold letters to lowercase.

Chapter 11: Message Translation 341

3. If the name only contains digits, prepend the string ‘iso’.

So all of the above names will be normalized to iso88591. This allows the pro-
gram user to more freely choose the locale name.

Even this extended functionality still does not help solve the problem that
completely different names can be used to denote the same locale (e.g., de and
german). To be of help in this situation, the locale implementation and the
gettext functions know about aliases.

The file ‘/usr/share/locale/locale.alias’ (replace ‘/usr’ with
whatever prefix you used for configuring the C library) contains a mapping of al-
ternative names to more regular names. The system manager is free to add new
entries to fill his own needs. The selected locale from the environment is compared
with the entries in the first column of this file, ignoring the case. If they match, the
value of the second column is used instead for further handling.

In the description of the format of the environment variables we already men-
tioned the character set as a factor in the selection of the message catalog. In fact,
only catalogs that contain text written using the character set of the system or pro-
gram can be used (directly; a solution for this will come some day). The user will
always have to be careful about this. Also, if in the collection of message catalogs
there are files for the same language that are coded using different character sets,
the user has to be careful.

11.2.2 Programs to Handle Message Catalogs for gettext

The GNU C Library does not contain the source code for the programs to handle
message catalogs for the gettext functions. As part of the GNU project, the
GNU gettext package contains everything the developer needs. The functionality
provided by the tools in this package by far exceeds the abilities of the gencat
program described above for the catgets functions.

There is a program msgfmt, which is equivalent to the gencat program. It
generates from the human-readable and human-editable form of the message cata-
log a binary file that can be used by the gettext functions. But there are several
more programs available.

The xgettext program can be used to automatically extract the translatable
messages from a source file, so the programmer need not be careful of the transla-
tions and the list of messages that have to be translated. She will simply wrap the
translatable string in calls to gettext and the others, and the rest will be done by
xgettext. This program has a lot of options that help customize the output or
help understand the input.

Other programs help to manage the development cycle when new messages ap-
pear in the source files or when a new translation of the messages appear. Here it
should only be noted that using all the tools in GNU gettext, it is possible to com-
pletely automatize the handling of message catalogs. Besides marking the trans-
latable string in the source code and generating the translations, the developers
themselves do not have to do anything.

342 The GNU C Library: Application Fundamentals

Chapter 12: Searching and Sorting 343

12 Searching and Sorting
This chapter describes functions for searching and sorting arrays of arbitrary ob-

jects. You pass the appropriate comparison function to be applied as an argument,
along with the size of the objects in the array and the total number of elements.

12.1 Defining the Comparison Function
In order to use the sorted array library functions, you have to describe how to

compare the elements of the array.
To do this, you supply a comparison function to compare two elements of the

array. The library will call this function, passing as arguments pointers to two array
elements to be compared. Your comparison function should return a value the way
strcmp (see Section 5.5 [String/Array Comparison], page 105) does: negative if
the first argument is “less” than the second, zero if they are “equal” and positive if
the first argument is “greater”.

Here is an example of a comparison function that works with an array of numbers
of type double:

int

compare_doubles (const void *a, const void *b)

{

const double *da = (const double *) a;

const double *db = (const double *) b;

return (*da > *db) - (*da < *db);

}

The header file ‘stdlib.h’ defines a name for the data type of comparison
functions. This type is a GNU extension.

int comparison_fn_t (const void *, const void *);

12.2 Array Search Function
Generally, searching for a specific element in an array means that potentially

all elements must be checked. The GNU C Library contains functions to perform
linear searches. The prototypes for the following two functions can be found in
‘search.h’.

Functionvoid * lfind (const void *key, void *base, size_t
*nmemb, size_t size, comparison_fn_t compar)

The lfind function searches in the array with *nmemb elements of size bytes
pointed to by base for an element that matches the one pointed to by key. The
function pointed to by compar is used to decide whether two elements match.
The return value is a pointer to the matching element in the array starting at base
if it is found. If no matching element is available, NULL is returned.

344 The GNU C Library: Application Fundamentals

The mean run time of this function is *nmemb /2. This function should only be
used if elements often get added to or deleted from the array, in which case it
might not be useful to sort the array before searching.

Functionvoid * lsearch (const void *key, void *base, size_t
*nmemb, size_t size, comparison_fn_t compar)

The lsearch function is similar to the lfind function. It searches the given
array for an element and returns it if found. The difference is that if no match-
ing element is found, the lsearch function adds the object pointed to by key
(with a size of size bytes) at the end of the array and it increments the value of
*nmemb to reflect this addition.
This means that if the caller is not sure that the array contains the element you
are searching for, the memory allocated for the array starting at base must have
room for at least size more bytes. If you are sure the element is in the array, it
is better to use lfind, so having more room in the array is always necessary
when calling lsearch.

To search a sorted array for an element matching the key, use the bsearch
function. The prototype for this function is in the header file ‘stdlib.h’.

Functionvoid * bsearch (const void *key, const void *array,
size_t count, size_t size, comparison_fn_t compare)

The bsearch function searches the sorted array array for an object that is
equivalent to key. The array contains count elements, each of which is of size
size bytes.
The compare function is used to perform the comparison. This function is called
with two pointer arguments and should return an integer less than, equal to or
greater than zero corresponding to whether its first argument is considered less
than, equal to or greater than its second argument. The elements of the array
must already be sorted in ascending order according to this comparison function.
The return value is a pointer to the matching array element, or a null pointer if
no match is found. If the array contains more than one element that matches,
the one that is returned is unspecified.
This function derives its name from the fact that it is implemented using the
binary search algorithm.

12.3 Array Sort Function
To sort an array using an arbitrary comparison function, use the qsort function.

The prototype for this function is in ‘stdlib.h’.

Functionvoid qsort (void *array, size_t count, size_t size,
comparison_fn_t compare)

The qsort function sorts the array array. The array contains count elements,
each of which is of size size.

Chapter 12: Searching and Sorting 345

The compare function is used to perform the comparison on the array elements.
This function is called with two pointer arguments and should return an inte-
ger less than, equal to or greater than zero corresponding to whether its first
argument is considered less than, equal to or greater than its second argument.
Warning: If two objects compare as equal, their order after sorting is unpre-
dictable. That is to say, the sorting is not stable. This can make a difference
when the comparison considers only part of the elements. Two elements with
the same sort key may differ in other respects.
If you want the effect of a stable sort, you can get this result by writing the
comparison function so that, lacking other reasons to distinguish between two
elements, it compares them by their addresses. Doing this may make the sorting
algorithm less efficient, so do it only if necessary.
Here is a simple example of sorting an array of doubles in numerical order,
using the comparison function defined above (see Section 12.1 [Defining the
Comparison Function], page 343):

{

double *array;

int size;

...

qsort (array, size, sizeof (double), compare_doubles);

}

The qsort function derives its name from the fact that it was originally imple-
mented using the “quick sort” algorithm.
The implementation of qsort in this library might not be an in-place sort and
might thereby use an extra amount of memory to store the array.

12.4 Searching and Sorting Example
Here is an example showing the use of qsort and bsearch with an array

of structures. The objects in the array are sorted by comparing their name fields
with the strcmp function. Then, we can look up individual objects based on their
names.

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

/* Define an array of critters to sort. */

struct critter

{

const char *name;

const char *species;

};

346 The GNU C Library: Application Fundamentals

struct critter muppets[] =

{

{"Kermit", "frog"},

{"Piggy", "pig"},

{"Gonzo", "whatever"},

{"Fozzie", "bear"},

{"Sam", "eagle"},

{"Robin", "frog"},

{"Animal", "animal"},

{"Camilla", "chicken"},

{"Sweetums", "monster"},

{"Dr. Strangepork", "pig"},

{"Link Hogthrob", "pig"},

{"Zoot", "human"},

{"Dr. Bunsen Honeydew", "human"},

{"Beaker", "human"},

{"Swedish Chef", "human"}

};

int count = sizeof (muppets) / sizeof (struct critter);

/* This is the comparison function used for sorting and searching. */

int

critter_cmp (const struct critter *c1, const struct critter *c2)

{

return strcmp (c1->name, c2->name);

}

/* Print information about a critter. */

void

print_critter (const struct critter *c)

{

printf ("%s, the %s\n", c->name, c->species);

}

/* Do the lookup into the sorted array. */

Chapter 12: Searching and Sorting 347

void

find_critter (const char *name)

{

struct critter target, *result;

target.name = name;

result = bsearch (&target, muppets, count, sizeof (struct critter),

critter_cmp);

if (result)

print_critter (result);

else

printf ("Couldn’t find %s.\n", name);

}

/* Main program. */

int

main (void)

{

int i;

for (i = 0; i < count; i++)

print_critter (&muppets[i]);

printf ("\n");

qsort (muppets, count, sizeof (struct critter), critter_cmp);

for (i = 0; i < count; i++)

print_critter (&muppets[i]);

printf ("\n");

find_critter ("Kermit");

find_critter ("Gonzo");

find_critter ("Janice");

return 0;

}

The output from this program looks like:
Kermit, the frog

Piggy, the pig

Gonzo, the whatever

Fozzie, the bear

Sam, the eagle

348 The GNU C Library: Application Fundamentals

Robin, the frog

Animal, the animal

Camilla, the chicken

Sweetums, the monster

Dr. Strangepork, the pig

Link Hogthrob, the pig

Zoot, the human

Dr. Bunsen Honeydew, the human

Beaker, the human

Swedish Chef, the human

Animal, the animal

Beaker, the human

Camilla, the chicken

Dr. Bunsen Honeydew, the human

Dr. Strangepork, the pig

Fozzie, the bear

Gonzo, the whatever

Kermit, the frog

Link Hogthrob, the pig

Piggy, the pig

Robin, the frog

Sam, the eagle

Swedish Chef, the human

Sweetums, the monster

Zoot, the human

Kermit, the frog

Gonzo, the whatever

Couldn’t find Janice.

12.5 The hsearch Function
The functions mentioned so far in this chapter are for searching in a sorted or

an unsorted array. There are functions available that can organize information to
make searching easier. The costs of insert, delete and search differ. One possible
implementation is using hashing tables. The following functions are declared in the
the header file ‘search.h’.

Functionint hcreate (size_t nel)
The hcreate function creates a hashing table that can contain at least nel el-
ements. There is no way to grow this table, so it is necessary to choose the
value for nel wisely. The methods used to implement this function might make
it necessary to make the number of elements in the hashing table larger than the

Chapter 12: Searching and Sorting 349

expected maximum number of elements. Hashing tables usually work ineffi-
ciently if they are filled 80% or more. The constant access time guaranteed by
hashing can only be achieved if few collisions exist.1

The weakest aspect of this function is that there can be at most one hashing
table used through the whole program. The table is allocated in local memory
out of control of the programmer. As an extension, the GNU C Library provides
an additional set of functions with a reentrant interface that provide a similar
interface but that allow you to keep an arbitrary number of hashing tables.
It is possible to use more than one hashing table in the program run if the former
table is first destroyed by a call to hdestroy.
The function returns a nonzero value if successful. If it returns zero, something
went wrong. This could either mean there was already a hashing table in use, or
the program has run out of memory.

Functionvoid hdestroy (void)
The hdestroy function can be used to free all the resources allocated in a
previous call of hcreate. After a call to this function, it is again possible to
call hcreate and allocate a new table with a potentially different size.
It is important to remember that the elements contained in the hashing table at
the time hdestroy is called are not freed by this function. It is the responsi-
bility of the program code to free those strings (if necessary at all). Freeing all
the element memory is not possible without extra, separately kept information,
since there is no function to iterate through all available elements in the hashing
table. If it is really necessary to free a table and all elements, the programmer
has to keep a list of all table elements, and before calling hdestroy he has to
free all element data using this list. This is a very unpleasant mechanism and
it also shows that this kind of hashing table is mainly meant for tables that are
created once and used until the end of the program run.

Entries of the hashing table and keys for the search are defined using this type:

Data typestruct ENTRY
Both elements of this structure are pointers to zero-terminated strings. This
is a limiting restriction of the functionality of the hsearch functions. They
can only be used for data sets that use the NUL character always and solely to
terminate the records. It is not possible to handle general binary data.

char *key
This is a pointer to a zero-terminated string of characters describ-
ing the key for the search or the element in the hashing table.

char *data
This is a pointer to a zero-terminated string of characters describ-
ing the data. If the functions will be called only for searching an

1 See Donald E. Knuth, The Art of Computer Programming, vol. 3, Sorting and Searching, 2nd ed.
(Reading, MA: Addison-Wesley, April 24, 1998).

350 The GNU C Library: Application Fundamentals

existing entry, this element might stay undefined, since it is not
used.

FunctionENTRY * hsearch (ENTRY item, ACTION action)
To search in a hashing table created using hcreate, the hsearch function
must be used. This function can perform a simple search for an element (if ac-
tion has the FIND) or alternatively it can insert the key element into the hashing
table. Entries are never replaced.
The key is denoted by a pointer to an object of type ENTRY. For locating the
corresponding position in the hashing table, only the key element of the struc-
ture is used.
If an entry with matching key is found, the action parameter is irrelevant. The
found entry is returned. If no matching entry is found and the action parameter
has the value FIND, the function returns a NULL pointer. If no entry is found
and the action parameter has the value ENTER, a new entry is added to the
hashing table that is initialized with the parameter item. A pointer to the newly
added entry is returned.

As mentioned before, the hashing table used by the functions described so far
is global and there can be at any time at most one hashing table in the program.
A solution is to use the following functions, which are a GNU extension. All have
in common that they operate on a hashing table that is described by the content of
an object of the type struct hsearch_data. This type should be treated as
opaque; none of its members should be changed directly.

Functionint hcreate r (size_t nel, struct hsearch_data *htab)
The hcreate_r function initializes the object pointed to by htab to contain
a hashing table with at least nel elements. This function is equivalent to the
hcreate function except that the initialized data structure is controlled by the
user.
This allows having more than one hashing table at one time. The memory nec-
essary for the struct hsearch_data object can be allocated dynamically.
It must be initialized with zero before calling this function.
The return value is nonzero if the operation was successful. if the return value
is zero, something went wrong, which probably means the program runs out of
memory.

Functionvoid hdestroy r (struct hsearch_data *htab)
The hdestroy_r function frees all resources allocated by the hcreate_r
function for this very same object htab. As for hdestroy, it is the program’s
responsibility to free the strings for the elements of the table.

Functionint hsearch r (ENTRY item, ACTION action, ENTRY
**retval, struct hsearch_data *htab)

The hsearch_r function is equivalent to hsearch. The meaning of the first
two arguments is identical. But instead of operating on a single global hashing

Chapter 12: Searching and Sorting 351

table the function works on the table described by the object pointed to by htab
(which is initialized by a call to hcreate_r).
Another difference with hcreate is that the pointer to the found entry in the
table is not the return value of the functions. It is returned by storing it in a
pointer variable pointed to by the retval parameter. The return value of the
function is an integer value indicating success if it is nonzero and failure if it
is zero. In the latter case, the global variable errno signals the reason for the
failure.

ENOMEM The table is filled, hsearch_r was called with a so far unknown
key and action was set to ENTER.

ESRCH The action parameter is FIND, and no corresponding element is
found in the table.

12.6 The tsearch Function
Another common way to organize data for efficient search is to use trees. The

tsearch function family provides a nice interface to functions to organize pos-
sibly large amounts of data by providing a mean access time proportional to the
logarithm of the number of elements. The GNU C Library implementation guaran-
tees that this bound is never exceeded even for input data that cause problems for
simple binary tree implementations.

The functions described in this chapter are all described in the System V and
X/Open specifications and are therefore quite portable.

In contrast to the hsearch functions, the tsearch functions can be used with
arbitrary data and not just zero-terminated strings.

The tsearch functions have the advantage that no function to initialize data
structures is necessary. A simple pointer of type void * initialized to NULL is a
valid tree and can be extended or searched. The prototypes for these functions can
be found in the header file ‘search.h’.

Functionvoid * tsearch (const void *key, void **rootp,
comparison_fn_t compar)

The tsearch function searches in the tree pointed to by *rootp for an element
matching key. The function pointed to by compar is used to determine whether
two elements match. See Section 12.1 [Defining the Comparison Function],
page 343, for a specification of the functions that can be used for the compar
parameter.
If the tree does not contain a matching entry, the key value will be added to
the tree. tsearch does not make a copy of the object pointed to by key (how
could it, since the size is unknown). Instead, it adds a reference to this object,
which means the object must be available as long as the tree data structure is
used.
The tree is represented by a pointer to a pointer, since it is sometimes necessary
to change the root node of the tree. It must not be assumed that the variable

352 The GNU C Library: Application Fundamentals

pointed to by rootp has the same value after the call. This also shows that it is
not safe to call the tsearch function more than once at the same time using
the same tree. It is no problem to run it more than once at a time on different
trees.
The return value is a pointer to the matching element in the tree. If a new
element was created, the pointer points to the new data (which is in fact key). If
an entry had to be created and the program ran out of space, NULL is returned.

Functionvoid * tfind (const void *key, void *const *rootp,
comparison_fn_t compar)

The tfind function is similar to the tsearch function. It locates an element
matching the one pointed to by key and returns a pointer to this element. But if
no matching element is available, no new element is entered (note that the rootp
parameter points to a constant pointer). Instead the function returns NULL.

Another advantage of the tsearch function in contrast to the hsearch func-
tions is that there is an easy way to remove elements.

Functionvoid * tdelete (const void *key, void **rootp,
comparison_fn_t compar)

To remove a specific element matching key from the tree, tdelete can be
used. It locates the matching element using the same method as tfind. The
corresponding element is then removed and a pointer to the parent of the deleted
node is returned by the function. If there is no matching entry in the tree, nothing
can be deleted and the function returns NULL. If the root of the tree is deleted,
tdelete returns some unspecified value not equal to NULL.

Functionvoid tdestroy (void *vroot, __free_fn_t freefct)
If the complete search tree has to be removed, one can use tdestroy. It frees
all resources allocated by the tsearch function to generate the tree pointed to
by vroot.
For the data in each tree node, the function freefct is called. The pointer to the
data is passed as the argument to the function. If no such work is necessary,
freefct must point to a function doing nothing. It is called in any case.
This function is a GNU extension and is not covered by the System V or X/Open
specifications.

In addition to the function to create and destroy the tree data structure, there is
another function that allows you to apply a function to all elements of the tree. The
function must have this type:

void __action_fn_t (const void *nodep, VISIT value, int level);

The nodep is the data value of the current node (once given as the key argument
to tsearch). level is a numeric value that corresponds to the depth of the current
node in the tree. The root node has the depth 0, its children have a depth of 1, and
so on. The VISIT type is an enumeration type.

Chapter 12: Searching and Sorting 353

Data TypeVISIT
The VISIT value indicates the status of the current node in the tree and how
the function is called. The status of a node is either ‘leaf’ or ‘internal node’.
For each leaf node the function is called exactly once; for each internal node
it is called three times: before the first child is processed, after the first child
is processed and after both children are processed. This makes it possible to
handle all three methods of tree traversal (or even a combination of them).

preorder
The current node is an internal node and the function is called be-
fore the first child was processed.

postorder
The current node is an internal node and the function is called after
the first child was processed.

endorder
The current node is an internal node and the function is called after
the second child was processed.

leaf The current node is a leaf.

Functionvoid twalk (const void *root, __action_fn_t action)
For each node in the tree with a node pointed to by root, the twalk function
calls the function provided by the parameter action. For leaf nodes, the function
is called exactly once with value set to leaf. For internal nodes, the function
is called three times, setting the value parameter or action to the appropriate
value. The level argument for the action function is computed while descending
the tree with increasing the value by one for the descend to a child, starting with
the value 0 for the root node.
Since the functions used for the action parameter to twalk must not modify
the tree data, it is safe to run twalk in more than one thread at the same time,
working on the same tree. It is also safe to call tfind in parallel. Functions
that modify the tree must not be used, otherwise the behavior is undefined.

354 The GNU C Library: Application Fundamentals

Chapter 13: Pattern Matching 355

13 Pattern Matching

The GNU C Library provides pattern-matching facilities for two kinds of patterns:
regular expressions and file-name wildcards. The library also provides a facility for
expanding variable and command references and parsing text into words in the way
the shell does.

13.1 Wildcard Matching
This section describes how to match a wildcard pattern against a particular string.

The result is a yes or no answer—does the string fit the pattern or not. The symbols
described here are all declared in ‘fnmatch.h’.

Functionint fnmatch (const char *pattern, const char *string,
int flags)

This function tests whether the string string matches the pattern pattern. It
returns 0 if they do match; otherwise, it returns the nonzero value FNM_
NOMATCH. The arguments pattern and string are both strings.
The argument flags is a combination of flag bits that alter the details of match-
ing. See below for a list of the defined flags.
In the GNU C Library, fnmatch cannot experience an “error”—it always re-
turns an answer for whether the match succeeds. However, other implemen-
tations of fnmatch might sometimes report “errors”. They would do so by
returning nonzero values that are not equal to FNM_NOMATCH.

These are the available flags for the flags argument:

FNM_FILE_NAME
Treat the ‘/’ character specially, for matching file names. If this flag
is set, wildcard constructs in pattern cannot match ‘/’ in string. Thus,
the only way to match ‘/’ is with an explicit ‘/’ in pattern.

FNM_PATHNAME
This is an alias for FNM_FILE_NAME; it comes from POSIX.2. We
don’t recommend this name because we don’t use the term “path-
name” for file names.

FNM_PERIOD
Treat the ‘.’ character specially if it appears at the beginning of string.
If this flag is set, wildcard constructs in pattern cannot match ‘.’ as
the first character of string.
If you set both FNM_PERIOD and FNM_FILE_NAME, then the spe-
cial treatment applies to ‘.’ following ‘/’ as well as to ‘.’ at the
beginning of string. (The shell uses the FNM_PERIOD and FNM_
FILE_NAME flags together for matching file names.)

356 The GNU C Library: Application Fundamentals

FNM_NOESCAPE
Don’t treat the ‘\’ character specially in patterns. Normally, ‘\’
quotes the following character, turning off its special meaning (if any)
so that it matches only itself. When quoting is enabled, the pattern
‘\?’ matches only the string ‘?’, because the question mark in the
pattern acts like an ordinary character.

If you use FNM_NOESCAPE, then ‘\’ is an ordinary character.

FNM_LEADING_DIR
Ignore a trailing sequence of characters starting with a ‘/’ in string;
that is to say, test whether string starts with a directory name that
pattern matches.

If this flag is set, either ‘foo*’ or ‘foobar’ as a pattern would match
the string ‘foobar/frobozz’.

FNM_CASEFOLD
Ignore case in comparing string to pattern.

FNM_EXTMATCH
Recognize besides the normal patterns also the extended patterns in-
troduced in ‘ksh’. The patterns are written in the form explained in
the following table where pattern-list is a ‘|’-separated list of pat-
terns.

?(pattern-list)
The pattern matches if zero or one occurrences of any of
the patterns in the pattern-list allow matching the input
string.

*(pattern-list)
The pattern matches if zero or more occurrences of any
of the patterns in the pattern-list allow matching the in-
put string.

+(pattern-list)
The pattern matches if one or more occurrences of any of
the patterns in the pattern-list allow matching the input
string.

@(pattern-list)
The pattern matches if exactly one occurrence of any of
the patterns in the pattern-list allows matching the input
string.

!(pattern-list)
The pattern matches if the input string cannot be
matched with any of the patterns in the pattern-list.

Chapter 13: Pattern Matching 357

13.2 Globbing
The archetypal use of wildcards is for matching against the files in a directory,

and making a list of all the matches. This is called globbing.
You could do this using fnmatch, by reading the directory entries one by one

and testing each one with fnmatch. But that would be slow (and complex, since
you would have to handle subdirectories by hand).

The library provides a function glob to make this particular use of wildcards
convenient. glob and the other symbols in this section are declared in ‘glob.h’.

13.2.1 Calling glob

The result of globbing is a vector of file names (strings). To return this vector,
glob uses a special data type, glob_t, which is a structure. You pass glob the
address of the structure, and it fills in the structure’s fields to tell you about the
results.

Data Typeglob t
This data type holds a pointer to a word vector. More precisely, it records both
the address of the word vector and its size. The GNU implementation contains
some more fields that are nonstandard extensions.
gl_pathc

The number of elements in the vector, excluding the initial null
entries if the GLOB DOOFFS flag is used (see gl_offs below).

gl_pathv
The address of the vector; this field has type char **.

gl_offs The offset of the first real element of the vector, from its nomi-
nal address in the gl_pathv field; unlike the other fields, this is
always an input to glob, rather than an output from it.
If you use a nonzero offset, then that many elements at the begin-
ning of the vector are left empty (the glob function fills them with
null pointers).
The gl_offs field is meaningful only if you use the GLOB_
DOOFFS flag. Otherwise, the offset is always zero regardless of
what is in this field, and the first real element comes at the begin-
ning of the vector.

gl_closedir
The address of an alternative implementation of the closedir
function; it is used if the GLOB_ALTDIRFUNC bit is set in the
flag parameter. The type of this field is void (*) (void *).
This is a GNU extension.

gl_readdir
The address of an alternative implementation of the readdir
function used to read the contents of a directory; it is used if the

358 The GNU C Library: Application Fundamentals

GLOB_ALTDIRFUNC bit is set in the flag parameter. The type of
this field is struct dirent *(*) (void *).
This is a GNU extension.

gl_opendir
The address of an alternative implementation of the
opendir function; it is used if the GLOB_ALTDIRFUNC
bit is set in the flag parameter. The type of this field is
void *(*) (const char *).
This is a GNU extension.

gl_stat The address of an alternative implementation of the stat function
to get information about an object in the file system; it is used if
the GLOB_ALTDIRFUNC bit is set in the flag parameter. The type
of this field is int (*) (const char *, struct stat *).
This is a GNU extension.

gl_lstat
The address of an alternative implementation of the lstat
function to get information about an object in the file systems, not
following symbolic links; it is used if the GLOB_ALTDIRFUNC
bit is set in the flag parameter. The type of this field is
int (*) (const char *, struct stat *).
This is a GNU extension.

For use in the glob64 function, ‘glob.h’ contains another definition for a very
similar type. glob64_t differs from glob_t only in the types of the members
gl_readdir, gl_stat and gl_lstat.

Data Typeglob64 t
This data type holds a pointer to a word vector. More precisely, it records both
the address of the word vector and its size. The GNU implementation contains
some more fields that are nonstandard extensions.

gl_pathc
The number of elements in the vector, excluding the initial null
entries if the GLOB DOOFFS flag is used (see gl_offs below).

gl_pathv
The address of the vector; this field has type char **.

gl_offs The offset of the first real element of the vector, from its nomi-
nal address in the gl_pathv field; unlike the other fields, this is
always an input to glob, rather than an output from it.
If you use a nonzero offset, then that many elements at the begin-
ning of the vector are left empty. (The glob function fills them
with null pointers.)

Chapter 13: Pattern Matching 359

The gl_offs field is meaningful only if you use the GLOB_
DOOFFS flag. Otherwise, the offset is always zero regardless of
what is in this field, and the first real element comes at the begin-
ning of the vector.

gl_closedir
The address of an alternative implementation of the closedir
function; it is used if the GLOB_ALTDIRFUNC bit is set in the
flag parameter. The type of this field is void (*) (void *).
This is a GNU extension.

gl_readdir
The address of an alternative implementation of the readdir64
function used to read the contents of a directory; it is used if the
GLOB_ALTDIRFUNC bit is set in the flag parameter. The type of
this field is struct dirent64 *(*) (void *).
This is a GNU extension.

gl_opendir
The address of an alternative implementation of the
opendir function; it is used if the GLOB_ALTDIRFUNC
bit is set in the flag parameter. The type of this field is
void *(*) (const char *).
This is a GNU extension.

gl_stat The address of an alternative implementation of the
stat64 function to get information about an object in
the file system; it is used if the GLOB_ALTDIRFUNC
bit is set in the flag parameter. The type of this field is
int (*) (const char *, struct stat64 *).
This is a GNU extension.

gl_lstat
The address of an alternative implementation of the lstat64
function to get information about an object in the file systems, not
following symbolic links; it is used if the GLOB_ALTDIRFUNC
bit is set in the flag parameter. The type of this field is
int (*) (const char *, struct stat64 *).
This is a GNU extension.

Functionint glob (const char *pattern, int flags, int (*errfunc)
(const char *filename, int error-code), glob_t *vector-ptr)

The function glob does globbing using the pattern pattern in the current direc-
tory. It puts the result in a newly allocated vector, and stores the size and address
of this vector into *vector-ptr . The argument flags is a combination of bit flags
(see Section 13.2.2 [Flags for Globbing], page 361).
The result of globbing is a sequence of file names. The function glob allocates
a string for each resulting word, then allocates a vector of type char ** to store

360 The GNU C Library: Application Fundamentals

the addresses of these strings. The last element of the vector is a null pointer.
This vector is called the word vector.
To return this vector, glob stores both its address and its length (number of
elements, not counting the terminating null pointer) into *vector-ptr .
Normally, glob sorts the file names alphabetically before returning them. You
can turn this off with the flag GLOB_NOSORT if you want to get the information
as fast as possible. Usually it’s a good idea to let glob sort them—if you
process the files in alphabetical order, the users will have a feel for the rate of
progress that your application is making.
If glob succeeds, it returns 0. Otherwise, it returns one of these error codes:

GLOB_ABORTED
There was an error opening a directory, and you used the flag
GLOB_ERR or your specified errfunc returned a nonzero value.
See below for an explanation of the GLOB_ERR flag and errfunc.

GLOB_NOMATCH
The pattern didn’t match any existing files. If you use the GLOB_
NOCHECK flag, then you never get this error code, because that flag
tells glob to pretend that the pattern matched at least one file.

GLOB_NOSPACE
It was impossible to allocate memory to hold the result.

In the event of an error, glob stores information in *vector-ptr about all the
matches it has found so far.
It is important to notice that the glob function will not fail if it encounters
directories or files that cannot be handled without the LFS interfaces. The im-
plementation of glob is supposed to use these functions internally. This at least
is the assumption made by the Unix standard. The GNU extension of allowing
the user to provide her own directory handling and stat functions complicates
things a bit. If these callback functions are used and a large file or directory is
encountered, glob can fail.

Functionint glob64 (const char *pattern, int flags, int (*errfunc)
(const char *filename, int error-code), glob64_t
*vector-ptr)

The glob64 function was added as part of the Large File Summit extensions
but is not part of the original LFS proposal. The reason for this is simple—it is
not necessary. The necessity for a glob64 function is added by the extensions
of the GNU glob implementation, which allows the user to provide his own
directory handling and stat functions. The readdir and stat functions
do depend on the choice of _FILE_OFFSET_BITS, since the definition of
the types struct dirent and struct stat will change depending on the
choice.
Besides this difference, the glob64 works just like glob in all aspects.
This function is a GNU extension.

Chapter 13: Pattern Matching 361

13.2.2 Flags for Globbing

This section describes the flags that you can specify in the flags argument to
glob. Choose the flags you want, and combine them with the C bit-wise OR
operator ‘|’.

GLOB_APPEND
Append the words from this expansion to the vector of words pro-
duced by previous calls to glob. This way you can effectively ex-
pand several words as if they were concatenated with spaces between
them.
In order for appending to work, you must not modify the contents
of the word vector structure between calls to glob. And, if you set
GLOB_DOOFFS in the first call to glob, you must also set it when
you append to the results.
Note that the pointer stored in gl_pathv may no longer be valid
after you call glob the second time, because glob might have re-
located the vector. So always fetch gl_pathv from the glob_t
structure after each glob call; never save the pointer across calls.

GLOB_DOOFFS
Leave blank slots at the beginning of the vector of words. The gl_
offs field says how many slots to leave. The blank slots contain null
pointers.

GLOB_ERR
Give up right away and report an error if there is any difficulty reading
the directories that must be read in order to expand pattern fully. Such
difficulties might include a directory in which you don’t have the req-
uisite access. Normally, glob tries its best to keep on going despite
any errors, reading whatever directories it can.
You can exercise even more control than this by specifying an error-
handler function errfunc when you call glob. If errfunc is not a null
pointer, then glob doesn’t give up right away when it can’t read a
directory; instead, it calls errfunc with two arguments, like this:

(*errfunc) (filename, error-code)

The argument filename is the name of the directory that glob
couldn’t open or couldn’t read, and error-code is the errno value
that was reported to glob.
If the error-handler function returns nonzero, then glob gives up right
away. Otherwise, it continues.

GLOB_MARK
If the pattern matches the name of a directory, append ‘/’ to the di-
rectory’s name when returning it.

362 The GNU C Library: Application Fundamentals

GLOB_NOCHECK
If the pattern doesn’t match any file names, return the pattern itself
as if it were a file name that had been matched. (Normally, when
the pattern doesn’t match anything, glob returns that there were no
matches.)

GLOB_NOSORT
Don’t sort the file names; return them in no particular order. (In prac-
tice, the order will depend on the order of the entries in the directory.)
The only reason not to sort is to save time.

GLOB_NOESCAPE
Don’t treat the ‘\’ character specially in patterns. Normally, ‘\’
quotes the following character, turning off its special meaning (if any)
so that it matches only itself. When quoting is enabled, the pattern
‘\?’ matches only the string ‘?’, because the question mark in the
pattern acts like an ordinary character.
If you use GLOB_NOESCAPE, then ‘\’ is an ordinary character.
glob does its work by calling the function fnmatch repeat-
edly. It handles the flag GLOB_NOESCAPE by turning on the
FNM_NOESCAPE flag in calls to fnmatch.

13.2.3 More Flags for Globbing

Besides the flags described in the last section, the GNU implementation of glob
allows a few more flags, which are also defined in the ‘glob.h’ file. Some of the
extensions implement functionality that is available in modern shell implementa-
tions.

GLOB_PERIOD
The . character (period) is treated special. It cannot be matched by
wildcards (see Section 13.1 [Wildcard Matching], page 355, FNM_
PERIOD).

GLOB_MAGCHAR
The GLOB_MAGCHAR value is not to be given to glob in the flags
parameter. Instead, glob sets this bit in the gl flags element of the
glob t structure provided as the result if the pattern used for matching
contains any wildcard character.

GLOB_ALTDIRFUNC
Instead of using the normal functions for accessing the file system,
the glob implementation uses the user-supplied functions specified
in the structure pointed to by the pglob parameter.1

1 For more information about the functions, see Loosemore et al., “Accessing Directories” and
“Reading the Attributes of a File” (see chap. 1, n. 1).

Chapter 13: Pattern Matching 363

GLOB_BRACE
If this flag is given, the handling of braces in the pattern is changed. It
is now required that braces appear correctly grouped—for each open-
ing brace there must be a closing one. Braces can be used recursively.
So it is possible to define one brace expression in another one. It is
important to note that the range of each brace expression is completely
contained in the outer brace expression (if there is one).
The string between the matching braces is separated into single ex-
pressions by splitting at ‘,’ (comma) characters. The commas them-
selves are discarded. Please note what we said above about recursive
brace expressions. The commas used to separate the subexpressions
must be at the same level. Commas in brace subexpressions are not
matched. They are used during expansion of the brace expression of
the deeper level. The example below shows this:

glob ("{foo/{,bar,biz},baz}", GLOB_BRACE, NULL, &result)

is equivalent to the sequence:
glob ("foo/", GLOB_BRACE, NULL, &result)

glob ("foo/bar", GLOB_BRACE|GLOB_APPEND, NULL, &result)

glob ("foo/biz", GLOB_BRACE|GLOB_APPEND, NULL, &result)

glob ("baz", GLOB_BRACE|GLOB_APPEND, NULL, &result)

if we leave aside error handling.

GLOB_NOMAGIC
If the pattern contains no wildcard constructs (it is a literal file name),
return it as the sole “matching” word, even if no file exists by that
name.

GLOB_TILDE
If this flag is used, the character ‘˜’ (tilde) is handled specially if it ap-
pears at the beginning of the pattern. Instead of being taken verbatim,
it is used to represent the home directory of a known user.
If ‘˜’ is the only character in the pattern or it is followed by a ‘/’
(slash), the home directory of the process owner is substituted. Using
getlogin and getpwnam, the information is read from the system
databases. As an example, take user bart with his home directory at
‘/home/bart’. For him a call like:

glob ("˜/bin/*", GLOB_TILDE, NULL, &result)

would return the contents of the directory ‘/home/bart/bin’. In-
stead of referring to your own home directory, it is also possible to
name the home directory of other users. To do so one has to ap-
pend the user name after the tilde character. So the contents of user
homer’s ‘bin’ directory can be retrieved by:

glob ("˜homer/bin/*", GLOB_TILDE, NULL, &result)

If the user name is not valid or the home directory cannot be deter-
mined for some reason, the pattern is left untouched and is itself used

364 The GNU C Library: Application Fundamentals

as the result. For example, if in the last example home is not avail-
able, the tilde expansion yields to "˜homer/bin/*" and glob is
not looking for a directory named ˜homer.
This functionality is equivalent to what is available in C shells if the
nonomatch flag is set.

GLOB_TILDE_CHECK
If this flag is used, glob behaves as if GLOB_TILDE is given. The
only difference is that if the user name is not available or the home
directory cannot be determined for other reasons, this leads to an error.
glob will return GLOB_NOMATCH instead of using the pattern itself
as the name.
This functionality is equivalent to what is available in C shells if
nonomatch flag is not set.

GLOB_ONLYDIR
If this flag is used, the globbing function takes this as a hint that the
caller is only interested in directories matching the pattern. If the in-
formation about the type of the file is easily available, nondirectories
will be rejected, but no extra work will be done to determine the infor-
mation for each file—the caller must still be able to filter directories
out.
This functionality is only available with the GNU glob implementa-
tion. It is mainly used internally to increase performance but might be
useful for a user as well.

Calling glob will in most cases allocate resources, which are used to represent
the result of the function call. If the same object of type glob_t is used in multiple
calls to glob, the resources are freed or reused so that no leaks appear. But this
does not include the time when all glob calls are done.

Functionvoid globfree (glob_t *pglob)
The globfree function frees all resources allocated by previous calls to glob
associated with the object pointed to by pglob. This function should be called
whenever the currently used glob_t typed object isn’t used anymore.

Functionvoid globfree64 (glob64_t *pglob)
This function is equivalent to globfree, but it frees records of type glob64_
t that were allocated by glob64.

13.3 Regular Expression Matching
The GNU C Library supports two interfaces for matching regular expressions.

One is the standard POSIX.2 interface, and the other is what the GNU system has
had for many years.

Chapter 13: Pattern Matching 365

Both interfaces are declared in the header file ‘regex.h’. If you define
_POSIX_C_SOURCE, then only the POSIX.2 functions, structures and constants
are declared.

13.3.1 POSIX Regular Expression Compilation

Before you can actually match a regular expression, you must compile it. This is
not true compilation—it produces a special data structure, not machine instructions.
But it is like ordinary compilation in that its purpose is to enable you to “execute”
the pattern quickly (see Section 13.3.3 [Matching a Compiled POSIX Regular Ex-
pression], page 367, for how to use the compiled regular expression for matching).

There is a special data type for compiled regular expressions:

Data Typeregex t
This type of object holds a compiled regular expression. It is actually a structure.
It has just one field that your programs should look at:

re_nsub This field holds the number of parenthetical subexpressions in the
regular expression that was compiled.

There are several other fields, but we don’t describe them here, because only the
functions in the library should use them.

After you create a regex_t object, you can compile a regular expression into
it by calling regcomp.

Functionint regcomp (regex_t *compiled, const char *pattern,
int cflags)

The function regcomp “compiles” a regular expression into a data structure
that you can use with regexec to match against a string. The compiled regular
expression format is designed for efficient matching. regcomp stores it into
*compiled .
It’s up to you to allocate an object of type regex_t and pass its address to
regcomp.
The argument cflags lets you specify various options that control the syntax and
semantics of regular expressions (see Section 13.3.2 [Flags for POSIX Regular
Expressions], page 367).
If you use the flag REG_NOSUB, then regcomp omits from the compiled regu-
lar expression the information necessary to record how subexpressions actually
match. In this case, you might as well pass 0 for the matchptr and nmatch
arguments when you call regexec.
If you don’t use REG_NOSUB, then the compiled regular expression does have
the capacity to record how subexpressions match. Also, regcomp tells you
how many subexpressions pattern has, by storing the number in compiled-
>re_nsub. You can use that value to decide how long of an array to allocate
to hold information about subexpression matches.

366 The GNU C Library: Application Fundamentals

regcomp returns 0 if it succeeds in compiling the regular expression; oth-
erwise, it returns a nonzero error code (see the table below). You can use
regerror to produce an error message string describing the reason for
a nonzero value (see Section 13.3.6 [POSIX Regexp Matching Clean-Up],
page 369).

Here are the possible nonzero values that regcomp can return:

REG_BADBR
There was an invalid ‘\{...\}’ construct in the regular expression.
A valid ‘\{...\}’ construct must contain either a single number, or
two numbers in increasing order separated by a comma.

REG_BADPAT
There was a syntax error in the regular expression.

REG_BADRPT
A repetition operator such as ‘?’ or ‘*’ appeared in a bad position
(with no preceding subexpression to act on).

REG_ECOLLATE
The regular expression referred to an invalid collating element (one
not defined in the current locale for string collation) (see Section 7.3
[Categories of Activities That Locales Affect], page 182).

REG_ECTYPE
The regular expression referred to an invalid character class name.

REG_EESCAPE
The regular expression ended with ‘\’.

REG_ESUBREG
There was an invalid number in the ‘\digit’ construct.

REG_EBRACK
There were unbalanced square brackets in the regular expression.

REG_EPAREN
An extended regular expression had unbalanced parentheses, or a ba-
sic regular expression had unbalanced ‘\(’ and ‘\)’.

REG_EBRACE
The regular expression had unbalanced ‘\{’ and ‘\}’.

REG_ERANGE
One of the endpoints in a range expression was invalid.

REG_ESPACE
regcomp ran out of memory.

Chapter 13: Pattern Matching 367

13.3.2 Flags for POSIX Regular Expressions

These are the bit flags that you can use in the cflags operand when compiling a
regular expression with regcomp.

REG_EXTENDED
Treat the pattern as an extended regular expression, rather than as a
basic regular expression.

REG_ICASE
Ignore case when matching letters.

REG_NOSUB
Don’t bother storing the contents of the matches-ptr array.

REG_NEWLINE
Treat a newline in string as dividing string into multiple lines, so that
‘$’ can match before the newline and ‘ˆ’ can match after. Also, don’t
permit ‘.’ to match a newline, and don’t permit ‘[ˆ...]’ to match a
newline.
Otherwise, newline acts like any other ordinary character.

13.3.3 Matching a Compiled POSIX Regular Expression

Once you have compiled a regular expression, as described in Section 13.3.1
[POSIX Regular Expression Compilation], page 365, you can match it against
strings using regexec. A match anywhere inside the string counts as success,
unless the regular expression contains anchor characters (‘ˆ’ or ‘$’).

Functionint regexec (regex_t *compiled, char *string, size_t
nmatch, regmatch_t matchptr [], int eflags)

This function tries to match the compiled regular expression *compiled against
string.
regexec returns 0 if the regular expression matches; otherwise, it returns
a nonzero value. See the table below for what nonzero values mean. You
can use regerror to produce an error message string describing the reason
for a nonzero value (see Section 13.3.6 [POSIX Regexp Matching Clean-Up],
page 369).
The argument eflags is a word of bit flags that enable various options.
If you want to get information about what part of string actually matched
the regular expression or its subexpressions, use the arguments matchptr and
nmatch. Otherwise, pass 0 for nmatch, and NULL for matchptr (see Sec-
tion 13.3.4 [Match Results with Subexpressions], page 368).

You must match the regular expression with the same set of current locales that
were in effect when you compiled the regular expression.

The function regexec accepts the following flags in the eflags argument:

368 The GNU C Library: Application Fundamentals

REG_NOTBOL
Do not regard the beginning of the specified string as the beginning of
a line; more generally, don’t make any assumptions about what text
might precede it.

REG_NOTEOL
Do not regard the end of the specified string as the end of a line; more
generally, don’t make any assumptions about what text might follow
it.

Here are the possible nonzero values that regexec can return:

REG_NOMATCH
The pattern didn’t match the string. This isn’t really an error.

REG_ESPACE
regexec ran out of memory.

13.3.4 Match Results with Subexpressions

When regexec matches parenthetical subexpressions of pattern, it records
which parts of string they match. It returns that information by storing the off-
sets into an array whose elements are structures of type regmatch_t. The first
element of the array (index 0) records the part of the string that matched the entire
regular expression. Each other element of the array records the beginning and end
of the part that matched a single parenthetical subexpression.

Data Typeregmatch t
This is the data type of the matcharray array that you pass to regexec. It
contains two structure fields, as follows:

rm_so The offset in string of the beginning of a substring. Add this value
to string to get the address of that part.

rm_eo The offset in string of the end of the substring.

Data Typeregoff t
regoff_t is an alias for another signed integer type. The fields of
regmatch_t have type regoff_t.

The regmatch_t elements correspond to subexpressions positionally; the first
element (index 1) records where the first subexpression matched, the second ele-
ment records the second subexpression, and so on. The order of the subexpressions
is the order in which they begin.

When you call regexec, you specify how long the matchptr array is, with
the nmatch argument. This tells regexec how many elements to store. If the
actual regular expression has more than nmatch subexpressions, then you won’t
get offset information about the rest of them. But this doesn’t alter whether the
pattern matches a particular string or not.

Chapter 13: Pattern Matching 369

If you don’t want regexec to return any information about where the subex-
pressions matched, you can either supply 0 for nmatch, or use the flag REG_NOSUB
when you compile the pattern with regcomp.

13.3.5 Complications in Subexpression Matching

Sometimes, a subexpression matches a substring of no characters. This happens
when ‘f\(o*\)’ matches the string ‘fum’ (it really matches just the ‘f’). In this
case, both of the offsets identify the point in the string where the null substring was
found. In this example, the offsets are both 1.

Sometimes, the entire regular expression can match without using some of its
subexpressions at all—for example, when ‘ba\(na\)*’ matches the string ‘ba’,
the parenthetical subexpression is not used. When this happens, regexec stores
-1 in both fields of the element for that subexpression.

Sometimes matching the entire regular expression can match a particular subex-
pression more than once—for example, when ‘ba\(na\)*’ matches the string
‘bananana’, the parenthetical subexpression matches three times. When this hap-
pens, regexec usually stores the offsets of the last part of the string that matched
the subexpression. In the case of ‘bananana’, these offsets are 6 and 8.

But the last match is not always the one that is chosen. It’s more accurate to say
that the last opportunity to match is the one that takes precedence. What this means
is that when one subexpression appears within another, then the results reported for
the inner subexpression reflect whatever happened on the last match of the outer
subexpression. For an example, consider ‘\(ba\(na\)*s \)*’ matching the
string ‘bananas bas ’. The last time the inner expression actually matches is
near the end of the first word. But it is considered again in the second word, and
fails to match there. regexec reports nonuse of the ‘na’ subexpression.

Another place where this rule applies is when the regular expression:
\(ba\(na\)*s \|nefer\(ti\)* \)*

matches ‘bananas nefertiti’. The ‘na’ subexpression does match in the first
word, but it doesn’t match in the second word because the other alternative is used
there. Once again, the second repetition of the outer subexpression overrides the
first, and within that second repetition, the ‘na’ subexpression is not used. So
regexec reports nonuse of the ‘na’ subexpression.

13.3.6 POSIX Regexp Matching Clean-Up

When you are finished using a compiled regular expression, you can free the
storage it uses by calling regfree.

Functionvoid regfree (regex_t *compiled)
Calling regfree frees all the storage that *compiled points to. This includes
various internal fields of the regex_t structure that aren’t documented in this
manual.
regfree does not free the object *compiled itself.

370 The GNU C Library: Application Fundamentals

You should always free the space in a regex_t structure with regfree before
using the structure to compile another regular expression.

When regcomp or regexec reports an error, you can use the function
regerror to turn it into an error message string.

Functionsize_t regerror (int errcode, regex_t *compiled, char
*buffer, size_t length)

This function produces an error message string for the error code errcode, and
stores the string in length bytes of memory starting at buffer. For the compiled
argument, supply the same compiled regular expression structure that regcomp
or regexec was working with when it got the error. Alternatively, you can
supply NULL for compiled ; you will still get a meaningful error message, but it
might not be as detailed.
If the error message can’t fit in length bytes (including a terminating null char-
acter), then regerror truncates it. The string that regerror stores is always
null-terminated even if it has been truncated.
The return value of regerror is the minimum length needed to store the entire
error message. If this is less than length, then the error message was not trun-
cated, and you can use it. Otherwise, you should call regerror again with a
larger buffer.
Here is a function that uses regerror, but always dynamically allocates a
buffer for the error message:

char *get_regerror (int errcode, regex_t *compiled)

{

size_t length = regerror (errcode, compiled, NULL, 0);

char *buffer = xmalloc (length);

(void) regerror (errcode, compiled, buffer, length);

return buffer;

}

13.4 Shell-Style Word Expansion
Word expansion means the process of splitting a string into words and substitut-

ing for variables, commands, and wildcards just as the shell does.
For example, when you write ‘ls -l foo.c’, this string is split into three sep-

arate words—‘ls’, ‘-l’ and ‘foo.c’. This is the most basic function of word
expansion.

When you write ‘ls *.c’, this can become many words, because the word
‘*.c’ can be replaced with any number of file names. This is called wildcard
expansion, and it is also a part of word expansion.

When you use ‘echo $PATH’ to print your path, you are taking advantage of
variable substitution, which is also part of word expansion.

Ordinary programs can perform word expansion just like the shell by calling the
library function wordexp.

Chapter 13: Pattern Matching 371

13.4.1 The Stages of Word Expansion

When word expansion is applied to a sequence of words, it performs the follow-
ing transformations in the order shown here:

1. Tilde expansion ‘˜foo’ us replaced with the name of the home directory of
‘foo’.

2. Next, three different transformations are applied in the same step, from left to
right:

• Variable substitution Environment variables are substituted for references
such as ‘$foo’.

• Command substitution Constructs such as ‘‘cat foo‘’ and the equiv-
alent ‘$(cat foo)’ are replaced with the output from the inner com-
mand.

• Arithmetic expansion Constructs such as ‘$(($x-1))’ are replaced
with the result of the arithmetic computation.

3. Field splitting The text is subdivided into words.
4. Wildcard expansion A construct such as ‘*.c’ is replaced with a list of ‘.c’

file names. Wildcard expansion applies to an entire word at a time, and re-
places that word with 0 or more file names that are themselves words.

5. Quote removal String-quotes are deleted, now that they have done their job by
inhibiting the above transformations when appropriate.

For the details of these transformations, and how to write the constructs that use
them, see The GNU Bash Reference Manual.2

13.4.2 Calling wordexp

All the functions, constants and data types for word expansion are declared in
the header file ‘wordexp.h’.

Word expansion produces a vector of words (strings). To return this vector,
wordexp uses a special data type, wordexp_t, which is a structure. You pass
wordexp the address of the structure, and it fills in the structure’s fields to tell you
about the results.

Data Typewordexp t
This data type holds a pointer to a word vector. More precisely, it records both
the address of the word vector and its size.

we_wordc
This is the number of elements in the vector.

we_wordv
This is the address of the vector. This field has type char **.

2 Chet Ramey and Brian Fox, The GNU Bash Reference Manual (Bristol, UK: Network
Theory Ltd., January 2003), http:// www.gnu.org/ software/ bash/ manual/
bashref.html.

 http:// www.gnu.org/ software/ bash/ manual/ bashref.html
 http:// www.gnu.org/ software/ bash/ manual/ bashref.html

372 The GNU C Library: Application Fundamentals

we_offs This is the offset of the first real element of the vector, from its
nominal address in the we_wordv field. Unlike the other fields,
this is always an input to wordexp, rather than an output from it.
If you use a nonzero offset, then that many elements at the begin-
ning of the vector are left empty (the wordexp function fills them
with null pointers).
The we_offs field is meaningful only if you use the WRDE_
DOOFFS flag. Otherwise, the offset is always zero regardless of
what is in this field, and the first real element comes at the begin-
ning of the vector.

Functionint wordexp (const char *words, wordexp_t
*word-vector-ptr, int flags)

Perform word expansion on the string words, putting the result in a newly allo-
cated vector, and store the size and address of this vector into *word-vector-ptr .
The argument flags is a combination of bit flags (see Section 13.4.3 [Flags for
Word Expansion], page 373).
You shouldn’t use any of the characters ‘|&;<>’ in the string words unless they
are quoted; likewise for newline. If you use these characters unquoted, you will
get the WRDE_BADCHAR error code. Don’t use parentheses or braces unless
they are quoted or part of a word expansion construct. If you use quotation
characters ‘’"‘’, they should come in pairs that balance.
The results of word expansion are a sequence of words. The function wordexp
allocates a string for each resulting word, then allocates a vector of type char
** to store the addresses of these strings. The last element of the vector is a null
pointer. This vector is called the word vector.
To return this vector, wordexp stores both its address and its length (number
of elements, not counting the terminating null pointer) into *word-vector-ptr .
If wordexp succeeds, it returns 0. Otherwise, it returns one of these error
codes:

WRDE_BADCHAR
The input string words contains an unquoted invalid character such
as ‘|’.

WRDE_BADVAL
The input string refers to an undefined shell variable, and you used
the flag WRDE_UNDEF to forbid such references.

WRDE_CMDSUB
The input string uses command substitution, and you used the flag
WRDE_NOCMD to forbid command substitution.

WRDE_NOSPACE
It was impossible to allocate memory to hold the result. In this
case, wordexp can store part of the results—as much as it could
allocate room for.

Chapter 13: Pattern Matching 373

WRDE_SYNTAX
There was a syntax error in the input string. For example, an un-
matched quoting character is a syntax error.

Functionvoid wordfree (wordexp_t *word-vector-ptr)
Free the storage used for the word-strings and vector that *word-vector-ptr
points to. This does not free the structure *word-vector-ptr itself—only the
other data it points to.

13.4.3 Flags for Word Expansion

This section describes the flags that you can specify in the flags argument to
wordexp. Choose the flags you want, and combine them with the C operator ‘|’.

WRDE_APPEND
Append the words from this expansion to the vector of words pro-
duced by previous calls to wordexp. This way you can effectively
expand several words as if they were concatenated with spaces be-
tween them.
In order for appending to work, you must not modify the contents of
the word vector structure between calls to wordexp. And, if you
set WRDE_DOOFFS in the first call to wordexp, you must also set it
when you append to the results.

WRDE_DOOFFS
Leave blank slots at the beginning of the vector of words. The we_
offs field says how many slots to leave. The blank slots contain null
pointers.

WRDE_NOCMD
Don’t do command substitution; if the input requests command sub-
stitution, report an error.

WRDE_REUSE
Reuse a word vector made by a previous call to wordexp. Instead of
allocating a new vector of words, this call to wordexp will use the
vector that already exists (making it larger if necessary).
The vector may move, so it is not safe to save an old pointer and use it
again after calling wordexp. You must fetch we_pathv anew after
each call.

WRDE_SHOWERR
Do show any error messages printed by commands run by com-
mand substitution. More precisely, allow these commands to inherit
the standard error output stream of the current process. By default,
wordexp gives these commands a standard error stream that discards
all output.

374 The GNU C Library: Application Fundamentals

WRDE_UNDEF
If the input refers to a shell variable that is not defined, report an error.

13.4.4 wordexp Example

Here is an example of using wordexp to expand several strings and use the re-
sults to run a shell command. It also shows the use of WRDE_APPEND to concate-
nate the expansions and of wordfree to free the space allocated by wordexp.

int

expand_and_execute (const char *program, const char **options)

{

wordexp_t result;

pid_t pid

int status, i;

/* Expand the string for the program to run. */

switch (wordexp (program, &result, 0))

{

case 0: /* Successful. */

break;

case WRDE_NOSPACE:

/* If the error was WRDE_NOSPACE,

then perhaps part of the result was allocated. */

wordfree (&result);

default: /* Some other error. */

return -1;

}

/* Expand the strings specified for the arguments. */

for (i = 0; options[i] != NULL; i++)

{

if (wordexp (options[i], &result, WRDE_APPEND))

{

wordfree (&result);

return -1;

}

}

pid = fork ();

if (pid == 0)

{

/* This is the child process. Execute the command. */

execv (result.we_wordv[0], result.we_wordv);

exit (EXIT_FAILURE);

Chapter 13: Pattern Matching 375

}

else if (pid < 0)

/* The fork failed. Report failure. */

status = -1;

else

/* This is the parent process. Wait for the child to complete. */

if (waitpid (pid, &status, 0) != pid)

status = -1;

wordfree (&result);

return status;

}

13.4.5 Details of Tilde Expansion

It’s a standard part of shell syntax that you can use ‘˜’ at the beginning of a file
name to stand for your own home directory. You can use ‘˜user’ to stand for user’s
home directory.

Tilde expansion is the process of converting these abbreviations to the directory
names that they stand for.

Tilde expansion applies to the ‘˜’ plus all following characters up to white space
or a slash. It takes place only at the beginning of a word, and only if none of the
characters to be transformed is quoted in any way.

Plain ‘˜’ uses the value of the environment variable HOME as the proper home
directory name. ‘˜’ followed by a user name uses getpwname to look up that
user in the user database, and uses whatever directory is recorded there. Thus, ‘˜’
followed by your own name can give different results from plain ‘˜’, if the value
of HOME is not really your home directory.

13.4.6 Details of Variable Substitution

Part of ordinary shell syntax is the use of ‘$variable’ to substitute the value of
a shell variable into a command. This is called variable substitution, and it is one
part of doing word expansion.

There are two basic ways you can write a variable reference for substitution:

${variable}
If you write braces around the variable name, then it is completely
unambiguous where the variable name ends. You can concatenate
additional letters onto the end of the variable value by writing them
immediately after the close brace. For example, ‘${foo}s’ expands
into ‘tractors’.

$variable If you do not put braces around the variable name, then the vari-
able name consists of all the alphanumeric characters and underscores
that follow the ‘$’. The next punctuation character ends the variable

376 The GNU C Library: Application Fundamentals

name. Thus, ‘$foo-bar’ refers to the variable foo and expands
into ‘tractor-bar’.

When you use braces, you can also use various constructs to modify the value
that is substituted, or test it in various ways:

${variable:-default}
Substitute the value of variable, but if that is empty or undefined, use
default instead.

${variable:=default}
Substitute the value of variable, but if that is empty or undefined, use
default instead and set the variable to default.

${variable:?message}
If variable is defined and not empty, substitute its value.
Otherwise, print message as an error message on the standard error
stream, and consider word expansion a failure.

${variable:+replacement}
Substitute replacement, but only if variable is defined and nonempty.
Otherwise, substitute nothing for this construct.

${#variable}
Substitute a numeral that expresses in base-10 the number of char-
acters in the value of variable. ‘${#foo}’ stands for ‘7’, because
‘tractor’ is seven characters.

These variants of variable substitution let you remove part of the variable’s value
before substituting it. The prefix and suffix are not mere strings; they are wildcard
patterns, just like the patterns that you use to match multiple file names. But in
this context, they match against parts of the variable value rather than against file
names.

${variable%%suffix}
Substitute the value of variable, but first discard from that variable any
portion at the end that matches the pattern suffix.
If there is more than one alternative for how to match against suffix,
this construct uses the longest possible match.
Thus, ‘${foo%%r*}’ substitutes ‘t’, because the largest match for
‘r*’ at the end of ‘tractor’ is ‘ractor’.

${variable%suffix}
Substitute the value of variable, but first discard from that variable any
portion at the end that matches the pattern suffix.
If there is more than one alternative for how to match against suffix,
this construct uses the shortest possible alternative.
Thus, ‘${foo%r*}’ substitutes ‘tracto’, because the shortest
match for ‘r*’ at the end of ‘tractor’ is just ‘r’.

Chapter 13: Pattern Matching 377

${variable##prefix}
Substitute the value of variable, but first discard from that variable any
portion at the beginning that matches the pattern prefix.
If there is more than one alternative for how to match against prefix,
this construct uses the longest possible match.
Thus, ‘${foo##*t}’ substitutes ‘or’, because the largest match for
‘*t’ at the beginning of ‘tractor’ is ‘tract’.

${variable#prefix}
Substitute the value of variable, but first discard from that variable any
portion at the beginning that matches the pattern prefix.
If there is more than one alternative for how to match against prefix,
this construct uses the shortest possible alternative.
Thus, ‘${foo#*t}’ substitutes ‘ractor’, because the shortest
match for ‘*t’ at the beginning of ‘tractor’ is just ‘t’.

378 The GNU C Library: Application Fundamentals

Chapter 14: The Basic Program/System Interface 379

14 The Basic Program/System Interface
Processes are the primitive units for allocation of system resources. Each process

has its own address space and (usually) one thread of control. A process executes
a program; you can have multiple processes executing the same program, but each
process has its own copy of the program within its own address space and executes
it independently of the other copies. Though it may have multiple threads of control
within the same program and a program may be composed of multiple logically
separate modules, a process always executes exactly one program.

We are using a specific definition of program for the purposes of this manual,
which corresponds to a common definition in the context of Unix system. In pop-
ular usage, program enjoys a much broader definition; it can refer for example to
a system’s kernel, an editor macro, a complex package of software, or a discrete
section of code executing within a process.

Writing the program is what this manual is all about. This chapter explains the
most basic interface between your program and the system that runs, or calls, it.
This includes passing of parameters (arguments and environment) from the system,
requesting basic services from the system, and telling the system the program is
done.

A program starts another program with the exec family of system calls. This
chapter looks at program start-up from the execee’s point of view.1

14.1 Program Arguments
The system starts a C program by calling the function main. It is up to you

to write a function named main—otherwise, you won’t even be able to link your
program without errors.

In ISO C you can define main either to take no arguments, or to take two argu-
ments that represent the command-line arguments to the program, like this:

int main (int argc, char *argv[])

The command-line arguments are the white-space-separated tokens given in the
shell command used to invoke the program; thus, in ‘cat foo bar’, the argu-
ments are ‘foo’ and ‘bar’. The only way a program can look at its command-line
arguments is via the arguments of main. If main doesn’t take arguments, then
you cannot get at the command line.

The value of the argc argument is the number of command-line arguments. The
argv argument is a vector of C strings; its elements are the individual command-
line argument strings. The file name of the program being run is also included in
the vector as the first element; the value of argc counts this element. A null pointer
always follows the last element: argv[argc] is this null pointer.

For the command ‘cat foo bar’, argc is 3 and argv has three elements, ‘cat’,
‘foo’ and ‘bar’.
1 See Loosemore et al., “Executing a File” (see chap. 1, n. 1), to see the event from the execor’s

point of view.

380 The GNU C Library: Application Fundamentals

In Unix systems you can define main a third way, using three arguments:
int main (int argc, char *argv[], char *envp[])

The first two arguments are just the same. The third argument envp gives the
program’s environment; it is the same as the value of environ (see Section 14.4
[Environment Variables], page 418). POSIX.1 does not allow this three-argument
form, so to be portable it is best to write main to take two arguments, and use the
value of environ.

14.1.1 Program Argument Syntax Conventions

POSIX recommends these conventions for command-line arguments. getopt
(see Section 14.2 [Parsing Program Options Using getopt], page 381) and
argp_parse (see Section 14.3 [Parsing Program Options with Argp], page 389)
make it easy to implement them.

• Arguments are options if they begin with a hyphen delimiter (‘-’).
• Multiple options may follow a hyphen delimiter in a single token if the options

do not take arguments. Thus, ‘-abc’ is equivalent to ‘-a -b -c’.
• Option names are single alphanumeric characters (as for isalnum; see Sec-

tion 4.1 [Classification of Characters], page 79).
• Certain options require an argument. For example, the ‘-o’ command of the
ld command requires an argument—an output file name.

• An option and its argument may or may not appear as separate tokens. (In
other words, the white space separating them is optional.) Thus, ‘-o foo’
and ‘-ofoo’ are equivalent.

• Options typically precede other non-option arguments.
The implementations of getopt and argp_parse in the GNU C Library
normally make it appear as if all the option arguments were specified before
all the non-option arguments for the purposes of parsing, even if the user of
your program intermixed option and non-option arguments. They do this by
reordering the elements of the argv array. This behavior is nonstandard; if
you want to suppress it, define the _POSIX_OPTION_ORDER environment
variable (see Section 14.4.2 [Standard Environment Variables], page 421).

• The argument ‘--’ terminates all options; any following arguments are treated
as non-option arguments, even if they begin with a hyphen.

• A token consisting of a single hyphen character is interpreted as an ordinary
non-option argument. By convention, it is used to specify input from or output
to the standard input and output streams.

• Options may be supplied in any order, or appear multiple times. The interpre-
tation is left up to the particular application program.

GNU adds long options to these conventions. Long options consist of ‘--’ fol-
lowed by a name made of alphanumeric characters and dashes. Option names are
typically one to three words long, with hyphens to separate words. Users can ab-
breviate the option names as long as the abbreviations are unique.

Chapter 14: The Basic Program/System Interface 381

To specify an argument for a long option, write ‘--name=value’. This syntax
enables a long option to accept an argument that is itself optional.

Eventually, the GNU system will provide completion for long option names in
the shell.

14.1.2 Parsing Program Arguments

If the syntax for the command-line arguments to your program is simple enough,
you can pick the arguments off from argv by hand. But unless your program takes a
fixed number of arguments, or all of the arguments are interpreted in the same way
(as file names, for example), you are usually better off using getopt (see Sec-
tion 14.2 [Parsing Program Options Using getopt], page 381) or argp_parse
(see Section 14.3 [Parsing Program Options with Argp], page 389) to do the pars-
ing.
getopt is more standard (the short-option-only version of it is a part of the

POSIX standard), but using argp_parse is often easier, both for very simple and
very complex option structures, because it does more of the dirty work for you.

14.2 Parsing Program Options Using getopt

The getopt and getopt_long functions automate some of the chore in-
volved in parsing typical Unix command-line options.

14.2.1 Using the getopt Function

Here are the details about how to call the getopt function. To use this facility,
your program must include the header file ‘unistd.h’.

Variableint opterr
If the value of this variable is nonzero, then getopt prints an error message
to the standard error stream if it encounters an unknown option character or an
option with a missing required argument. This is the default behavior. If you set
this variable to zero, getopt does not print any messages, but it still returns
the character ‘?’ to indicate an error.

Variableint optopt
When getopt encounters an unknown option character or an option with a
missing required argument, it stores that option character in this variable. You
can use this for providing your own diagnostic messages.

Variableint optind
This variable is set by getopt to the index of the next element of the argv array
to be processed. Once getopt has found all of the option arguments, you can
use this variable to determine where the remaining non-option arguments begin.
The initial value of this variable is 1.

382 The GNU C Library: Application Fundamentals

Variablechar * optarg
This variable is set by getopt to point at the value of the option argument, for
those options that accept arguments.

Functionint getopt (int argc, char **argv, const char *options)
The getopt function gets the next option argument from the argument list
specified by the argv and argc arguments. Normally these values come directly
from the arguments received by main.
The options argument is a string that specifies the option characters that are
valid for this program. An option character in this string can be followed by a
colon (‘:’) to indicate that it takes a required argument. If an option character is
followed by two colons (‘::’), its argument is optional; this is a GNU extension.
getopt has three ways to deal with options that follow non-options argv ele-
ments. The special argument ‘--’ forces in all cases the end of option scanning.

• The default is to permute the contents of argv while scanning it so that
eventually all the non-options are at the end. This allows options to be
given in any order, even with programs that were not written to expect this.

• If the options argument string begins with a hyphen (‘-’), this is treated
specially. It permits arguments that are not options to be returned as if they
were associated with option character ‘\1’.

• POSIX demands the following behavior: The first non-option stops option
processing. This mode is selected by either setting the environment vari-
able POSIXLY_CORRECT or beginning the options argument string with
a plus sign (‘+’).

The getopt function returns the option character for the next command-line
option. When no more option arguments are available, it returns -1. There may
still be more non-option arguments; you must compare the external variable
optind against the argc parameter to check this.
If the option has an argument, getopt returns the argument by storing it in the
variable optarg. You don’t ordinarily need to copy the optarg string, since
it is a pointer into the original argv array, not into a static area that might be
overwritten.
If getopt finds an option character in argv that was not included in options, or
a missing option argument, it returns ‘?’ and sets the external variable optopt
to the actual option character. If the first character of options is a colon (‘:’),
then getopt returns ‘:’ instead of ‘?’ to indicate a missing option argument.
In addition, if the external variable opterr is nonzero (which is the default),
getopt prints an error message.

14.2.2 Example of Parsing Arguments with getopt

Here is an example showing how getopt is typically used. The key points to
notice are

Chapter 14: The Basic Program/System Interface 383

• Normally, getopt is called in a loop. When getopt returns -1, indicating
no more options are present, the loop terminates.

• A switch statement is used to dispatch on the return value from getopt.
In typical use, each case just sets a variable that is used later in the program.

• A second loop is used to process the remaining non-option arguments.

#include <unistd.h>

#include <stdio.h>

int

main (int argc, char **argv)

{

int aflag = 0;

int bflag = 0;

char *cvalue = NULL;

int index;

int c;

opterr = 0;

while ((c = getopt (argc, argv, "abc:")) != -1)

switch (c)

{

case ’a’:

aflag = 1;

break;

case ’b’:

bflag = 1;

break;

case ’c’:

cvalue = optarg;

break;

case ’?’:

if (isprint (optopt))

fprintf (stderr, "Unknown option ‘-%c’.\n", optopt);

else

fprintf (stderr,

"Unknown option character ‘\\x%x’.\n",

optopt);

return 1;

default:

abort ();

384 The GNU C Library: Application Fundamentals

}

printf ("aflag = %d, bflag = %d, cvalue = %s\n",

aflag, bflag, cvalue);

for (index = optind; index < argc; index++)

printf ("Non-option argument %s\n", argv[index]);

return 0;

}

Here are some examples showing what this program prints with different combi-
nations of arguments:

% testopt

aflag = 0, bflag = 0, cvalue = (null)

% testopt -a -b

aflag = 1, bflag = 1, cvalue = (null)

% testopt -ab

aflag = 1, bflag = 1, cvalue = (null)

% testopt -c foo

aflag = 0, bflag = 0, cvalue = foo

% testopt -cfoo

aflag = 0, bflag = 0, cvalue = foo

% testopt arg1

aflag = 0, bflag = 0, cvalue = (null)

Non-option argument arg1

% testopt -a arg1

aflag = 1, bflag = 0, cvalue = (null)

Non-option argument arg1

% testopt -c foo arg1

aflag = 0, bflag = 0, cvalue = foo

Non-option argument arg1

% testopt -a -- -b

aflag = 1, bflag = 0, cvalue = (null)

Chapter 14: The Basic Program/System Interface 385

Non-option argument -b

% testopt -a -

aflag = 1, bflag = 0, cvalue = (null)

Non-option argument -

14.2.3 Parsing Long Options with getopt_long

To accept GNU-style long options as well as single-character options, use
getopt_long instead of getopt. This function is declared in ‘getopt.h’,
not ‘unistd.h’. You should make every program accept long options if it uses
any options, because this takes little extra work and helps beginners remember how
to use the program.

Data Typestruct option
This structure describes a single long option name for the sake of getopt_
long. The argument longopts must be an array of these structures, one for
each long option. Terminate the array with an element containing all zeros.
The struct option structure has these fields:

const char *name
This field is the name of the option. It is a string.

int has_arg
This field says whether the option takes an argument. It is an
integer, and there are three legitimate values: no_argument,
required_argument and optional_argument.

int *flag
int val These fields control how to report or act on the option when it

occurs.
If flag is a null pointer, then the val is a value that identifies
this option. Often these values are chosen to uniquely identify
particular long options.
If flag is not a null pointer, it should be the address of an int
variable that is the flag for this option. The value in val is the
value to store in the flag to indicate that the option was seen.

Functionint getopt long (int argc, char *const *argv, const
char *shortopts, const struct option *longopts, int
*indexptr)

Decode options from the vector argv (whose length is argc). The argument
shortopts describes the short options to accept, just as it does in getopt. The
argument longopts describes the long options to accept (see above).
When getopt_long encounters a short option, it does the same thing that
getopt would do—it returns the character code for the option, and stores the
options argument (if it has one) in optarg.

386 The GNU C Library: Application Fundamentals

When getopt_long encounters a long option, it takes actions based on the
flag and val fields of the definition of that option.
If flag is a null pointer, then getopt_long returns the contents of val to
indicate which option it found. You should arrange distinct values in the val
field for options with different meanings, so you can decode these values after
getopt_long returns. If the long option is equivalent to a short option, you
can use the short option’s character code in val.
If flag is not a null pointer, that means this option should just set a flag in the
program. The flag is a variable of type int that you define. Put the address of
the flag in the flag field. Put in the val field the value you would like this
option to store in the flag. In this case, getopt_long returns 0.
For any long option, getopt_long tells you the index in the array longopts of
the options definition, by storing it into *indexptr . You can get the name of the
option with longopts[*indexptr].name. So you can distinguish among long
options either by the values in their val fields or by their indices. You can also
distinguish in this way among long options that set flags.
When a long option has an argument, getopt_long puts the argument value
in the variable optarg before returning. When the option has no argument, the
value in optarg is a null pointer. This is how you can tell whether an optional
argument was supplied.
When getopt_long has no more options to handle, it returns -1 and leaves,
in the variable optind, the index in argv of the next remaining argument.

Since long option names were used before before the getopt_long options
were invented, there are program interfaces that require programs to recognize op-
tions like ‘-option value’ instead of ‘--option value’. To enable these
programs to use the GNU getopt functionality, there is one more function available.

Functionint getopt long only (int argc, char *const *argv,
const char *shortopts, const struct option *longopts,
int *indexptr)

The getopt_long_only function is equivalent to the getopt_long func-
tion, but it allows the user of the application to specify passing long options with
only ‘-’ instead of ‘--’. The ‘--’ prefix is still recognized, but instead of look-
ing through the short options if a ‘-’ is seen, it first determines whether this
parameter names a long option. If not, it is parsed as a short option.
Assuming getopt_long_only is used starting an application with:

app -foo

the getopt_long_only will first look for a long option named ‘foo’. If
this is not found, the short options ‘f’, ‘o’, and again ‘o’ are recognized.

14.2.4 Example of Parsing Long Options with getopt_long

#include <stdio.h>

#include <stdlib.h>

Chapter 14: The Basic Program/System Interface 387

#include <getopt.h>

/* Flag set by ‘--verbose’. */

static int verbose_flag;

int

main (argc, argv)

int argc;

char **argv;

{

int c;

while (1)

{

static struct option long_options[] =

{

/* These options set a flag. */

{"verbose", no_argument, &verbose_flag, 1},

{"brief", no_argument, &verbose_flag, 0},

/* These options don’t set a flag.

We distinguish them by their indices. */

{"add", no_argument, 0, ’a’},

{"append", no_argument, 0, ’b’},

{"delete", required_argument, 0, ’d’},

{"create", required_argument, 0, ’c’},

{"file", required_argument, 0, ’f’},

{0, 0, 0, 0}

};

/* getopt_long stores the option index here. */

int option_index = 0;

c = getopt_long (argc, argv, "abc:d:f:",

long_options, &option_index);

/* Detect the end of the options. */

if (c == -1)

break;

switch (c)

{

case 0:

/* If this option set a flag, do nothing else now. */

if (long_options[option_index].flag != 0)

break;

388 The GNU C Library: Application Fundamentals

printf ("option %s", long_options[option_index].name);

if (optarg)

printf (" with arg %s", optarg);

printf ("\n");

break;

case ’a’:

puts ("option -a\n");

break;

case ’b’:

puts ("option -b\n");

break;

case ’c’:

printf ("option -c with value ‘%s’\n", optarg);

break;

case ’d’:

printf ("option -d with value ‘%s’\n", optarg);

break;

case ’f’:

printf ("option -f with value ‘%s’\n", optarg);

break;

case ’?’:

/* getopt_long already printed an error message. */

break;

default:

abort ();

}

}

/* Instead of reporting ‘--verbose’

and ‘--brief’ as they are encountered,

we report the final status resulting from them. */

if (verbose_flag)

puts ("verbose flag is set");

/* Print any remaining command-line arguments (not options). */

if (optind < argc)

{

Chapter 14: The Basic Program/System Interface 389

printf ("non-option ARGV-elements: ");

while (optind < argc)

printf ("%s ", argv[optind++]);

putchar (’\n’);

}

exit (0);

}

14.3 Parsing Program Options with Argp
Argp is an interface for parsing Unix-style argument vectors (see Section 14.1

[Program Arguments], page 379).
Argp provides features unavailable in the more commonly used getopt inter-

face. These features include automatically producing output in response to the
‘--help’ and ‘--version’ options, as described in the GNU coding standards.
Using argp makes it less likely that programmers will neglect to implement these
additional options or keep them up to date.

Argp also provides the ability to merge several independently defined option
parsers into one, mediating conflicts between them and making the result appear
seamless. A library can export an argp option parser that user programs might
employ in conjunction with their own option parsers, resulting in less work for
the user programs. Some programs may use only argument parsers exported by
libraries, thereby achieving consistent and efficient option-parsing for abstractions
implemented by the libraries.

The header file ‘<argp.h>’ should be included to use argp.

14.3.1 The argp_parse Function

The main interface to argp is the argp_parse function. In many cases, call-
ing argp_parse is the only argument-parsing code needed in main (see Sec-
tion 14.1 [Program Arguments], page 379).

Functionerror_t argp parse (const struct argp *argp, int
argc, char **argv, unsigned flags, int *arg index, void
*input)

The argp_parse function parses the arguments in argv, of length argc, using
the argp parser argp (see Section 14.3.3 [Specifying Argp Parsers], page 391).
A value of zero is the same as a struct argp containing all zeros. flags is a
set of flag bits that modify the parsing behavior (see Section 14.3.7 [Flags for
argp_parse], page 401). input is passed through to the argp parser argp, and
has meaning defined by argp. A typical usage is to pass a pointer to a structure
that is used for specifying parameters to the parser and passing back the results.

390 The GNU C Library: Application Fundamentals

Unless the ARGP_NO_EXIT or ARGP_NO_HELP flags are included in flags,
calling argp_parse may result in the program exiting. This behavior is true
if an error is detected, or when an unknown option is encountered (see Sec-
tion 14.6 [Program Termination], page 425).
If arg index is nonnull, the index of the first unparsed option in argv is returned
as a value.
The return value is zero for successful parsing, or an error code (see Section 2.2
[Error Codes], page 18) if an error is detected. Different argp parsers may return
arbitrary error codes, but the standard error codes are: ENOMEM if a memory
allocation error occurred, or EINVAL if an unknown option or option argument
is encountered.

14.3.2 Argp Global Variables

These variables make it easy for user programs to implement the ‘--version’
option and provide a bug-reporting address in the ‘--help’ output. These are
implemented in argp by default.

Variableconst char * argp program version
If defined or set by the user program to a nonzero value, then a ‘--version’
option is added when parsing with argp_parse, which will print the
‘--version’ string followed by a newline and exit. The exception to this is
if the ARGP_NO_EXIT flag is used.

Variableconst char * argp program bug address
If defined or set by the user program to a nonzero value, argp_program_
bug_address should point to a string that will be printed at the end of the
standard output for the ‘--help’ option, embedded in a sentence that says
‘Report bugs to address.’.

Variableargp program version hook
If defined or set by the user program to a nonzero value, a ‘--version’ option
is added when parsing with arg_parse, which prints the program version and
exits with a status of zero. This is not the case if the ARGP_NO_HELP flag is
used. If the ARGP_NO_EXIT flag is set, the exit behavior of the program is
suppressed or modified, as when the argp parser is going to be used by other
programs.
It should point to a function with this type of signature:

void print-version (FILE *stream, struct argp_state *state)

See Section 14.3.5.3 [Argp Parsing State], page 399, for an explanation of state.
This variable takes precedence over argp_program_version, and is useful
if a program has version information not easily expressed in a simple string.

Chapter 14: The Basic Program/System Interface 391

Variableerror_t argp err exit status
This is the exit status used when argp exits due to a parsing error. If
not defined or set by the user program, this defaults to EX_USAGE from
‘<sysexits.h>’.

14.3.3 Specifying Argp Parsers

The first argument to the argp_parse function is a pointer to a struct
argp, which is known as an argp parser:

Data Typestruct argp
This structure specifies how to parse a given set of options and arguments, per-
haps in conjunction with other argp parsers. It has the following fields:

const struct argp_option *options
This is a pointer to a vector of argp_option structures specify-
ing which options this argp parser understands; it may be zero if
there are no options at all (see Section 14.3.4 [Specifying Options
in an Argp Parser], page 392).

argp_parser_t parser
This is a pointer to a function that defines actions for this parser;
it is called for each option parsed, and at other well-defined points
in the parsing process. A value of zero is the same as a pointer
to a function that always returns ARGP_ERR_UNKNOWN (see Sec-
tion 14.3.5 [Argp Parser Functions], page 394).

const char *args_doc
If nonzero, this is a string describing what non-option arguments
are called by this parser. This is only used to print the ‘Usage:’
message. If it contains newlines, the strings separated by them are
considered alternative usage patterns and printed on separate lines.
Lines after the first are prefixed by ‘ or: ’ instead of ‘Usage:’.

const char *doc
If nonzero, this is a string containing extra text to be printed before
and after the options in a long help message, with the two sections
separated by a vertical tab (’\v’, ’\013’) character. By con-
vention, the documentation before the options is just a short string
explaining what the program does. Documentation printed after
the options describe behavior in more detail.

const struct argp_child *children
This is a pointer to a vector of argp_children structures. This
pointer specifies which additional argp parsers should be com-
bined with this one (see Section 14.3.6 [Combining Multiple Argp
Parsers], page 400).

392 The GNU C Library: Application Fundamentals

char *(*help_filter)(int key, const char *text, void *input)
If nonzero, this is a pointer to a function that filters the output of
help messages (see Section 14.3.8 [Customizing Argp Help Out-
put], page 402).

const char *argp_domain
If nonzero, the strings used in the argp library are translated using
the domain described by this string. If zero, the current default
domain is used.

Of the above group, options, parser, args_doc and the doc fields are
usually all that are needed. If an argp parser is defined as an initialized C variable,
only the fields used need be specified in the initializer. The rest will default to zero
due to the way C structure initialization works. This design is exploited in most
argp structures; the most-used fields are grouped near the beginning and the unused
fields are left unspecified.

14.3.4 Specifying Options in an Argp Parser

The options field in a struct argp points to a vector of struct argp_
option structures, each of which specifies an option that the argp parser supports.
Multiple entries may be used for a single option provided it has multiple names.
This should be terminated by an entry with zero in all fields. Note that when using
an initialized C array for options, writing { 0 } is enough to achieve this.

Data Typestruct argp option
This structure specifies a single option that an argp parser understands, as well
as how to parse and document that option. It has the following fields:

const char *name
The long name for this option, corresponding to the long option
‘--name’; this field may be zero if this option only has a short
name. To specify multiple names for an option, additional entries
may follow this one, with the OPTION_ALIAS flag set. See Sec-
tion 14.3.4.1 [Flags for Argp Options], page 393.

int key The integer key provided by the current option to the option
parser. If key has a value that is a printable ASCII character (i.e.,
isascii (key) is true), it also specifies a short option ‘-char’,
where char is the ASCII character with the code key.

const char *arg
If non-zero, this is the name of an argument associated with this
option, which must be provided (e.g., with the ‘--name=value’ or
‘-char value’ syntaxes), unless the OPTION_ARG_OPTIONAL
flag (see Section 14.3.4.1 [Flags for Argp Options], page 393) is
set, in which case it may be provided.

Chapter 14: The Basic Program/System Interface 393

int flags
Flags associated with this option, some of which are referred to
above. See Section 14.3.4.1 [Flags for Argp Options], page 393.

const char *doc
A documentation string for this option, for printing in help mes-
sages.
If both the name and key fields are zero, this string will be printed
tabbed left from the normal option column, making it useful as a
group header. This will be the first thing printed in its group. In
this usage, it’s conventional to end the string with a ‘:’ character.

int group
Group identity for this option.
In a long help message, options are sorted alphabetically within
each group, and the groups presented in the order 0, 1, 2, . . . , n,
−m, . . . , −2, −1.
Every entry in an options array with this field 0 will inherit the
group number of the previous entry, or zero if it’s the first one. If
it’s a group header with name and key fields both zero, the previ-
ous entry + 1 is the default. Automagic options such as ‘--help’
are put into group −1.
Note that because of C structure initialization rules, this field often
need not be specified, because 0 is the correct value.

14.3.4.1 Flags for Argp Options

The following flags may be ORed together in the flags field of a struct
argp_option. These flags control various aspects of how that option is parsed
or displayed in help messages:

OPTION_ARG_OPTIONAL
The argument associated with this option is optional.

OPTION_HIDDEN
This option isn’t displayed in any help messages.

OPTION_ALIAS
This option is an alias for the closest previous non-alias option. This
means that it will be displayed in the same help entry and will inherit
fields other than name and key from the option being aliased.

OPTION_DOC
This option isn’t actually an option and should be ignored by the ac-
tual option parser. It is an arbitrary section of documentation that
should be displayed in much the same manner as the options. This is
known as a documentation option.

394 The GNU C Library: Application Fundamentals

If this flag is set, then the option name field is displayed unmodified
(e.g., no ‘--’ prefix is added) at the left margin where a short option
would normally be displayed, and this documentation string is left
in its usual place. For purposes of sorting, any leading white space
and punctuation is ignored, unless the first non-white-space character
is ‘-’. This entry is displayed after all options, after OPTION_DOC
entries with a leading ‘-’, in the same group.

OPTION_NO_USAGE
This option shouldn’t be included in long usage messages, but should
still be included in other help messages. This is intended for options
that are completely documented in an argp’s args_doc field (see
Section 14.3.3 [Specifying Argp Parsers], page 391). Including this
option in the generic usage list would be redundant, and should be
avoided.

For instance, if args_doc is ‘FOO BAR\n-x BLAH’, and the ‘-x’
option’s purpose is to distinguish these two cases, ‘-x’ should proba-
bly be marked OPTION_NO_USAGE.

14.3.5 Argp Parser Functions

The function pointed to by the parser field in a struct argp (see Sec-
tion 14.3.3 [Specifying Argp Parsers], page 391) defines what actions take place
in response to each option or argument parsed. It is also used as a hook, allowing a
parser to perform tasks at certain other points during parsing.

Argp parser functions have the following type signature:
error_t parser (int key, char *arg, struct argp_state *state)

where the arguments are as follows:

key For each option that is parsed, parser is called with a value of key
from that option’s key field in the option vector (see Section 14.3.4
[Specifying Options in an Argp Parser], page 392). parser is also
called at other times with special reserved keys, such as ARGP_KEY_
ARG for non-option arguments (see Section 14.3.5.1 [Special Keys for
Argp Parser Functions], page 395).

arg If key is an option, arg is its given value. This defaults to zero if no
value is specified. Only options that have a nonzero arg field can ever
have a value. These must always have a value unless the OPTION_
ARG_OPTIONAL flag is specified. If the input being parsed specifies
a value for an option that doesn’t allow one, an error results before
parser ever gets called.

If key is ARGP_KEY_ARG, arg is a non-option argument. Other spe-
cial keys always have a zero arg.

Chapter 14: The Basic Program/System Interface 395

state state points to a struct argp_state, containing useful infor-
mation about the current parsing state for use by parser (see Sec-
tion 14.3.5.3 [Argp Parsing State], page 399).

When parser is called, it should perform whatever action is appropriate for key,
and return 0 for success, ARGP_ERR_UNKNOWN if the value of key is not handled
by this parser function, or a Unix error code if a real error occurred (see Section 2.2
[Error Codes], page 18).

Macroint ARGP ERR UNKNOWN
Argp parser functions should return ARGP_ERR_UNKNOWN for any key value
they do not recognize, or for non-option arguments (key == ARGP_KEY_ARG)
that they are not equipped to handle.

A typical parser function uses a switch statement on key:
error_t

parse_opt (int key, char *arg, struct argp_state *state)

{

switch (key)

{

case option key:

action

break;

...

default:

return ARGP_ERR_UNKNOWN;

}

return 0;

}

14.3.5.1 Special Keys for Argp Parser Functions

In addition to key values corresponding to user options, the key argument to
argp parser functions may have a number of other special values. In the following
example, arg and state refer to parser function arguments (see Section 14.3.5 [Argp
Parser Functions], page 394).

ARGP_KEY_ARG
This is not an option at all, but rather a command-line argument,
whose value is pointed to by arg.
When there are multiple parser functions in play due to argp parsers
being combined, it’s impossible to know which one will handle a spe-
cific argument. Each is called until one returns 0 or an error other
than ARGP_ERR_UNKNOWN; if an argument is not handled, argp_
parse immediately returns success, without parsing any more argu-
ments.

396 The GNU C Library: Application Fundamentals

Once a parser function returns success for this key, that fact is
recorded, and the ARGP_KEY_NO_ARGS case won’t be used. How-
ever, if while processing the argument a parser function decrements
the next field of its state argument, the option won’t be considered
processed; this is to allow you to actually modify the argument, per-
haps into an option, and have it processed again.

ARGP_KEY_ARGS
If a parser function returns ARGP_ERR_UNKNOWN for ARGP_KEY_
ARG, it is immediately called again with the key ARGP_KEY_ARGS,
which has a similar meaning, but is slightly more convenient for con-
suming all remaining arguments. arg is 0, and the tail of the argument
vector may be found at state->argv + state->next. If success is
returned for this key, and state->next is unchanged, all remaining
arguments are considered to have been consumed. Otherwise, the
amount by which state->next has been adjusted indicates how many
were used. Here is an example that uses both, for different args:

...

case ARGP_KEY_ARG:

if (state->arg_num == 0)

/* First argument */

first_arg = arg;

else

/* Let the next case parse it. */

return ARGP_KEY_UNKNOWN;

break;

case ARGP_KEY_ARGS:

remaining_args = state->argv + state->next;

num_remaining_args = state->argc - state->next;

break;

ARGP_KEY_END
This indicates that there are no more command-line arguments. Parser
functions are called in a different order, children first. This allows
each parser to clean up its state for the parent.

ARGP_KEY_NO_ARGS
Because it’s common to do some special processing if there aren’t
any non-option args, parser functions are called with this key if they
didn’t successfully process any non-option arguments. This is called
just before ARGP_KEY_END, where more general validity checks on
previously parsed arguments take place.

ARGP_KEY_INIT
This is passed in before any parsing is done. Afterwards, the values of
each element of the child_input field of state, if any, are copied

Chapter 14: The Basic Program/System Interface 397

to each child’s state to be the initial value of the input when their
parsers are called.

ARGP_KEY_SUCCESS
This is passed in when parsing has successfully been completed, even
if arguments remain.

ARGP_KEY_ERROR
This is passed in if an error has occurred and parsing is terminated. In
this case, a call with a key of ARGP_KEY_SUCCESS is never made.

ARGP_KEY_FINI
This is the final key ever seen by any parser, even after ARGP_
KEY_SUCCESS and ARGP_KEY_ERROR. Any resources allocated
by ARGP_KEY_INIT may be freed here. At times, certain resources
allocated are to be returned to the caller after a successful parse. In
that case, those particular resources can be freed in the ARGP_KEY_
ERROR case.

In all cases, ARGP_KEY_INIT is the first key seen by parser functions, and
ARGP_KEY_FINI the last, unless an error was returned by the parser for ARGP_
KEY_INIT. Other keys can occur in one the following orders. opt refers to an
arbitrary option key:

opt . . . ARGP_KEY_NO_ARGS ARGP_KEY_END ARGP_KEY_SUCCESS
The arguments being parsed did not contain any non-option argu-
ments.

(opt | ARGP_KEY_ARG). . . ARGP_KEY_END ARGP_KEY_SUCCESS
All non-option arguments were successfully handled by a parser func-
tion. There may be multiple parser functions if multiple argp parsers
were combined.

(opt | ARGP_KEY_ARG). . . ARGP_KEY_SUCCESS
Some non-option argument went unrecognized.
This occurs when every parser function returns ARGP_KEY_
UNKNOWN for an argument, in which case parsing stops at that
argument if arg index is a null pointer. Otherwise an error occurs.

In all cases, if a nonnull value for arg index gets passed to argp_parse, the
index of the first unparsed command-line argument is passed back in that value.

If an error occurs and is either detected by argp or because a parser function
returned an error value, each parser is called with ARGP_KEY_ERROR. No further
calls are made, except the final call with ARGP_KEY_FINI.

14.3.5.2 Functions for Use in Argp Parsers

Argp provides a number of functions available to the user of argp (see Sec-
tion 14.3.5 [Argp Parser Functions], page 394), mostly for producing error mes-

398 The GNU C Library: Application Fundamentals

sages. These take as their first argument the state argument to the parser function
(see Section 14.3.5.3 [Argp Parsing State], page 399).

Functionvoid argp usage (const struct argp_state *state)
This outputs the standard usage message for the argp parser referred to by
state to state->err_stream and terminates the program with exit (argp_
err_exit_status) (see Section 14.3.2 [Argp Global Variables], page 390).

Functionvoid argp error (const struct argp_state *state,
const char *fmt, ...)

This prints the printf format string fmt and following args, preceded by the
program name and ‘:’, and followed by a ‘Try ... --help’ message, and
terminates the program with an exit status of argp_err_exit_status (see
Section 14.3.2 [Argp Global Variables], page 390).

Functionvoid argp failure (const struct argp_state *state,
int status, int errnum, const char *fmt, ...)

Similar to the standard GNU error-reporting function error, this prints the pro-
gram name and ‘:’, the printf format string fmt, and the appropriate following
args. If it is nonzero, the standard Unix error text for errnum is printed. If status
is nonzero, it terminates the program with that value as its exit status.
The difference between argp_failure and argp_error is that argp_
error is for parsing errors, whereas argp_failure is for other problems
that occur during parsing but don’t reflect a syntactic problem with the input,
such as illegal values for options, bad phase of the moon, etc.

Functionvoid argp state help (const struct argp_state *state,
FILE *stream, unsigned flags)

This outputs a help message to stream for the argp parser referred to by state.
The flags argument determines what sort of help message is produced (see Sec-
tion 14.3.10 [Flags for the argp_help Function], page 404).

Error output is sent to state->err_stream, and the program name printed is
state->name.

The output or program termination behavior of these functions may be sup-
pressed if the ARGP_NO_EXIT or ARGP_NO_ERRS flags are passed to argp_
parse (see Section 14.3.7 [Flags for argp_parse], page 401).

This behavior is useful if an argp parser is exported for use by other programs
(e.g., by a library), and may be used in a context where it is not desirable to termi-
nate the program in response to parsing errors. In argp parsers intended for such
general use, and for the case where the program doesn’t terminate, calls to any of
these functions should be followed by code that returns the appropriate error code:

Chapter 14: The Basic Program/System Interface 399

if (bad argument syntax)

{

argp_usage (state);

return EINVAL;

}

If a parser function will only be used when ARGP_NO_EXIT is not set, the return
may be omitted.

14.3.5.3 Argp Parsing State

The third argument to argp parser functions (see Section 14.3.5 [Argp Parser
Functions], page 394) is a pointer to a struct argp_state, which contains
information about the state of the option parsing.

Data Typestruct argp state
This structure has the following fields, which may be modified as noted:
const struct argp *const root_argp

This is the top-level argp parser being parsed. This is often not the
same struct argp passed into argp_parse by the invoking
program (see Section 14.3 [Parsing Program Options with Argp],
page 389). It is an internal argp parser that contains options imple-
mented by argp_parse itself, such as ‘--help’.

int argc
char **argv

This is the argument vector being parsed. This may be modified.
int next This is the index in argv of the next argument to be parsed. This

may be modified.
One way to consume all remaining arguments in the input is to set
state->next = state->argc, perhaps after recording the value
of the next field to find the consumed arguments. The current op-
tion can be reparsed immediately by decrementing this field, then
modifying state->argv[state->next] to reflect the option that
should be reexamined.

unsigned flags
The flags supplied to argp_parse. These may be modified,
although some flags may only take effect when argp_parse
is first invoked (see Section 14.3.7 [Flags for argp_parse],
page 401).

unsigned arg_num
While calling a parsing function with the key argument ARGP_
KEY_ARG, this represents the number of the current arg, starting
at 0. It is incremented after each ARGP_KEY_ARG call returns. At
all other times, this is the number of ARGP_KEY_ARG arguments
that have been processed.

400 The GNU C Library: Application Fundamentals

int quoted
If nonzero, this is the index in argv of the first argument following
a special ‘--’ argument. This prevents anything that follows from
being interpreted as an option. It is only set after argument parsing
has proceeded past this point.

void *input
This is an arbitrary pointer passed in from the caller of argp_
parse, in the input argument.

void **child_inputs
These are values that will be passed to child parsers. This vec-
tor will be the same length as the number of children in the cur-
rent parser. Each child parser will be given the value of state-
>child_inputs[i] as its state->input field, where i is the
index of the child in the this parser’s children field (see Sec-
tion 14.3.6 [Combining Multiple Argp Parsers], page 400).

void *hook
This is for the parser function’s use. It is initialized to 0, but other-
wise ignored by argp.

char *name
This is the name used when printing messages. This is initialized
to argv[0], or program_invocation_name if argv[0]
is unavailable.

FILE *err_stream
FILE *out_stream

These are the stdio streams used when argp prints. Error mes-
sages are printed to err_stream and all other output, such as
‘--help’, is printed to out_stream. These are initialized to
stderr and stdout, respectively (see Section 17.2 [Standard
Streams], page 439).

void *pstate
This is private, for use by the argp implementation.

14.3.6 Combining Multiple Argp Parsers

The children field in a struct argp enables other argp parsers to be com-
bined with the referencing one for the parsing of a single set of arguments. This
field should point to a vector of struct argp_child, which is terminated by
an entry having a value of zero in the argp field.

Where conflicts between combined parsers arise, as when two specify an option
with the same name, the parser conflicts are resolved in favor of the parent argp
parser(s), or the earlier of the argp parsers in the list of children.

Chapter 14: The Basic Program/System Interface 401

Data Typestruct argp child
An entry in the list of subsidiary argp parsers pointed to by the children field
in a struct argp. The fields are as follows:

const struct argp *argp
This is the child argp parser, or zero to end of the list.

int flags
These are flags for this child.

const char *header
If nonzero, this is an optional header to be printed within help out-
put before the child options. As a side effect, a nonzero value
forces the child options to be grouped together. To achieve this ef-
fect without actually printing a header string, use a value of "". As
with header strings specified in an option entry, the conventional
value of the last character is ‘:’ (see Section 14.3.4 [Specifying
Options in an Argp Parser], page 392).

int group
This is where the child options are grouped relative to the other
‘consolidated’ options in the parent argp parser. The values are the
same as the group field in struct argp_option (see Sec-
tion 14.3.4 [Specifying Options in an Argp Parser], page 392). All
child-groupings follow parent options at a particular group level.
If both this field and header are zero, then the child’s options
aren’t grouped together; they are merged with parent options at the
parent option group level.

14.3.7 Flags for argp_parse

The default behavior of argp_parse is designed to be convenient for the most
common case of parsing program command-line arguments. To modify these de-
faults, the following flags may be or’d together in the flags argument to argp_
parse:

ARGP_PARSE_ARGV0
Do not ignore the first element of the argv argument to argp_
parse. Unless ARGP_NO_ERRS is set, the first element of the argu-
ment vector is skipped for option-parsing purposes, as it corresponds
to the program name in a command line.

ARGP_NO_ERRS
Do not print error messages for unknown options to stderr; unless
this flag is set, ARGP_PARSE_ARGV0 is ignored, as argv[0] is
used as the program name in the error messages. This flag implies
ARGP_NO_EXIT. This is based on the assumption that silent exiting
upon errors is bad behavior.

402 The GNU C Library: Application Fundamentals

ARGP_NO_ARGS
Do not parse any non-option args. Normally, these are parsed by call-
ing the parse functions with a key of ARGP_KEY_ARG, the actual
argument being the value. This flag needn’t normally be set, as the
default behavior is to stop parsing as soon as an argument fails to be
parsed (see Section 14.3.5 [Argp Parser Functions], page 394).

ARGP_IN_ORDER
Parse options and arguments in the same order they occur on the com-
mand line. Normally, they are rearranged so that all options come
first.

ARGP_NO_HELP
Do not provide the standard long option ‘--help’, which ordinarily
causes usage and option help information to be output to stdout and
exit (0).

ARGP_NO_EXIT
Do not exit on errors, although they may still result in error messages.

ARGP_LONG_ONLY
Use the GNU getopt ‘long-only’ rules for parsing arguments. This
allows long options to be recognized with only a single ‘-’ (i.e.
‘-help’). This results in a less useful interface, and its use is dis-
couraged as it conflicts with the way most GNU programs work as
well as the GNU coding standards.

ARGP_SILENT
Turns off any message-printing/exiting options, specifically ARGP_
NO_EXIT, ARGP_NO_ERRS, and ARGP_NO_HELP.

14.3.8 Customizing Argp Help Output

The help_filter field in a struct argp is a pointer to a function that
filters the text of help messages before displaying them. They have a function
signature like:

char *help-filter (int key, const char *text, void *input)

Where key is either a key from an option, in which case text is that option’s help
text (see Section 14.3.4 [Specifying Options in an Argp Parser], page 392). Alter-
nately, one of the special keys with names beginning with ‘ARGP_KEY_HELP_’
might be used, describing which other help text text will contain (see Sec-
tion 14.3.8.1 [Special Keys for Argp Help Filter Functions], page 403).

The function should return either text if it remains as-is, or a replacement string
allocated using malloc. This will either be freed by argp or be zero, which prints
nothing. The value of text is supplied after any translation has been done, so if
any of the replacement text needs translation, it will be done by the filter function.
input is either the input supplied to argp_parse or it is zero, if argp_help
was called directly by the user.

Chapter 14: The Basic Program/System Interface 403

14.3.8.1 Special Keys for Argp Help Filter Functions

The following special values may be passed to an argp help filter function as the
first argument in addition to key values for user options. They specify which help
text the text argument contains:

ARGP_KEY_HELP_PRE_DOC
This is the help text preceding options.

ARGP_KEY_HELP_POST_DOC
This is the help text following options.

ARGP_KEY_HELP_HEADER
This is the option header string.

ARGP_KEY_HELP_EXTRA
This is used after all other documentation; text is zero for this key.

ARGP_KEY_HELP_DUP_ARGS_NOTE
This is the explanatory note printed when duplicate option arguments
have been suppressed.

ARGP_KEY_HELP_ARGS_DOC
This is the argument doc string; formally the args_doc field
from the argp parser (see Section 14.3.3 [Specifying Argp Parsers],
page 391).

14.3.9 The argp_help Function

Normally programs using argp need not be written with particular printing
argument-usage-type help messages in mind, as the standard ‘--help’ option is
handled automatically by argp. Typical error cases can be handled using argp_
usage and argp_error (see Section 14.3.5.2 [Functions for Use in Argp
Parsers], page 397). However, if it’s desirable to print a help message in some
context other than parsing the program options, argp offers the argp_help inter-
face.

Functionvoid argp help (const struct argp *argp, FILE *stream,
unsigned flags, char *name)

This outputs a help message for the argp parser argp to stream. The type of
messages printed will be determined by flags.
Any options such as ‘--help’ that are implemented automatically by argp
itself will not be present in the help output; for this reason it is best to use
argp_state_help if calling from within an argp parser function (see Sec-
tion 14.3.5.2 [Functions for Use in Argp Parsers], page 397).

404 The GNU C Library: Application Fundamentals

14.3.10 Flags for the argp_help Function

When calling argp_help (see Section 14.3.9 [The argp_help Function],
page 403) or argp_state_help (see Section 14.3.5.2 [Functions for Use in
Argp Parsers], page 397) the exact output is determined by the flags argument.
This should consist of any of the following flags, or’d together:

ARGP_HELP_USAGE
This is a Unix ‘Usage:’ message that explicitly lists all options.

ARGP_HELP_SHORT_USAGE
This is a Unix ‘Usage:’ message that displays an appropriate place-
holder to indicate where the options go; useful for showing the non-
option argument syntax.

ARGP_HELP_SEE
This is a ‘Try ... for more help’ message; ‘...’ contains the
program name and ‘--help’.

ARGP_HELP_LONG
This is a verbose option help message that gives each option available
along with its documentation string.

ARGP_HELP_PRE_DOC
This is the part of the argp parser doc string preceding the verbose
option help.

ARGP_HELP_POST_DOC
This is the part of the argp parser doc string following the verbose
option help.

ARGP_HELP_DOC
(ARGP_HELP_PRE_DOC | ARGP_HELP_POST_DOC)

ARGP_HELP_BUG_ADDR
This is a message that prints where to report bugs for this program, if
the argp_program_bug_address variable contains this infor-
mation.

ARGP_HELP_LONG_ONLY
This will modify any output to reflect the ARGP_LONG_ONLY mode.

The following flags are only understood when used with argp_state_help.
They control whether the function returns after printing its output, or terminates the
program:

ARGP_HELP_EXIT_ERR
This will terminate the program with exit (argp_err_exit_
status).

Chapter 14: The Basic Program/System Interface 405

ARGP_HELP_EXIT_OK
This will terminate the program with exit (0).

The following flags are combinations of the basic flags for printing standard
messages:

ARGP_HELP_STD_ERR
Assuming that an error message for a parsing error has printed, this
prints a message on how to get help, and terminates the program with
an error.

ARGP_HELP_STD_USAGE
This prints a standard usage message and terminates the program with
an error. This is used when no other specific error messages are ap-
propriate or available.

ARGP_HELP_STD_HELP
This prints the standard response for a ‘--help’ option, and termi-
nates the program successfully.

14.3.11 Argp Examples

These example programs demonstrate the basic usage of argp.

14.3.11.1 A Minimal Program Using Argp

This is perhaps the smallest program possible that uses argp. It won’t do much
except give an error messages and exit when there are any arguments, and prints a
rather pointless message for ‘--help’.

/* Argp Example 1—a minimal program using argp */

/* This is (probably) the smallest possible program that

uses argp. It won’t do much except give an error

message and exit when there are any arguments, and print

a (rather pointless) message for –help. */

#include <argp.h>

int main (int argc, char **argv)

{

argp_parse (0, argc, argv, 0, 0, 0);

exit (0);

}

406 The GNU C Library: Application Fundamentals

14.3.11.2 A Program Using Argp with Only Default Options

This program doesn’t use any options or arguments; it uses argp to be compliant
with the GNU standard command-line format.

In addition to giving no arguments and implementing a ‘--help’ option, this
example has a ‘--version’ option, which will put the given documentation
string and bug address in the ‘--help’ output, as per GNU standards.

The variable argp contains the argument parser specification. Adding fields
to this structure is the way most parameters are passed to argp_parse. The
first three fields are normally used, but they are not in this small program. There
are also two global variables that argp can use defined here, argp_program_
version and argp_program_bug_address. They are considered global
variables because they will almost always be constant for a given program, even if
they use different argument parsers for various tasks.

/* Argp Example 2—a pretty minimal program using argp */

/* This program doesn’t use any options or arguments, but uses

argp to be compliant with the GNU standard command-line

format.

In addition to making sure no arguments are given, and

implementing a –help option, this example will have a

–version option, and will put the given documentation string

and bug address in the –help output, as per GNU standards.

The variable ARGP contains the argument parser specification;

adding fields to this structure is the way most parameters are

passed to argp parse (the first three fields are usually used,

but not in this small program). There are also two global

variables that argp knows about defined here,

ARGP PROGRAM VERSION and ARGP PROGRAM BUG ADDRESS (they are

global variables because they will almost always be constant

for a given program, even if it uses different argument

parsers for various tasks). */

#include <argp.h>

const char *argp_program_version =

"argp-ex2 1.0";

const char *argp_program_bug_address =

"<bug-gnu-utils@gnu.org>";

/* Program documentation */

static char doc[] =

Chapter 14: The Basic Program/System Interface 407

"Argp Example 2---a pretty minimal program using argp";

/* This is our argument parser. The options, parser, and

args_doc fields are zero because we have neither options nor

arguments; doc and argp_program_bug_address will be

used in the output for ‘--help’, and the ‘--version’

option will print out argp_program_version. */

static struct argp argp = { 0, 0, 0, doc };

int main (int argc, char **argv)

{

argp_parse (&argp, argc, argv, 0, 0, 0);

exit (0);

}

14.3.11.3 A Program Using Argp with User Options

This program uses the same features as Example 2, adding user options and
arguments.

We now use the first four fields in argp (see Section 14.3.3 [Specifying Argp
Parsers], page 391) and specify parse_opt as the parser function (see Sec-
tion 14.3.5 [Argp Parser Functions], page 394).

In this example, main uses a structure to communicate with the parse_opt
function, a pointer to which it passes in the input argument to argp_parse (see
Section 14.3 [Parsing Program Options with Argp], page 389). It is retrieved by
parse_opt through the input field in its state argument (see Section 14.3.5.3
[Argp Parsing State], page 399). Of course, it’s also possible to use global variables
instead, but using a structure like this is somewhat more flexible and clean.

/* Argp Example 3—a program with options and arguments using argp */

/* This program uses the same features as Example 2, and uses options and

arguments.

We now use the first four fields in ARGP, so here’s a description of them:

OPTIONS: A pointer to a vector of struct argp option (see below)

PARSER: A function to parse a single option, called by argp

ARGS DOC: A string describing how the non-option arguments should look

DOC: A descriptive string about this program; if it contains a

vertical tab character (\v), the part after it will be

printed *following* the options.

The function PARSER takes the following arguments:

KEY: An integer specifying which option this is (taken

408 The GNU C Library: Application Fundamentals

from the KEY field in each struct argp option), or

a special key specifying something else; the only

special keys we use here are ARGP KEY ARG, meaning

a non-option argument, and ARGP KEY END, meaning

that all arguments have been parsed

ARG: For an option KEY, the string value of its

argument, or NULL if it has none

STATE: A pointer to a struct argp state, containing

various useful information about the parsing state; used here

are the INPUT field, which reflects the INPUT argument to

argp parse, and the ARG NUM field, which is the number of the

current non-option argument being parsed

It should return either 0, meaning success, ARGP ERR UNKNOWN, meaning the

given KEY wasn’t recognized, or an errno value indicating some other

error.

The OPTIONS field contains a pointer to a vector of struct argp option’s;

that structure has the following fields (if you assign your option

structures using array initialization like this example, unspecified

fields will be defaulted to 0, and need not be specified):

NAME: The name of this option’s long option (may be zero)

KEY: The KEY to pass to the PARSER function when parsing this option,

and the name of this option’s short option, if it is a

printable ASCII character

ARG: The name of this option’s argument, if any

FLAGS: Flags describing this option; some of them are:

OPTION ARG OPTIONAL: The argument to this option is optional

OPTION ALIAS: This option is an alias for the

previous option

OPTION HIDDEN: Don’t show this option in –help output

DOC: A documentation string for this option, shown in –help output

An options vector should be terminated by an option with all fields zero. */

#include <argp.h>

const char *argp_program_version =

"argp-ex3 1.0";

const char *argp_program_bug_address =

"<bug-gnu-utils@gnu.org>";

/* Program documentation */

static char doc[] =

"Argp Example 3---a program with options and arguments using argp";

Chapter 14: The Basic Program/System Interface 409

/* A description of the arguments we accept */

static char args_doc[] = "ARG1 ARG2";

/* The options we understand */

static struct argp_option options[] = {

{"verbose", ’v’, 0, 0, "Produce verbose output" },

{"quiet", ’q’, 0, 0, "Don’t produce any output" },

{"silent", ’s’, 0, OPTION_ALIAS },

{"output", ’o’, "FILE", 0,

"Output to FILE instead of standard output" },

{ 0 }

};

/* Used by main to communicate with parse_opt */

struct arguments

{

char *args[2]; /* arg1 & arg2 */

int silent, verbose;

char *output_file;

};

/* Parse a single option. */

static error_t

parse_opt (int key, char *arg, struct argp_state *state)

{

/* Get the input argument from argp_parse, which we

know is a pointer to our arguments structure. */

struct arguments *arguments = state->input;

switch (key)

{

case ’q’: case ’s’:

arguments->silent = 1;

break;

case ’v’:

arguments->verbose = 1;

break;

case ’o’:

arguments->output_file = arg;

break;

case ARGP_KEY_ARG:

if (state->arg_num >= 2)

410 The GNU C Library: Application Fundamentals

/* Too many arguments */

argp_usage (state);

arguments->args[state->arg_num] = arg;

break;

case ARGP_KEY_END:

if (state->arg_num < 2)

/* Not enough arguments */

argp_usage (state);

break;

default:

return ARGP_ERR_UNKNOWN;

}

return 0;

}

/* Our argp parser */

static struct argp argp = { options, parse_opt, args_doc, doc };

int main (int argc, char **argv)

{

struct arguments arguments;

/* Default values */

arguments.silent = 0;

arguments.verbose = 0;

arguments.output_file = "-";

/* Parse our arguments; every option seen by parse_opt will

be reflected in arguments. */

argp_parse (&argp, argc, argv, 0, 0, &arguments);

printf ("ARG1 = %s\nARG2 = %s\nOUTPUT_FILE = %s\n"

"VERBOSE = %s\nSILENT = %s\n",

arguments.args[0], arguments.args[1],

arguments.output_file,

arguments.verbose ? "yes" : "no",

arguments.silent ? "yes" : "no");

exit (0);

}

Chapter 14: The Basic Program/System Interface 411

14.3.11.4 A Program Using Multiple Combined Argp Parsers

This program uses the same features as Example 3, but it has more options and
presents more structure in the ‘--help’ output. It also illustrates how you can
“steal” the remainder of the input arguments past a certain point for programs that
accept a list of items. It also illustrates the key value ARGP_KEY_NO_ARGS,
which is only given if no non-option arguments were supplied to the program (see
Section 14.3.5.1 [Special Keys for Argp Parser Functions], page 395).

For structuring help output, two features are used: headers and a two-part option
string. The headers are entries in the options vector (see Section 14.3.4 [Speci-
fying Options in an Argp Parser], page 392). The first four fields are zero. The
two-part documentation string is in the variable doc, which allows documentation
both before and after the options (see Section 14.3.3 [Specifying Argp Parsers],
page 391). The two parts of doc are separated by a vertical-tab character (’\v’,
or ’\013’). By convention, the documentation before the options is a short string
stating what the program does. After any options, it is longer, describing the be-
havior in more detail. All documentation strings are automatically filled for output,
although newlines may be included to force a line break at a particular point. In
addition, documentation strings are passed to the gettext function, for possible
translation into the current locale.

/* Argp Example 4—a program with somewhat more complicated options */

/* This program uses the same features as Example 3, but it has more

options and somewhat more structure in the –help output. It

also shows how you can “steal” the remainder of the input

arguments past a certain point, for programs that accept a

list of items. It also shows the special argp KEY value

ARGP KEY NO ARGS, which is only given if no non-option

arguments were supplied to the program.

For structuring the help output, two features are used:

headers, which are entries in the options vector with the

first four fields being zero, and a two-part documentation

string (in the variable DOC), which allows documentation both

before and after the options; the two parts of DOC are

separated by a vertical-tab character (’\v’, or ’\013’). By

convention, the documentation before the options is just a

short string saying what the program does, and afterwards it

is longer, describing the behavior in more detail. All

documentation strings are automatically filled for output,

although newlines may be included to force a line break at a

particular point. All documentation strings are also passed to

the ‘gettext’ function, for possible translation into the

412 The GNU C Library: Application Fundamentals

current locale. */

#include <stdlib.h>

#include <error.h>

#include <argp.h>

const char *argp_program_version =

"argp-ex4 1.0";

const char *argp_program_bug_address =

"<bug-gnu-utils@prep.ai.mit.edu>";

/* Program documentation */

static char doc[] =

"Argp Example 4---a program with somewhat more complicated\

options\

\vThis part of the documentation comes *after* the options;\

note that the text is automatically filled, but it’s possible\

to force a line-break, e.g.\n<-- here.";

/* A description of the arguments we accept */

static char args_doc[] = "ARG1 [STRING...]";

/* Keys for options without short options */

#define OPT_ABORT 1 /* –abort */

/* The options we understand */

static struct argp_option options[] = {

{"verbose", ’v’, 0, 0, "Produce verbose output" },

{"quiet", ’q’, 0, 0, "Don’t produce any output" },

{"silent", ’s’, 0, OPTION_ALIAS },

{"output", ’o’, "FILE", 0,

"Output to FILE instead of standard output" },

{0,0,0,0, "The following options should be grouped together:" },

{"repeat", ’r’, "COUNT", OPTION_ARG_OPTIONAL,

"Repeat the output COUNT (default 10) times"},

{"abort", OPT_ABORT, 0, 0, "Abort before showing any output"},

{ 0 }

};

/* Used by main to communicate with parse_opt. */

struct arguments

{

Chapter 14: The Basic Program/System Interface 413

char *arg1; /* arg1 */

char **strings; /* [string . . .] */

int silent, verbose, abort; /* ‘-s’, ‘-v’, ‘--abort’ */

char *output_file; /* file arg to ‘--output’ */

int repeat_count; /* count arg to ‘--repeat’ */

};

/* Parse a single option. */

static error_t

parse_opt (int key, char *arg, struct argp_state *state)

{

/* Get the input argument from argp_parse, which we

know is a pointer to our arguments structure. */

struct arguments *arguments = state->input;

switch (key)

{

case ’q’: case ’s’:

arguments->silent = 1;

break;

case ’v’:

arguments->verbose = 1;

break;

case ’o’:

arguments->output_file = arg;

break;

case ’r’:

arguments->repeat_count = arg ? atoi (arg) : 10;

break;

case OPT_ABORT:

arguments->abort = 1;

break;

case ARGP_KEY_NO_ARGS:

argp_usage (state);

case ARGP_KEY_ARG:

/* Here we know that state->arg_num == 0, since we

force argument parsing to end before any more arguments can

get here. */

arguments->arg1 = arg;

/* Now we consume all the rest of the arguments.

state->next is the index in state->argv of the

414 The GNU C Library: Application Fundamentals

next argument to be parsed, which is the first string

we’re interested in, so we can just use

&state->argv[state->next] as the value for

arguments->strings.

In addition, by setting state->next to the end

of the arguments, we can force argp to stop parsing here and

return. */

arguments->strings = &state->argv[state->next];

state->next = state->argc;

break;

default:

return ARGP_ERR_UNKNOWN;

}

return 0;

}

/* Our argp parser */

static struct argp argp = { options, parse_opt, args_doc, doc };

int main (int argc, char **argv)

{

int i, j;

struct arguments arguments;

/* Default values */

arguments.silent = 0;

arguments.verbose = 0;

arguments.output_file = "-";

arguments.repeat_count = 1;

arguments.abort = 0;

/* Parse our arguments; every option seen by parse_opt will be

reflected in arguments. */

argp_parse (&argp, argc, argv, 0, 0, &arguments);

if (arguments.abort)

error (10, 0, "ABORTED");

for (i = 0; i < arguments.repeat_count; i++)

{

printf ("ARG1 = %s\n", arguments.arg1);

Chapter 14: The Basic Program/System Interface 415

printf ("STRINGS = ");

for (j = 0; arguments.strings[j]; j++)

printf (j == 0 ? "%s" : ", %s", arguments.strings[j]);

printf ("\n");

printf ("OUTPUT_FILE = %s\nVERBOSE = %s\nSILENT = %s\n",

arguments.output_file,

arguments.verbose ? "yes" : "no",

arguments.silent ? "yes" : "no");

}

exit (0);

}

14.3.12 Argp User Customization

The formatting of argp ‘--help’ output may be controlled to some extent by
a program’s users, by setting the ARGP_HELP_FMT environment variable to a
comma-separated list of tokens. White space is ignored:

‘dup-args’
‘no-dup-args’

These turn duplicate-argument-mode on or off. In duplicate argument
mode, if an option that accepts an argument has multiple names, the
argument is shown for each name. Otherwise, it is only shown for the
first long option. A note is subsequently printed so the user knows that
it applies to other names as well. The default is ‘no-dup-args’,
which is less consistent, but prettier.

‘dup-args-note’
‘no-dup-args-note’

These will enable or disable the note informing the user of suppressed
option argument duplication. The default is ‘dup-args-note’.

‘short-opt-col=n’
This prints the first short option in column n. The default is 2.

‘long-opt-col=n’
This prints the first long option in column n. The default is 6.

‘doc-opt-col=n’
This prints ‘documentation options’ (see Section 14.3.4.1 [Flags for
Argp Options], page 393) in column n. The default is 2.

‘opt-doc-col=n’
This prints the documentation for options starting in column n. The
default is 29.

416 The GNU C Library: Application Fundamentals

‘header-col=n’
This will indent the group headers that document groups of options to
column n. The default is 1.

‘usage-indent=n’
This will indent continuation lines in ‘Usage:’ messages to column
n. The default is 12.

‘rmargin=n’
This will word wrap help output at or before column n. The default is
79.

14.3.12.1 Parsing of Suboptions

Having a single level of options is sometimes not enough. There might be too
many options that have to be available or a set of options that are closely related.

For these cases, some programs use suboptions. One of the most prominent
programs is certainly mount(8). The -o option takes one argument, which itself
is a comma-separated list of options. To ease the programming of code like this,
the function getsubopt is available.

Functionint getsubopt (char **optionp, const char* const
*tokens, char **valuep)

The optionp parameter must be a pointer to a variable containing the address
of the string to process. When the function returns, the reference is updated to
point to the next suboption or to the terminating ‘\0’ character if there are no
more suboptions available.
The tokens parameter references an array of strings containing the known sub-
options. All strings must be ‘\0’ terminated and, to mark the end, a null pointer
must be stored. When getsubopt finds a possible legal suboption, it com-
pares it with all strings available in the tokens array and returns the index in the
string as the indicator.
In case the suboption has an associated value introduced by an ‘=’ character, a
pointer to the value is returned in valuep. The string is ‘\0’ terminated. If no
argument is available, valuep is set to the null pointer. By doing this, the caller
can check whether a necessary value is given or whether no unexpected value is
present.
In case the next suboption in the string is not mentioned in the tokens array,
the starting address of the suboption including a possible value is returned in
valuep, and the return value of the function is ‘-1’.

14.3.13 Parsing of Suboptions Example

The code that might appear in the mount(8) program is a perfect example of the
use of getsubopt:

Chapter 14: The Basic Program/System Interface 417

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

int do_all;

const char *type;

int read_size;

int write_size;

int read_only;

enum

{

RO_OPTION = 0,

RW_OPTION,

READ_SIZE_OPTION,

WRITE_SIZE_OPTION,

THE_END

};

const char *mount_opts[] =

{

[RO_OPTION] = "ro",

[RW_OPTION] = "rw",

[READ_SIZE_OPTION] = "rsize",

[WRITE_SIZE_OPTION] = "wsize",

[THE_END] = NULL

};

int

main (int argc, char *argv[])

{

char *subopts, *value;

int opt;

while ((opt = getopt (argc, argv, "at:o:")) != -1)

switch (opt)

{

case ’a’:

do_all = 1;

break;

case ’t’:

type = optarg;

break;

case ’o’:

418 The GNU C Library: Application Fundamentals

subopts = optarg;

while (*subopts != ’\0’)

switch (getsubopt (&subopts, mount_opts, &value))

{

case RO_OPTION:

read_only = 1;

break;

case RW_OPTION:

read_only = 0;

break;

case READ_SIZE_OPTION:

if (value == NULL)

abort ();

read_size = atoi (value);

break;

case WRITE_SIZE_OPTION:

if (value == NULL)

abort ();

write_size = atoi (value);

break;

default:

/* Unknown suboption */

printf ("Unknown suboption ‘%s’\n", value);

break;

}

break;

default:

abort ();

}

/* Do the real work. */

return 0;

}

14.4 Environment Variables

When a program is executed, it receives information about the context in which
it was invoked in two ways. The first mechanism uses the argv and argc argu-
ments to its main function, and is discussed in Section 14.1 [Program Arguments],
page 379. The second mechanism uses environment variables and is discussed in
this section.

Chapter 14: The Basic Program/System Interface 419

The argv mechanism is typically used to pass command-line arguments specific
to the particular program being invoked. The environment, on the other hand, keeps
track of information that is shared by many programs, changes infrequently and is
less frequently used.

The environment variables discussed in this section are the same environment
variables that you set using assignments and the export command in the shell.
Programs executed from the shell inherit all of the environment variables from the
shell.

Standard environment variables are used for information about the user’s home
directory, terminal type, current locale and so on; you can define additional vari-
ables for other purposes. The set of all environment variables that have values is
collectively known as the environment.

Names of environment variables are case-sensitive and must not contain the char-
acter ‘=’. System-defined environment variables are invariably uppercase.

The values of environment variables can be anything that can be represented as a
string. A value must not contain an embedded null character, since this is assumed
to terminate the string.

14.4.1 Environment Access

The value of an environment variable can be accessed with the getenv func-
tion. This is declared in the header file ‘stdlib.h’. All of the following functions
can be safely used in multithreaded programs. It is ensured that concurrent modifi-
cations to the environment do not lead to errors.

Functionchar * getenv (const char *name)
This function returns a string that is the value of the environment variable name.
You must not modify this string. In some non-Unix systems not using the GNU
library, it might be overwritten by subsequent calls to getenv (but not by any
other library function). If the environment variable name is not defined, the
value is a null pointer.

Functionint putenv (char *string)
The putenv function adds or removes definitions from the environment. If the
string is of the form ‘name=value’, the definition is added to the environment.
Otherwise, the string is interpreted as the name of an environment variable, and
any definition for this variable in the environment is removed.
The difference to the setenv function is that the exact string given as the
parameter string is put into the environment. If the user should change the
string after the putenv call, this will reflect automatically in the environment.
This also requires that string not be an automatic variable that could be deleted
or could fall out of scope before the variable is removed from the environment.
The same applies to dynamically allocated variables that are freed later.

420 The GNU C Library: Application Fundamentals

This function is part of the extended Unix interface. Since it was also avail-
able in old SVID libraries, you should define either XOPEN SOURCE or
SVID SOURCE before including any header.

Functionint setenv (const char *name, const char *value, int
replace)

The setenv function can be used to add a new definition to the environment.
The entry with the name name is replaced by the value ‘name=value’. This is
also true if value is the empty string. To do this, a new string is created and
the string’s name and value are copied. A null pointer for the value parameter
is illegal. If the environment already contains an entry with key name, then
the replace parameter controls the action. If replace is zero, nothing happens.
Otherwise, the old entry is replaced by the new one.
You cannot remove an entry completely using this function.
This function was originally part of the BSD library, but is now part of the Unix
standard.

Functionint unsetenv (const char *name)
Using this function, you can remove an entry completely from the environment.
If the environment contains an entry with the key name, this whole entry is
removed. A call to this function is equivalent to a call to putenv when the
value part of the string is empty.
The function returns -1 if name is a null pointer, points to an empty string, or
points to a string containing an ‘=’ character. It returns 0 if the call succeeded.
This function was originally part of the BSD library but is now part of the Unix
standard. The BSD version had no return value, though.

There is one more function to modify the whole environment. This function is
said to be used in the POSIX.9 (POSIX bindings for Fortran 77) and so one would
expect it to have made it to POSIX.1. But this never happened. We still provide this
function as a GNU extension to enable writing standard compliant Fortran environ-
ments.

Functionint clearenv (void)
The clearenv function removes all entries from the environment. Using
putenv and setenv, new entries can be added again later.
If the function is successful, it returns 0. Otherwise, the return value is nonzero.

You can deal directly with the underlying representation of environment objects
to add more variables to the environment (for example, to communicate with an-
other program you are about to execute).2

2 Ibid., “Executing a File”.

Chapter 14: The Basic Program/System Interface 421

Variablechar ** environ
The environment is represented as an array of strings. Each string is of the
format ‘name=value’. The order in which strings appear in the environment is
not significant, but the same name must not appear more than once. The last
element of the array is a null pointer.
This variable is declared in the header file ‘unistd.h’.
If you just want to get the value of an environment variable, use getenv.

Unix systems and the GNU system pass the initial value of environ as the third
argument to main (see Section 14.1 [Program Arguments], page 379).

14.4.2 Standard Environment Variables

These environment variables have standard meanings. This doesn’t mean that
they are always present in the environment; but if these variables are present, they
have these meanings. You shouldn’t try to use these environment variable names
for some other purpose.

HOME

This is a string representing the user’s home directory or initial default
working directory.
The user can set HOME to any value. If you need to make sure to
obtain the proper home directory for a particular user, you should not
use HOME; instead, look up the user’s name in the user database.3

For most purposes, it is better to use HOME, precisely because this lets
the user specify the value.

LOGNAME

This is the name that the user used to log in. Since the value in the en-
vironment can be tweaked arbitrarily, this is not a reliable way to iden-
tify the user who is running a program; a function like getlogin is
better for that purpose.4

For most purposes, it is better to use LOGNAME, precisely because this
lets the user specify the value.

PATH

A path is a sequence of directory names that is used for searching for
a file. The variable PATH holds a path used for searching for programs
to be run.
The execlp and execvp functions5 use this environment variable,
as do many shells and other utilities that are implemented in terms of
those functions.

3 Ibid., “User Database”.
4 Ibid., “Identifying Who Logged In”.
5 Ibid., “Executing a File”.

422 The GNU C Library: Application Fundamentals

The syntax of a path is a sequence of directory names separated by
colons. An empty string instead of a directory name stands for the
current directory.6

A typical value for this environment variable might be a string like:
:/bin:/etc:/usr/bin:/usr/new/X11:/usr/new:/usr/local/bin

This means that if the user tries to execute a program named foo, the
system will look for files named ‘foo’, ‘/bin/foo’, ‘/etc/foo’
and so on. The first of these files that exists is the one that is executed.

TERM

This specifies the kind of terminal that is receiving program output.
Some programs can make use of this information to take advantage of
special escape sequences or terminal modes supported by particular
kinds of terminals. Many programs that use the termcap library7 use
the TERM environment variable, for example.

TZ

This specifies the time zone. See Section 10.4.7 [Specifying the Time
Zone with TZ], page 306, for information about the format of this
string and how it is used.

LANG

This specifies the default locale to use for attribute categories where
neither LC_ALL nor the specific environment variable for that
category is set. See Chapter 7 [Locales and Internationalization],
page 181, for more information about locales.

LC_ALL

If this environment variable is set, it overrides the selection for all
the locales done using the other LC_* environment variables. The
value of the other LC_* environment variables is simply ignored in
this case.

LC_COLLATE
This specifies what locale to use for string sorting.

LC_CTYPE
This specifies what locale to use for character sets and character clas-
sification.

LC_MESSAGES
This specifies what locale to use for printing messages and parsing
responses.

6 Ibid., “Working Directory”.
7 See Richard M. Stallman, “Finding a Terminal Description: tgetent” in The Termcap Manual: The

Termcap Library and Data Base, 2nd ed. (Boston, MA: GNU Press, December 1992), http://
www.gnu.org/ software/ termutils/ manual/ termcap-1.3/ termcap.html.

http:// www.gnu.org/ software/ termutils/ manual/ termcap-1.3/ termcap.html
http:// www.gnu.org/ software/ termutils/ manual/ termcap-1.3/ termcap.html

Chapter 14: The Basic Program/System Interface 423

LC_MONETARY
This specifies what locale to use for formatting monetary values.

LC_NUMERIC
This specifies what locale to use for formatting numbers.

LC_TIME

This specifies what locale to use for formatting date and time values.

NLSPATH

This specifies the directories in which the catopen function looks
for message translation catalogs.

_POSIX_OPTION_ORDER
If this environment variable is defined, it suppresses the usual reorder-
ing of command-line arguments by getopt and argp_parse (see
Section 14.1.1 [Program Argument Syntax Conventions], page 380).

14.5 System Calls
A system call is a request for service that a program makes of the kernel. The

service is generally something that only the kernel has the privilege to do, such as
doing I/O. Programmers don’t normally need to be concerned with system calls
because there are functions in the GNU C Library to do virtually everything that
system calls do. These functions work by making system calls themselves. For
example, there is a system call that changes the permissions of a file, but you don’t
need to know about it because you can just use the GNU C Library’s chmod func-
tion.

System calls are sometimes called kernel calls.
However, there are times when you want to make a system call explicitly, and

for that, the GNU C Library provides the syscall function. syscall is harder
to use and less portable than functions like chmod, but easier and more portable
than coding the system call in assembler instructions.
syscall is most useful when you are working with a system call that is special

to your system or is newer than the GNU C Library you are using. syscall
is implemented in an entirely generic way; the function does not know anything
about what a particular system call does or even if it is valid.

The description of syscall in this section assumes a certain protocol for sys-
tem calls on the various platforms on which the GNU C Library runs. That protocol
is not defined by any strong authority, but we won’t describe it here either, because
anyone who is coding syscall probably won’t accept anything less than kernel
and C library source code as a specification of the interface between them anyway.
syscall is declared in ‘unistd.h’.

Functionlong int syscall (long int sysno, ...)
syscall performs a generic system call.

424 The GNU C Library: Application Fundamentals

sysno is the system call number. Each kind of system call is identified by
a number. Macros for all the possible system call numbers are defined in
‘sys/syscall.h’

The remaining arguments are the arguments for the system call, in order, and
their meanings depend on the kind of system call. Each kind of system call has
a definite number of arguments, from zero to five. If you code more arguments
than the system call takes, the extra ones to the right are ignored.

The return value is the return value from the system call, unless the system call
failed. In that case, syscall returns -1 and sets errno to an error code that
the system call returned. System calls do not return -1 when they succeed.

If you specify an invalid sysno, syscall returns -1 with errno = ENOSYS.

Here is an example:

#include <unistd.h>

#include <sys/syscall.h>

#include <errno.h>

...

int rc;

rc = syscall(SYS_chmod, "/etc/passwd", 0444);

if (rc == -1)

fprintf(stderr, "chmod failed, errno = %d\n", errno);

This, if all of the compatibility stars are aligned, is equivalent to the following
preferable code:

#include <sys/types.h>

#include <sys/stat.h>

#include <errno.h>

...

int rc;

rc = chmod("/etc/passwd", 0444);

if (rc == -1)

fprintf(stderr, "chmod failed, errno = %d\n", errno);

Chapter 14: The Basic Program/System Interface 425

14.6 Program Termination
The usual way for a program to terminate is simply for its main function to

return. The exit status value returned from the main function is used to report
information back to the process’s parent process or shell.

A program can also terminate normally by calling the exit function.
In addition, programs can be terminated by signals.8 The abort function causes

a signal that kills the program.

14.6.1 Normal Termination

A process terminates normally when its program signals it is done by calling
exit. Returning from main is equivalent to calling exit, and the value that
main returns is used as the argument to exit.

Functionvoid exit (int status)
The exit function tells the system that the program is done, which causes it to
terminate the process.
status is the program’s exit status, which becomes part of the process’s termina-
tion status. This function does not return.

Normal termination causes the following actions:
1. Functions that were registered with the atexit or on_exit functions are

called in the reverse order of their registration. This mechanism allows your
application to specify its own “clean-up” actions to be performed at program
termination. Typically, this is used to do things like saving program state
information in a file, or unlocking locks in shared data bases.

2. All open streams are closed, writing out any buffered output data (see Sec-
tion 17.4 [Closing Streams], page 444). In addition, temporary files opened
with the tmpfile function are removed.9

3. _exit is called, terminating the program (see Section 14.6.5 [Termination
Internals], page 428).

14.6.2 Exit Status

When a program exits, it can return to the parent process a small amount of
information about the cause of termination, using the exit status. This is a value
between 0 and 255 that the exiting process passes as an argument to exit.

Normally, you should use the exit status to report very broad information about
success or failure. You can’t provide a lot of detail about the reasons for the failure,
and most parent processes would not want much detail anyway.

8 Ibid., “Signal Handling”.
9 Ibid., “Temporary Files”.

426 The GNU C Library: Application Fundamentals

There are conventions for what sorts of status values certain programs should
return. The most common convention is simply 0 for success and 1 for failure.
Programs that perform comparison use a different convention: they use status 1 to
indicate a mismatch, and status 2 to indicate an inability to compare. Your program
should follow an existing convention if an existing convention makes sense for it.

A general convention reserves status values 128 and up for special purposes. In
particular, the value 128 is used to indicate failure to execute another program in
a subprocess. This convention is not universally obeyed, but it is a good idea to
follow it in your programs.

Warning: Don’t try to use the number of errors as the exit status. This is ac-
tually not very useful; a parent process would generally not care how many errors
occurred. Worse than that, it does not work, because the status value is truncated
to 8 bits. Thus, if the program tried to report 256 errors, the parent would receive a
report of 0 errors—that is, success.

For the same reason, it does not work to use the value of errno as the exit
status—these can exceed 255.

Portability Note: Some non-POSIX systems use different conventions for exit
status values. For greater portability, you can use the macros EXIT_SUCCESS
and EXIT_FAILURE for the conventional status value for success and failure,
respectively. They are declared in the file ‘stdlib.h’.

Macroint EXIT SUCCESS
This macro can be used with the exit function to indicate successful program
completion.
On POSIX systems, the value of this macro is 0. On other systems, the value
might be some other (possibly nonconstant) integer expression.

Macroint EXIT FAILURE
This macro can be used with the exit function to indicate unsuccessful pro-
gram completion in a general sense.
On POSIX systems, the value of this macro is 1. On other systems, the value
might be some other (possibly nonconstant) integer expression. Other nonzero
status values also indicate failures. Certain programs use different nonzero sta-
tus values to indicate particular kinds of “nonsuccess”. For example, diff uses
status value 1 to mean that the files are different, and 2 or more to mean that
there was difficulty in opening the files.

Don’t confuse a program’s exit status with a process’s termination status. There
are lots of ways a process can terminate besides having its program finish. In the
event that the process termination is caused by program termination (i.e., exit),
though, the program’s exit status becomes part of the process’s termination status.

14.6.3 Clean-Ups on Exit

Your program can arrange to run its own clean-up functions if normal termination
happens. If you are writing a library for use in various application programs, then

Chapter 14: The Basic Program/System Interface 427

it is unreliable to insist that all applications call the library’s clean-up functions
explicitly before exiting. It is much more robust to make the clean-up invisible to
the application, by setting up a clean-up function in the library itself using atexit
or on_exit.

Functionint atexit (void (*function) (void))
The atexit function registers the function function to be called at normal
program termination. The function is called with no arguments.
The return value from atexit is zero on success and nonzero if the function
cannot be registered.

Functionint on exit (void (*function)(int status, void *arg), void
*arg)

This function is a somewhat more powerful variant of atexit. It accepts two
arguments: a function function and an arbitrary pointer arg. At normal program
termination, the function is called with two arguments: the status value passed
to exit, and the arg.
This function is included in the GNU C Library only for compatibility for SunOS,
and may not be supported by other implementations.

Here’s a trivial program that illustrates the use of exit and atexit:
#include <stdio.h>

#include <stdlib.h>

void

bye (void)

{

puts ("Goodbye, cruel world....");

}

int

main (void)

{

atexit (bye);

exit (EXIT_SUCCESS);

}

When this program is executed, it just prints the message and exits.

14.6.4 Aborting a Program

You can abort your program using the abort function. The prototype for this
function is in ‘stdlib.h’.

428 The GNU C Library: Application Fundamentals

Functionvoid abort (void)
The abort function causes abnormal program termination. This does not exe-
cute clean-up functions registered with atexit or on_exit.
This function actually terminates the process by raising a SIGABRT signal, and
your program can include a handler to intercept this signal.10

14.6.5 Termination Internals

The _exit function is the primitive used for process termination by exit. It is
declared in the header file ‘unistd.h’.

Functionvoid exit (int status)
The _exit function is the primitive for causing a process to terminate with sta-
tus status. Calling this function does not execute clean-up functions registered
with atexit or on_exit.

Functionvoid Exit (int status)
The _Exit function is the ISO C equivalent to _exit. The ISO C committee
members were not sure whether the definitions of _exit and _Exit were
compatible, so they have not used the POSIX name.
This function was introduced in ISO C99 and is declared in ‘stdlib.h’.

When a process terminates for any reason—either because the program termi-
nates, or as a result of a signal—the following things happen:

• All open file descriptors in the process are closed.11 Streams are not flushed
automatically when the process terminates (see Chapter 17 [Input/Output on
Streams], page 439).

• A process exit status is saved to be reported back to the parent process via
wait or waitpid.12 If the program exited, this status includes the program
exit status as its low-order 8 bits.

• Any child processes of the process being terminated are assigned a new parent
process. On most systems, including GNU, this is the init process, with
process ID 1.

• A SIGCHLD signal is sent to the parent process.
• If the process is a session leader that has a controlling terminal, then a SIGHUP

signal is sent to each process in the foreground job, and the controlling termi-
nal is disassociated from that session.13

• If termination of a process causes a process group to become orphaned, and
any member of that process group is stopped, then a SIGHUP signal and a
SIGCONT signal are sent to each process in the group.14

10 Ibid., “Signal Handling”.
11 Ibid., “Low-Level Input/Output”.
12 Ibid., “Process Completion”.
13 Ibid., “Job Control”.
14 Ibid., “Job Control”.

Chapter 15: Input/Output Overview 429

15 Input/Output Overview
Most programs need to do either input (reading data) or output (writing data), or

most frequently both, in order to do anything useful. The GNU C Library provides
such a large selection of input and output functions that the hardest part is often
deciding which function is most appropriate!

This chapter introduces concepts and terminology relating to input and output.
Other chapters relating to the GNU I/O facilities are

• Chapter 17 [Input/Output on Streams], page 439, covers the high-level func-
tions that operate on streams, including formatted input and output.

• Loosemore et al., “Low-Level I/O” (see chap. 1, n. 1), covers the basic I/O
and control functions on file descriptors.

• Loosemore et al., “File-System Interface”, covers functions for operating on
directories and for manipulating file attributes such as access modes and own-
ership.

• Loosemore et al., “Pipes and FIFOs”, includes information on the basic inter-
process communication facilities.

• Loosemore et al., “Sockets”, covers a more complicated interprocess commu-
nication facility with support for networking.

• Loosemore et al., “Low-Level Terminal Interface”, covers functions for chang-
ing how input and output to terminals or other serial devices are processed.

15.1 Input/Output Concepts
Before you can read or write the contents of a file, you must establish a connec-

tion or communications channel to the file. This process is called opening the file.
You can open a file for reading, writing, or both.

The connection to an open file is represented either as a stream or as a file de-
scriptor. You pass this as an argument to the functions that do the actual read or
write operations, to tell them which file to operate on. Certain functions expect
streams, and others are designed to operate on file descriptors.

When you have finished reading to or writing from the file, you can terminate
the connection by closing the file. Once you have closed a stream or file descriptor,
you cannot do any more input or output operations on it.

15.1.1 Streams and File Descriptors

When you want to do input or output to a file, you have a choice of two basic
mechanisms for representing the connection between your program and the file:
file descriptors and streams. File descriptors are represented as objects of type
int, while streams are represented as FILE * objects.

File descriptors provide a primitive, low-level interface to input and output op-
erations. Both file descriptors and streams can represent a connection to a device

430 The GNU C Library: Application Fundamentals

(such as a terminal), or a pipe or socket for communicating with another process,
as well as a normal file. But, if you want to do control operations that are specific
to a particular kind of device, you must use a file descriptor; there are no facilities
to use streams in this way. You must also use file descriptors if your program needs
to do input or output in special modes, such as nonblocking (or polled) input.1

Streams provide a higher-level interface, layered on top of the primitive file de-
scriptor facilities. The stream interface treats all kinds of files pretty much alike—
the sole exception being the three styles of buffering that you can choose (see Sec-
tion 17.20 [Stream Buffering], page 504).

The main advantage of using the stream interface is that the set of functions for
performing actual input and output operations (as opposed to control operations)
on streams is much richer and more powerful than the corresponding facilities for
file descriptors. The file descriptor interface provides only simple functions for
transferring blocks of characters, but the stream interface also provides powerful
formatted input and output functions (printf and scanf) as well as functions
for character- and line-oriented input and output.

Since streams are implemented in terms of file descriptors, you can extract the
file descriptor from a stream and perform low-level operations directly on the file
descriptor. You can also initially open a connection as a file descriptor and then
make a stream associated with that file descriptor.

In general, you should stick with using streams rather than file descriptors, unless
there is some specific operation you want to do that can only be done on a file
descriptor. If you are a beginning programmer and aren’t sure what functions to use,
we suggest that you concentrate on the formatted input functions (see Section 17.14
[Formatted Input], page 486) and formatted output functions (see Section 17.12
[Formatted Output], page 460).

If you are concerned about portability of your programs to systems other than
GNU, you should also be aware that file descriptors are not as portable as streams.
You can expect any system running ISO C to support streams, but non-GNU systems
may not support file descriptors at all, or may only implement a subset of the GNU
functions that operate on file descriptors. Most of the file descriptor functions in
the GNU library are included in the POSIX.1 standard, however.

15.1.2 File Position

One of the attributes of an open file is its file position that keeps track of where
in the file the next character is to be read or written. In the GNU system, and all
POSIX.1 systems, the file position is simply an integer representing the number of
bytes from the beginning of the file.

The file position is normally set to the beginning of the file when it is opened,
and each time a character is read or written, the file position is incremented. In
other words, access to the file is normally sequential.

1 Loosemore et al., “File Status Flags” (see chap. 1, n. 1).

Chapter 15: Input/Output Overview 431

Ordinary files permit read or write operations at any position within the file.
Some other kinds of files may also permit this. Files which do permit this are some-
times referred to as random-access files. You can change the file position using the
fseek function on a stream (see Section 17.18 [File Positioning], page 500) or the
lseek function on a file descriptor.2 If you try to change the file position on a file
that doesn’t support random access, you get the ESPIPE error.

Streams and descriptors that are opened for append access are treated specially
for output; output to such files is always appended sequentially to the end of the
file, regardless of the file position. However, the file position is still used to control
where in the file reading is done.

If you think about it, you’ll realize that several programs can read a given file at
the same time. In order for each program to be able to read the file at its own pace,
each program must have its own file pointer, which is not affected by anything the
other programs do.

In fact, each opening of a file creates a separate file position. Thus, if you open
a file twice even in the same program, you get two streams or descriptors with
independent file positions.

By contrast, if you open a descriptor and then duplicate it to get another descrip-
tor, these two descriptors share the same file position: changing the file position of
one descriptor will affect the other.

15.2 File Names
In order to open a connection to a file, or to perform other operations such as

deleting a file, you need some way to refer to the file. Nearly all files have names
that are strings—even files that are actually devices such as tape drives or terminals.
These strings are called file names. You specify the file name to say which file you
want to open or operate on.

This section describes the conventions for file names and how the operating sys-
tem works with them.

15.2.1 Directories

In order to understand the syntax of file names, you need to understand how the
file system is organized into a hierarchy of directories.

A directory is a file that contains information to associate other files with names;
these associations are called links or directory entries. Sometimes, people speak of
“files in a directory”, but in reality, a directory only contains pointers to files, not
the files themselves.

The name of a file contained in a directory entry is called a file-name component.
In general, a file name consists of a sequence of one or more such components,
separated by the slash character (‘/’). A file name that is just one component

2 Ibid., “Input and Output Primitives”.

432 The GNU C Library: Application Fundamentals

names a file with respect to its directory. A file name with multiple components
names a directory, and then a file in that directory, and so on.

Some other documents, such as the POSIX standard, use the term pathname for
what we call a file name, and either filename or pathname component for what this
manual calls a file-name component. We don’t use this terminology because a path
is something completely different (a list of directories to search), and we think that
pathname used for something else will confuse users. We always use file name and
file-name component (or sometimes just component, where the context is obvious)
in GNU documentation. Some macros use the POSIX terminology in their names,
such as PATH_MAX. These macros are defined by the POSIX standard, so we cannot
change their names.

You can find more detailed information about operations on directories in Loose-
more et al., “File-System Interface” (see chap. 1, n. 1).

15.2.2 File-Name Resolution

A file name consists of file-name components separated by slash (‘/’) characters.
On the systems that the GNU C Library supports, multiple successive ‘/’ characters
are equivalent to a single ‘/’ character.

The process of determining what file a file name refers to is called file-name
resolution. This is performed by examining the components that make up a file
name in left-to-right order, and locating each successive component in the directory
named by the previous component. Of course, each of the files that are referenced
as directories must actually exist, be directories instead of regular files, and have
the appropriate permissions to be accessible by the process; otherwise the file-name
resolution fails.

If a file name begins with a ‘/’, the first component in the file name is located in
the root directory of the process (usually all processes on the system have the same
root directory). Such a file name is called an absolute file name.

Otherwise, the first component in the file name is located in the current working
directory.3 This kind of file name is called a relative file name.

The file-name components ‘.’ (dot) and ‘..’ (dot-dot) have special meanings.
Every directory has entries for these file-name components. The file-name compo-
nent ‘.’ refers to the directory itself, while the file-name component ‘..’ refers to
its parent directory (the directory that contains the link for the directory in ques-
tion). As a special case, ‘..’ in the root directory refers to the root directory itself,
since it has no parent; thus ‘/..’ is the same as ‘/’.

Here are some examples of file names:

‘/a’ The file named ‘a’, in the root directory

‘/a/b’ The file named ‘b’, in the directory named ‘a’ in the root directory

‘a’ The file named ‘a’, in the current working directory

3 Ibid., “Working Directory”.

Chapter 15: Input/Output Overview 433

‘/a/./b’ The same as ‘/a/b’

‘./a’ The file named ‘a’, in the current working directory

‘../a’ The file named ‘a’, in the parent directory of the current working
directory

A file name that names a directory may optionally end in a ‘/’. You can specify
a file name of ‘/’ to refer to the root directory, but the empty string is not a mean-
ingful file name. If you want to refer to the current working directory, use a file
name of ‘.’ or ‘./’.

Unlike some other operating systems, the GNU system doesn’t have any built-in
support for file types (or extensions) or file versions as part of its file-name syn-
tax. Many programs and utilities use conventions for file names—for example,
files containing C source code usually have names suffixed with ‘.c’—but there is
nothing in the file system itself that enforces this kind of convention.

15.2.3 File-Name Errors

Functions that accept file-name arguments usually detect these errno error con-
ditions relating to the file-name syntax or trouble finding the named file. These
errors are referred to throughout this manual as the usual file-name errors.

EACCES The process does not have search permission for a directory compo-
nent of the file name.

ENAMETOOLONG
This error is used when either the total length of a file name is greater
than PATH_MAX, or when an individual file-name component has a
length greater than NAME_MAX.4

In the GNU system, there is no imposed limit on overall file-name
length, but some file systems may place limits on the length of a com-
ponent.

ENOENT This error is reported when a file referenced as a directory component
in the file name doesn’t exist, or when a component is a symbolic link
whose target file does not exist.5

ENOTDIR A file that is referenced as a directory component in the file name
exists, but it isn’t a directory.

ELOOP Too many symbolic links were resolved while trying to look up the
file name. The system has an arbitrary limit on the number of sym-
bolic links that may be resolved in looking up a single file name, as a
primitive way to detect loops.6

4 Ibid., “Limits on File-System Capacity”.
5 Ibid., “Symbolic Links”.
6 Ibid., “Symbolic Links”.

434 The GNU C Library: Application Fundamentals

15.2.4 Portability of File Names

The rules for the syntax of file names discussed in Section 15.2 [File Names],
page 431, are the rules normally used by the GNU system and by other POSIX
systems. However, other operating systems may use other conventions.

There are two reasons why it can be important for you to be aware of file-name
portability issues:

• If your program makes assumptions about file-name syntax, or contains em-
bedded literal file-name strings, it is more difficult to get it to run under other
operating systems that use different syntax conventions.

• Even if you are not concerned about running your program on machines that
run other operating systems, it may still be possible to access files that use
different naming conventions. For example, you may be able to access file
systems on another computer running a different operating system over a net-
work, or read and write disks in formats used by other operating systems.

The ISO C standard says very little about file-name syntax, only that file names
are strings. In addition to varying restrictions on the length of file names and what
characters can validly appear in a file name, different operating systems use differ-
ent conventions and syntax for concepts such as structured directories and file types
or extensions. Some concepts, such as file versions, might be supported in some
operating systems and not in others.

The POSIX.1 standard allows implementations to put additional restrictions on
file-name syntax, concerning what characters are permitted in file names and on
the length of file name and file-name component strings. However, in the GNU
system, you do not need to worry about these restrictions; any character except the
null character is permitted in a file-name string, and there are no limits on the length
of file-name strings.

Chapter 16: Debugging Support 435

16 Debugging Support
Applications are usually debugged using dedicated debugger programs. But

sometimes this is not possible and, in any case, it is useful to provide the developer
with as much information as possible at the time the problems are experienced.
For this reason, a few functions are provided that a program can use to help the
developer more easily locate the problem.

16.1 Backtraces
A backtrace is a list of the function calls that are currently active in a thread. The

usual way to inspect a backtrace of a program is to use an external debugger such as
gdb. However, sometimes it is useful to obtain a backtrace programmatically from
within a program, e.g., for the purposes of logging or diagnostics.

The header file ‘execinfo.h’ declares three functions that obtain and manip-
ulate backtraces of the current thread.

Functionint backtrace (void **buffer, int size)
The backtrace function obtains a backtrace for the current thread, as a list of
pointers, and places the information into buffer. The argument size should be
the number of void * elements that will fit into buffer. The return value is the
actual number of entries of buffer that are obtained, and is at most size.
The pointers placed in buffer are actually return addresses obtained by inspect-
ing the stack, one return address per stack frame.
Certain compiler optimizations may interfere with obtaining a valid backtrace.
Function in-lining causes the in-lined function to not have a stack frame; tail-call
optimization replaces one stack frame with another; frame pointer elimination
will stop backtrace from interpreting the stack contents correctly.

Functionchar ** backtrace symbols (void *const *buffer, int
size)

The backtrace_symbols function translates the information obtained from
the backtrace function into an array of strings. The argument buffer should
be a pointer to an array of addresses obtained via the backtrace function, and
size is the number of entries in that array (the return value of backtrace).
The return value is a pointer to an array of strings, which has size entries just
like the array buffer. Each string contains a printable representation of the cor-
responding element of buffer. It includes the function name (if this can be de-
termined), an offset into the function, and the actual return address (in hexadec-
imal).
Currently, the function name and offset can only be obtained on systems that
use the ELF binary format for programs and libraries. On other systems, only
the hexadecimal return address will be present. Also, you may need to pass ad-
ditional flags to the linker to make the function names available to the program;
for example, on systems using GNU ld, you must pass -rdynamic.

436 The GNU C Library: Application Fundamentals

The return value of backtrace_symbols is a pointer obtained via the
malloc function, and it is the responsibility of the caller to free that pointer.
Only the return value need be freed, not the individual strings.
The return value is NULL if sufficient memory for the strings cannot be obtained.

Functionvoid backtrace symbols fd (void *const *buffer, int
size, int fd)

The backtrace_symbols_fd function performs the same translation as the
function backtrace_symbols function. Instead of returning the strings to
the caller, it writes the strings to the file descriptor fd, one per line. It does not
use the malloc function, and can therefore be used in situations where that
function might fail.

The following program illustrates the use of these functions. Note that the array
to contain the return addresses returned by backtrace is allocated on the stack.
Therefore, code like this can be used in situations where the memory handling via
malloc does not work anymore (in which case the backtrace_symbols has
to be replaced by a backtrace_symbols_fd call as well). The number of
return addresses is normally not very large. Even complicated programs rather sel-
dom have a nesting level of more than fifty, and with two hundred possible entries,
probably all programs should be covered.

#include <execinfo.h>

#include <stdio.h>

#include <stdlib.h>

/* Obtain a backtrace and print it to stdout. */

void

print_trace (void)

{

void *array[10];

size_t size;

char **strings;

size_t i;

size = backtrace (array, 10);

strings = backtrace_symbols (array, size);

printf ("Obtained %zd stack frames.\n", size);

for (i = 0; i < size; i++)

printf ("%s\n", strings[i]);

free (strings);

}

Chapter 16: Debugging Support 437

/* A dummy function to make the backtrace more interesting */

void

dummy_function (void)

{

print_trace ();

}

int

main (void)

{

dummy_function ();

return 0;

}

438 The GNU C Library: Application Fundamentals

Chapter 17: Input/Output on Streams 439

17 Input/Output on Streams
This chapter describes the functions for creating streams and performing in-

put and output operations on them. As discussed in Chapter 15 [Input/Output
Overview], page 429, a stream is a fairly abstract, high-level concept represent-
ing a communications channel to a file, device, or process.

17.1 Streams
For historical reasons, the type of the C data structure that represents a stream is

called FILE rather than stream. Since most of the library functions deal with ob-
jects of type FILE *, sometimes the term file pointer is also used to mean stream.
This leads to unfortunate confusion over terminology in many books on C. This
manual, however, is careful to use the terms file and stream only in the technical
sense.

The FILE type is declared in the header file ‘stdio.h’.

Data TypeFILE
This is the data type used to represent stream objects. A FILE object holds all of
the internal state information about the connection to the associated file, includ-
ing such things as the file position indicator and buffering information. Each
stream also has error and end-of-file status indicators that can be tested with
the ferror and feof functions (see Section 17.15 [End-of-File and Errors],
page 497).

FILE objects are allocated and managed internally by the input/output library
functions. Don’t try to create your own objects of type FILE; let the library do
it. Your programs should deal only with pointers to these objects (that is, FILE *
values) rather than the objects themselves.

17.2 Standard Streams
When the main function of your program is invoked, it already has three prede-

fined streams open and available for use. These represent the “standard” input and
output channels that have been established for the process.

These streams are declared in the header file ‘stdio.h’.

VariableFILE * stdin
The standard input stream, which is the normal source of input for the program

VariableFILE * stdout
The standard output stream, which is used for normal output from the program

440 The GNU C Library: Application Fundamentals

VariableFILE * stderr
The standard error stream, which is used for error messages and diagnostics
issued by the program

In the GNU system, you can specify what files or processes correspond to these
streams using the pipe and redirection facilities provided by the shell.1 Most other
operating systems provide similar mechanisms, but the details of how to use them
can vary.

In the GNU C Library, stdin, stdout, and stderr are normal variables that
you can set just like any others. For example, to redirect the standard output to a
file, you could do:

fclose (stdout);

stdout = fopen ("standard-output-file", "w");

However, in other systems, stdin, stdout and stderr are macros that you
cannot assign to in the normal way. But you can use freopen to get the effect of
closing one and reopening it (see Section 17.3 [Opening Streams], page 440).

The three streams stdin, stdout and stderr are not unoriented at program
start (see Section 17.6 [Streams in Internationalized Applications], page 448).

17.3 Opening Streams
Opening a file with the fopen function creates a new stream and establishes a

connection between the stream and a file. This may involve creating a new file.
Everything described in this section is declared in the header file ‘stdio.h’.

FunctionFILE * fopen (const char *filename, const char
*opentype)

The fopen function opens a stream for I/O to the file filename, and returns a
pointer to the stream.
The opentype argument is a string that controls how the file is opened and spec-
ifies attributes of the resulting stream. It must begin with one of the following
sequences of characters:

‘r’ Open an existing file for reading only.

‘w’ Open the file for writing only. If the file already exists, it is trun-
cated to zero length. Otherwise, a new file is created.

‘a’ Open a file for append access; that is, writing at the end of file
only. If the file already exists, its initial contents are unchanged and
output to the stream is appended to the end of the file. Otherwise,
a new, empty file is created.

1 The primitives shells use to implement these facilities are described in Loosemore et al., “File-
System Interface” (see chap. 1, n. 1).

Chapter 17: Input/Output on Streams 441

‘r+’ Open an existing file for both reading and writing. The initial con-
tents of the file are unchanged and the initial file position is at the
beginning of the file.

‘w+’ Open a file for both reading and writing. If the file already exists,
it is truncated to zero length. Otherwise, a new file is created.

‘a+’ Open or create file for both reading and appending. If the file ex-
ists, its initial contents are unchanged. Otherwise, a new file is
created. The initial file position for reading is at the beginning of
the file, but output is always appended to the end of the file.

As you can see, ‘+’ requests a stream that can do both input and output. The
ISO standard says that when using such a stream, you must call fflush (see
Section 17.20 [Stream Buffering], page 504) or a file positioning function such
as fseek (see Section 17.18 [File Positioning], page 500) when switching from
reading to writing or vice versa. Otherwise, internal buffers might not be emp-
tied properly. The GNU C Library does not have this limitation; you can do
arbitrary reading and writing operations on a stream in any order.
Additional characters may appear after these to specify flags for the call. Al-
ways put the mode (‘r’, ‘w+’, etc.) first; that is the only part guaranteed to be
understood by all systems.
The GNU C Library defines one additional character for use in opentype: the
character ‘x’ insists on creating a new file—if a file filename already exists,
fopen fails rather than opening it. If you use ‘x’, it is guaranteed that you
will not clobber an existing file. This is equivalent to the O_EXCL option to the
open function.2

The character ‘b’ in opentype has a standard meaning; it requests a binary
stream rather than a text stream. But this makes no difference in POSIX sys-
tems (including the GNU system). If both ‘+’ and ‘b’ are specified, they can
appear in either order (see Section 17.17 [Text and Binary Streams], page 499).
If the opentype string contains the sequence ccs=STRING , then STRING is
taken as the name of a coded character set and fopen will mark the stream
as wide-oriented with appropriate conversion functions in place to convert from
and to the character set STRING. Any other stream is opened initially unori-
ented, and the orientation is decided with the first file operation. If the first
operation is a wide-character operation, the stream is not only marked as wide-
oriented—the conversion functions to convert to the coded character set used
for the current locale are also loaded. This will not change anymore from this
point on, even if the locale selected for the LC_CTYPE category is changed.
Any other characters in opentype are simply ignored. They may be meaningful
in other systems.
If the open fails, fopen returns a null pointer.

2 Ibid., “Opening and Closing Files”.

442 The GNU C Library: Application Fundamentals

When the sources are compiling with _FILE_OFFSET_BITS == 64 on a 32-
bit machine, this function is in fact fopen64, since the LFS interface transpar-
ently replaces the old interface.

You can have multiple streams (or file descriptors) pointing to the same file open
at the same time. If you do only input, this will be straightforward, but you must be
careful if any output streams are included.3 This is equally true whether the streams
are in one program (not usual) or in several programs (which can easily happen). It
may be advantageous to use the file-locking facilities to avoid simultaneous access.4

FunctionFILE * fopen64 (const char *filename, const char
*opentype)

This function is similar to fopen, but the stream it returns a pointer for is
opened using open64. Therefore, this stream can be used even on files larger
then 231 bytes on 32-bit machines.
The return type is still FILE *. There is no special FILE type for the LFS
interface.
If the sources are compiled with _FILE_OFFSET_BITS == 64 on a 32-bit
machine, this function is available under the name fopen and so transparently
replaces the old interface.

Macroint FOPEN MAX
The value of this macro is an integer constant expression that represents the
minimum number of streams that the implementation guarantees can be open
simultaneously. You might be able to open more than this many streams, but
that is not guaranteed. The value of this constant is at least eight, which includes
the three standard streams stdin, stdout and stderr. In POSIX.1 systems,
this value is determined by the OPEN_MAX parameter.5 In BSD and GNU, it is
controlled by the RLIMIT_NOFILE resource limit.6

FunctionFILE * freopen (const char *filename, const char
*opentype, FILE *stream)

This function is like a combination of fclose and fopen. It first closes the
stream referred to by stream, ignoring any errors that are detected in the process.
Because errors are ignored, you should not use freopen on an output stream
if you have actually done any output using the stream. Then the file named by
filename is opened with mode opentype as for fopen, and associated with the
same stream object stream.
If the operation fails, a null pointer is returned; otherwise, freopen returns
stream.

3 Ibid., “Dangers of Mixing Streams and Descriptors”.
4 Ibid., “File Locks”.
5 Ibid., “General Capacity-Limits”.
6 Ibid., “Limiting Resource Usage”.

Chapter 17: Input/Output on Streams 443

freopen has traditionally been used to connect a standard stream such as
stdin with a file of your own choice. This is useful in programs in which use
of a standard stream for certain purposes is hard-coded. In the GNU C Library,
you can simply close the standard streams and open new ones with fopen. But
other systems lack this ability, so using freopen is more portable.
When the sources are compiling with _FILE_OFFSET_BITS == 64 on a 32-
bit machine, this function is in fact freopen64, since the LFS interface trans-
parently replaces the old interface.

FunctionFILE * freopen64 (const char *filename, const char
*opentype, FILE *stream)

This function is similar to freopen. The only difference is that on 32-bit ma-
chines, the stream returned is able to read beyond the 231-bytes limits imposed
by the normal interface. The stream pointed to by stream need not be opened
using fopen64 or freopen64, since its mode is not important for this func-
tion.
If the sources are compiled with _FILE_OFFSET_BITS == 64 on a 32-bit
machine, this function is available under the name freopen and so transpar-
ently replaces the old interface.

In some situations, it is useful to know whether a given stream is available for
reading or writing. This information is normally not available and would have to be
remembered separately. Solaris introduced a few functions to get this information
from the stream descriptor and these functions are also available in the GNU C
Library.

Functionint freadable (FILE *stream)
The __freadable function determines whether the stream stream was
opened to allow reading. In this case, the return value is nonzero. For
write-only streams, the function returns zero.
This function is declared in ‘stdio_ext.h’.

Functionint fwritable (FILE *stream)
The __fwritable function determines whether the stream stream was
opened to allow writing. In this case, the return value is nonzero. For read-only
streams, the function returns zero.
This function is declared in ‘stdio_ext.h’.

For slightly different kinds of problems, there are two more functions. They
provide even finer-grained information.

Functionint freading (FILE *stream)
The __freading function determines whether the stream stream was last read
from or whether it is opened read-only. In this case, the return value is nonzero.
Otherwise, it is zero. Determining whether a stream opened for reading and

444 The GNU C Library: Application Fundamentals

writing was last used for writing allows you to draw conclusions about the con-
tent of the buffer, among other things.
This function is declared in ‘stdio_ext.h’.

Functionint fwriting (FILE *stream)
The __fwriting function determines whether the stream stream was last
written to or whether it is opened write-only. In this case, the return value is
nonzero. Otherwise, it is zero.
This function is declared in ‘stdio_ext.h’.

17.4 Closing Streams
When a stream is closed with fclose, the connection between the stream and

the file is canceled. After you have closed a stream, you cannot perform any addi-
tional operations on it.

Functionint fclose (FILE *stream)
This function causes stream to be closed and the connection to the correspond-
ing file to be broken. Any buffered output is written, and any buffered input
is discarded. The fclose function returns a value of 0 if the file was closed
successfully, and EOF if an error was detected.
It is important to check for errors when you call fclose to close an output
stream, because real, everyday errors can be detected at this time. For exam-
ple, when fclose writes the remaining buffered output, it might get an error
because the disk is full. Even if you know the buffer is empty, errors can still
occur when closing a file if you are using NFS.
The function fclose is declared in ‘stdio.h’.

To close all streams currently available, the GNU C Library provides another
function.

Functionint fcloseall (void)
This function causes all open streams of the process to be closed and the con-
nection to corresponding files to be broken. All buffered data is written, and any
buffered input is discarded. The fcloseall function returns a value of 0 if
all the files were closed successfully, and EOF if an error was detected.
This function should be used only in special situations, such as when an error
occurred and the program must be aborted. Normally, each single stream should
be closed separately so that problems with individual streams can be identified.
It is also problematic since the standard streams (see Section 17.2 [Standard
Streams], page 439) will also be closed.
The function fcloseall is declared in ‘stdio.h’.

If the main function to your program returns, or if you call the exit function
(see Section 14.6.1 [Normal Termination], page 425), all open streams are automat-
ically closed properly. If your program terminates in any other manner, such as by

Chapter 17: Input/Output on Streams 445

calling the abort function (see Section 14.6.4 [Aborting a Program], page 427),
or from a fatal signal7, open streams might not be closed properly. Buffered out-
put might not be flushed, and files may be incomplete. For more information on
buffering of streams, see Section 17.20 [Stream Buffering], page 504.

17.5 Streams and Threads
Streams can be used in multithreaded applications in the same way they are used

in single-threaded applications. But the programmer must be aware of the possible
complications. It is also important to know about these if the program one writes
never use threads, since the design and implementation of many stream functions
is heavily influenced by the requirements added by multithreaded programming.

The POSIX standard requires that, by default, the stream operations are atomic—
issuing two stream operations for the same stream in two threads at the same time
will cause the operations to be executed as if they were issued sequentially. The
buffer operations performed while reading or writing are protected from other uses
of the same stream. To do this, each stream has an internal lock object that has to
be (implicitly) acquired before any work can be done.

But there are situations where this is not enough, and there are also situations
where this is not wanted. The implicit locking is not enough if the program requires
more than one stream function call to happen atomically. One example would be
if an output line a program wants to generate is created by several function calls.
The functions by themselves would ensure only atomicity of their own operation,
but not atomicity over all the function calls. For this, it is necessary to perform the
stream locking in the application code.

Functionvoid flockfile (FILE *stream)
The flockfile function acquires the internal locking object associated with
the stream stream. This ensures that no other thread can explicitly through
flockfile/ftrylockfile or implicitly through a call of a stream function
lock the stream. The thread will block until the lock is acquired. An explicit call
to funlockfile has to be used to release the lock.

Functionint ftrylockfile (FILE *stream)
The ftrylockfile function tries to acquire the internal locking object asso-
ciated with the stream stream just like flockfile. But unlike flockfile,
this function does not block if the lock is not available. ftrylockfile re-
turns zero if the lock was successfully acquired. Otherwise, the stream is locked
by another thread.

Functionvoid funlockfile (FILE *stream)
The funlockfile function releases the internal locking object of the stream
stream. The stream must have been locked before by a call to flockfile or

7 Ibid., “Signal Handling”.

446 The GNU C Library: Application Fundamentals

a successful call of ftrylockfile. The implicit locking performed by the
stream operations do not count. The funlockfile function does not return
an error status, and the behavior of a call for a stream that is not locked by the
current thread is undefined.

The following example shows how the functions above can be used to generate
an output line atomically even in multithreaded applications (yes, the same job
could be done with one fprintf call, but that is sometimes not possible):

FILE *fp;

{

...

flockfile (fp);

fputs ("This is test number ", fp);

fprintf (fp, "%d\n", test);

funlockfile (fp)

}

Without the explicit locking, it would be possible for another thread to use the
stream fp after the fputs call return and before fprintf was called, with the
result that the number does not follow the word ‘number’.

From this description, it might already be clear that the locking objects in streams
are no simple mutexes. Since locking the same stream twice in the same thread
is allowed, the locking objects must be equivalent to recursive mutexes. These
mutexes keep track of the owner and the number of times the lock is acquired. The
same number of funlockfile calls by the same threads is necessary to unlock
the stream completely. For instance:

void

foo (FILE *fp)

{

ftrylockfile (fp);

fputs ("in foo\n", fp);

/* This is very wrong!!! */

funlockfile (fp);

}

It is important here that the funlockfile function is only called if the
ftrylockfile function succeeded in locking the stream. It is therefore always
wrong to ignore the result of ftrylockfile. And it makes no sense, since oth-
erwise one would use flockfile. The result of code like that above is that either
funlockfile tries to free a stream that hasn’t been locked by the current thread,
or it frees the stream prematurely. The code should look like this:

void

foo (FILE *fp)

{

if (ftrylockfile (fp) == 0)

{

Chapter 17: Input/Output on Streams 447

fputs ("in foo\n", fp);

funlockfile (fp);

}

}

Now that we covered why it is necessary to have locking, it is necessary to talk
about situations when locking is unwanted and what can be done. The locking oper-
ations (explicit or implicit) don’t come for free. Even if a lock is not taken, the cost
is not zero. The operations that have to be performed require memory operations
that are safe in multiprocessor environments. With the many local caches involved
in such systems, this is quite costly. So it is best to avoid the locking completely if
it is not needed—because the code in question is never used in a context where two
or more threads may use a stream at a time. This can be determined most of the
time for application code; for library code that can be used in many contexts, one
should default to be conservative and use locking.

There are two basic mechanisms to avoid locking. The first is to use the _
unlocked variants of the stream operations. The POSIX standard defines quite
a few of those, and the GNU library adds a few more. These variants of the func-
tions behave just like the functions with the name without the suffix, except that
they do not lock the stream. Using these functions is very desirable, since they
are potentially much faster. This is not only because the locking operation itself is
avoided. More importantly, functions like putc and getc are very simple and tra-
ditionally (before the introduction of threads) were implemented as macros that are
very fast if the buffer is not empty. With the addition of locking requirements, these
functions are no longer implemented as macros, since they would would expand to
too much code. But these macros are still available with the same functionality
under the new names putc_unlocked and getc_unlocked. This potentially
huge difference in speed also suggests the use of the _unlocked functions even
if locking is required. The difference is that the locking then has to be performed
in the program:

void

foo (FILE *fp, char *buf)

{

flockfile (fp);

while (*buf != ’/’)

putc_unlocked (*buf++, fp);

funlockfile (fp);

}

If in this example, the putc function would be used and the explicit locking
would be missing, the putc function would have to acquire the lock in every call,
potentially many times depending on when the loop terminates. Writing it the way
illustrated above allows the putc_unlocked macro to be used, which means no
locking and direct manipulation of the buffer of the stream.

A second way to avoid locking is by using a nonstandard function that was in-
troduced in Solaris and is available in the GNU C Library as well.

448 The GNU C Library: Application Fundamentals

Functionint fsetlocking (FILE *stream, int type)
The __fsetlocking function can be used to select whether the stream oper-
ations will implicitly acquire the locking object of the stream stream. By default,
this is done, but it can be disabled and reinstated using this function. There are
three values defined for the type parameter:

FSETLOCKING_INTERNAL
The stream stream will from now on use the default internal
locking. Every stream operation with the exception of the _
unlocked variants will implicitly lock the stream.

FSETLOCKING_BYCALLER
After the __fsetlocking function returns, the user is re-
sponsible for locking the stream. None of the stream opera-
tions will implicitly do this anymore until the state is set back to
FSETLOCKING_INTERNAL.

FSETLOCKING_QUERY
__fsetlocking only queries the current locking state of the
stream. The return value will be FSETLOCKING_INTERNAL or
FSETLOCKING_BYCALLER depending on the state.

The return value of __fsetlocking is either FSETLOCKING_INTERNAL
or FSETLOCKING_BYCALLER depending on the state of the stream before the
call.
This function and the values for the type parameter are declared in
‘stdio_ext.h’.

This function is especially useful when program code has to be used that is writ-
ten without knowledge of the _unlocked functions (or if the programmer was
too lazy to use them).

17.6 Streams in Internationalized Applications
ISO C90 introduced the new type wchar_t to allow handling larger character

sets. What was missing was the ability to output strings of wchar_t directly.
One had to convert them into multibyte strings using mbstowcs (there was no
mbsrtowcs yet) and then use the normal stream functions. While this is doable,
it is very cumbersome, since performing the conversions is not trivial and greatly
increases program complexity and size.

The Unix standard (XPG4.2 and later) includes two additional format specifiers
for the printf and scanf families of functions. Printing and reading of sin-
gle wide characters was made possible using the %C specifier, and wide-character
strings can be handled with %S. These modifiers behave just like %c and %s, only
they expect the corresponding argument to have the wide-character type and that
the wide character and string are transformed into/from multibyte strings before
being used.

Chapter 17: Input/Output on Streams 449

This was a beginning, but it is still not good enough. It is not always desirable
to use printf and scanf. The other, smaller and faster functions cannot handle
wide characters. Second, it is not possible to have a format string for printf and
scanf consisting of wide characters. The result is that format strings would have
to be generated if they have to contain nonbasic characters.

In the Amendment 1 to ISO C90, a whole new set of functions was added to
solve the problem. Most of the stream functions got counterparts that take a wide
character or wide-character string instead of a character or string respectively. The
new functions operate on the same streams (like stdout). This is different from
the model of the C++ run-time library where separate streams for wide and normal
I/O are used.

Being able to use the same stream for wide and normal operations comes with a
restriction: a stream can be used either for wide operations or for normal operations.
Once it is decided, there is no way back. Only a call to freopen or freopen64
can reset the orientation. The orientation can be decided in three ways:

• If any of the normal character functions is used (this includes the fread and
fwrite functions), the stream is marked as not wide oriented.

• If any of the wide-character functions is used, the stream is marked as wide
oriented.

• The fwide function can be used to set the orientation either way.

It is important to never mix the use of wide and not-wide operations on a stream.
There are no diagnostics issued. The application behavior will simply be strange or
the application will simply crash. The fwide function can help avoid this.

Functionint fwide (FILE *stream, int mode)
The fwide function can be used to set and query the state of the orientation
of the stream stream. If the mode parameter has a positive value, the streams
get wide oriented, and for negative values they get narrow oriented. It is not
possible to overwrite previous orientations with fwide—if the stream stream
was already oriented before the call, nothing is done.
If mode is zero, the current orientation state is queried, and nothing is changed.
The fwide function returns a negative value, zero, or a positive value if the
stream is narrow, not at all, or wide oriented, respectively.
This function was introduced in Amendment 1 to ISO C90 and is declared in
‘wchar.h’.

It is generally a good idea to orient a stream as early as possible. This can prevent
surprise especially for the standard streams stdin, stdout, and stderr. If
some library function in some situations uses one of these streams and this use
orients the stream in a different way than the rest of the application expects, one
might end up with hard-to-reproduce errors. Remember that no errors are signalled
if the streams are used incorrectly. Leaving a stream unoriented after creation is
normally only necessary for library functions that create streams that can be used
in different contexts.

450 The GNU C Library: Application Fundamentals

When writing code that uses streams and that can be used in different contexts, it
is important to query the orientation of the stream before using it (unless the rules
of the library interface demand a specific orientation). The following little, silly
function illustrates this:

void

print_f (FILE *fp)

{

if (fwide (fp, 0) > 0)

/* Positive return value means wide orientation. */

fputwc (L’f’, fp);

else

fputc (’f’, fp);

}

In this case, the function print_f decides about the orientation of the stream
if it was unoriented before (this will not happen if the advice above is followed).

The encoding used for the wchar_t values is unspecified, and the user must
not make any assumptions about it. For I/O of wchar_t values, this means that
it is impossible to write these values directly to the stream. This is not what fol-
lows from the ISO C locale model either. What happens instead is that the bytes
read from or written to the underlying media are first converted into the internal
encoding chosen by the implementation for wchar_t. The external encoding is
determined by the LC_CTYPE category of the current locale, or by the ‘ccs’ part
of the mode specification given to fopen, fopen64, freopen or freopen64.
How and when the conversion happens is unspecified, and it happens invisibly to
the user.

Since a stream is created in the unoriented state, it has at that point no con-
version associated with it. The conversion that will be used is determined by the
LC_CTYPE category selected at the time the stream is oriented. If the locales are
changed at the run time, this might produce surprising results unless you pay at-
tention. This is just another good reason to orient the stream explicitly as soon as
possible, perhaps with a call to fwide.

17.7 Simple Output by Characters or Lines
This section describes functions for performing character- and line-oriented out-

put.
These narrow stream functions are declared in the header file ‘stdio.h’ and

the wide stream functions in ‘wchar.h’.

Functionint fputc (int c, FILE *stream)
The fputc function converts the character c to type unsigned char, and
writes it to the stream stream. EOF is returned if a write error occurs. Otherwise,
the character c is returned.

Chapter 17: Input/Output on Streams 451

Functionwint_t fputwc (wchar_t wc, FILE *stream)
The fputwc function writes the wide character wc to the stream stream. WEOF
is returned if a write error occurs. Otherwise, the character wc is returned.

Functionint fputc unlocked (int c, FILE *stream)
The fputc_unlocked function is equivalent to the fputc function, except
that it does not implicitly lock the stream.

Functionwint_t fputwc unlocked (wint_t wc, FILE *stream)
The fputwc_unlocked function is equivalent to the fputwc function, ex-
cept that it does not implicitly lock the stream.
This function is a GNU extension.

Functionint putc (int c, FILE *stream)
This is just like fputc, except that most systems implement it as a macro,
making it faster. One consequence is that it may evaluate the stream argument
more than once, which is an exception to the general rule for macros. putc is
usually the best function to use for writing a single character.

Functionwint_t putwc (wchar_t wc, FILE *stream)
This is just like fputwc, except that it can be implemented as a macro, making
it faster. One consequence is that it may evaluate the stream argument more than
once, which is an exception to the general rule for macros. putwc is usually
the best function to use for writing a single wide character.

Functionint putc unlocked (int c, FILE *stream)
The putc_unlocked function is equivalent to the putc function, except that
it does not implicitly lock the stream.

Functionwint_t putwc unlocked (wchar_t wc, FILE *stream)
The putwc_unlocked function is equivalent to the putwc function, except
that it does not implicitly lock the stream.
This function is a GNU extension.

Functionint putchar (int c)
The putchar function is equivalent to putc with stdout as the value of the
stream argument.

Functionwint_t putwchar (wchar_t wc)
The putwchar function is equivalent to putwc with stdout as the value of
the stream argument.

Functionint putchar unlocked (int c)
The putchar_unlocked function is equivalent to the putchar function,
except that it does not implicitly lock the stream.

452 The GNU C Library: Application Fundamentals

Functionwint_t putwchar unlocked (wchar_t wc)
The putwchar_unlocked function is equivalent to the putwchar func-
tion, except that it does not implicitly lock the stream.
This function is a GNU extension.

Functionint fputs (const char *s, FILE *stream)
The function fputs writes the string s to the stream stream. The terminating
null character is not written. This function does not add a newline character,
either. It outputs only the characters in the string.
This function returns EOF if a write error occurs, and otherwise a nonnegative
value.
For example:

fputs ("Are ", stdout);

fputs ("you ", stdout);

fputs ("hungry?\n", stdout);

outputs the text, ‘Are you hungry?’, followed by a newline.

Functionint fputws (const wchar_t *ws, FILE *stream)
The function fputws writes the wide-character string ws to the stream stream.
The terminating null character is not written. This function does not add a new-
line character, either. It outputs only the characters in the string.
This function returns WEOF if a write error occurs, and otherwise a nonnegative
value.

Functionint fputs unlocked (const char *s, FILE *stream)
The fputs_unlocked function is equivalent to the fputs function, except
that it does not implicitly lock the stream.
This function is a GNU extension.

Functionint fputws unlocked (const wchar_t *ws, FILE *stream)
The fputws_unlocked function is equivalent to the fputws function, ex-
cept that it does not implicitly lock the stream.
This function is a GNU extension.

Functionint puts (const char *s)
The puts function writes the string s to the stream stdout followed by a
newline. The terminating null character of the string is not written. (Note that
fputs does not write a newline as this function does.)
puts is the most convenient function for printing simple messages. For exam-
ple:

puts ("This is a message.");

outputs the text, ‘This is a message.’, followed by a newline.

Chapter 17: Input/Output on Streams 453

Functionint putw (int w, FILE *stream)
This function writes the word w (that is, an int) to stream. It is provided
for compatibility with SVID, but we recommend you use fwrite instead (see
Section 17.11 [Block Input/Output], page 459).

17.8 Character Input
This section describes functions for performing character-oriented input. These

narrow stream functions are declared in the header file ‘stdio.h’, and the wide-
character functions are declared in ‘wchar.h’.

These functions return an int or wint_t value (for narrow and wide stream
functions respectively) that is either a character of input, or the special value
EOF/WEOF (usually -1). For the narrow stream functions, it is important to store
the result of these functions in a variable of type int instead of char, even when
you plan to use it only as a character. Storing EOF in a char variable truncates its
value to the size of a character, so that it is no longer distinguishable from the valid
character ‘(char) -1’. So always use an int for the result of getc and friends,
and check for EOF after the call; once you have verified that the result is not EOF,
you can be sure that it will fit in a ‘char’ variable without loss of information.

Functionint fgetc (FILE *stream)
This function reads the next character as an unsigned char from the stream
stream and returns its value, converted to an int. If an end-of-file condition or
read error occurs, EOF is returned instead.

Functionwint_t fgetwc (FILE *stream)
This function reads the next wide character from the stream stream and returns
its value. If an end-of-file condition or read error occurs, WEOF is returned
instead.

Functionint fgetc unlocked (FILE *stream)
The fgetc_unlocked function is equivalent to the fgetc function, except
that it does not implicitly lock the stream.

Functionwint_t fgetwc unlocked (FILE *stream)
The fgetwc_unlocked function is equivalent to the fgetwc function, ex-
cept that it does not implicitly lock the stream.
This function is a GNU extension.

Functionint getc (FILE *stream)
This is just like fgetc, except that it is permissible (and typical) for it to be
implemented as a macro that evaluates the stream argument more than once.
getc is often highly optimized, so it is usually the best function to use to read
a single character.

454 The GNU C Library: Application Fundamentals

Functionwint_t getwc (FILE *stream)
This is just like fgetwc, except that it is permissible for it to be implemented
as a macro that evaluates the stream argument more than once. getwc can be
highly optimized, so it is usually the best function to use to read a single wide
character.

Functionint getc unlocked (FILE *stream)
The getc_unlocked function is equivalent to the getc function, except that
it does not implicitly lock the stream.

Functionwint_t getwc unlocked (FILE *stream)
The getwc_unlocked function is equivalent to the getwc function, except
that it does not implicitly lock the stream.
This function is a GNU extension.

Functionint getchar (void)
The getchar function is equivalent to getc with stdin as the value of the
stream argument.

Functionwint_t getwchar (void)
The getwchar function is equivalent to getwc with stdin as the value of
the stream argument.

Functionint getchar unlocked (void)
The getchar_unlocked function is equivalent to the getchar function,
except that it does not implicitly lock the stream.

Functionwint_t getwchar unlocked (void)
The getwchar_unlocked function is equivalent to the getwchar func-
tion, except that it does not implicitly lock the stream.
This function is a GNU extension.

Here is an example of a function that does input using fgetc. It would work just
as well using getc instead, or using getchar () instead of fgetc (stdin).
The code would also work the same for the wide-character stream functions.

int

y_or_n_p (const char *question)

{

fputs (question, stdout);

while (1)

{

int c, answer;

/* Write a space to separate answer from question. */

fputc (’ ’, stdout);

/* Read the first character of the line.

Chapter 17: Input/Output on Streams 455

This should be the answer character, but might not be. */

c = tolower (fgetc (stdin));

answer = c;

/* Discard rest of input line. */

while (c != ’\n’ && c != EOF)

c = fgetc (stdin);

/* Obey the answer if it was valid. */

if (answer == ’y’)

return 1;

if (answer == ’n’)

return 0;

/* Answer was invalid. Ask for valid answer. */

fputs ("Please answer y or n:", stdout);

}

}

Functionint getw (FILE *stream)
This function reads a word (that is, an int) from stream. It’s provided for com-
patibility with SVID. We recommend you use fread instead (see Section 17.11
[Block Input/Output], page 459). Unlike getc, any int value could be a valid
result. getw returns EOF when it encounters end-of-file or an error, but there is
no way to distinguish this from an input word with value -1.

17.9 Line-Oriented Input
Since many programs interpret input on the basis of lines, it is convenient to have

functions to read a line of text from a stream.
Standard C has functions to do this, but they aren’t very safe: null characters

and even (for gets) long lines can confuse them. So the GNU library provides the
nonstandard getline function that makes it easy to read lines reliably.

Another GNU extension, getdelim, generalizes getline. It reads a delimited
record, defined as everything through the next occurrence of a specified delimiter
character.

All these functions are declared in ‘stdio.h’.

Functionssize_t getline (char **lineptr, size_t *n, FILE
*stream)

This function reads an entire line from stream, storing the text (including the
newline and a terminating null character) in a buffer and storing the buffer ad-
dress in *lineptr .
Before calling getline, you should place in *lineptr the address of a buffer
*n bytes long, allocated with malloc. If this buffer is long enough to hold the
line, getline stores the line in this buffer. Otherwise, getline makes the
buffer bigger using realloc, storing the new buffer address back in *lineptr

456 The GNU C Library: Application Fundamentals

and the increased size back in *n (see Section 3.2.2 [Unconstrained Allocation],
page 42).
If you set *lineptr to a null pointer, and *n to zero, before the call, then
getline allocates the initial buffer for you by calling malloc.
In either case, when getline returns, *lineptr is a char * that points to the
text of the line.
When getline is successful, it returns the number of characters read (includ-
ing the newline, but not including the terminating null). This value enables you
to distinguish null characters that are part of the line from the null character
inserted as a terminator.
This function is a GNU extension, but it is the recommended way to read lines
from a stream. The alternative standard functions are unreliable.
If an error occurs or end of file is reached without any bytes read, getline
returns -1.

Functionssize_t getdelim (char **lineptr, size_t *n, int
delimiter, FILE *stream)

This function is like getline, except that the character that tells it to stop
reading is not necessarily newline. The argument delimiter specifies the delim-
iter character; getdelim keeps reading until it sees that character (or end of
file).
The text is stored in lineptr, including the delimiter character and a terminating
null. Like getline, getdelim makes lineptr bigger if it isn’t big enough.
getline is in fact implemented in terms of getdelim, just like this:

ssize_t

getline (char **lineptr, size_t *n, FILE *stream)

{

return getdelim (lineptr, n, ’\n’, stream);

}

Functionchar * fgets (char *s, int count, FILE *stream)
The fgets function reads characters from the stream stream up to and includ-
ing a newline character and stores them in the string s, adding a null character
to mark the end of the string. You must supply count characters worth of space
in s, but the number of characters read is at most count − 1. The extra character
space is used to hold the null character at the end of the string.
If the system is already at end of file when you call fgets, then the contents of
the array s are unchanged and a null pointer is returned. A null pointer is also
returned if a read error occurs. Otherwise, the return value is the pointer s.
Warning: If the input data has a null character, you can’t tell. So don’t use
fgets unless you know the data cannot contain a null. Don’t use it to read
files edited by the user because, if the user inserts a null character, you should
either handle it properly or print a clear error message. We recommend using
getline instead of fgets.

Chapter 17: Input/Output on Streams 457

Functionwchar_t * fgetws (wchar_t *ws, int count, FILE
*stream)

The fgetws function reads wide characters from the stream stream up to and
including a newline character and stores them in the string ws, adding a null
wide character to mark the end of the string. You must supply count wide-
characters worth of space in ws, but the number of characters read is at most
count − 1. The extra character space is used to hold the null wide character at
the end of the string.

If the system is already at end of file when you call fgetws, then the contents
of the array ws are unchanged and a null pointer is returned. A null pointer is
also returned if a read error occurs. Otherwise, the return value is the pointer
ws.

Warning: If the input data has a null wide character (which are null bytes in the
input stream), you can’t tell. So don’t use fgetws unless you know the data
cannot contain a null. Don’t use it to read files edited by the user because, if the
user inserts a null character, you should either handle it properly or print a clear
error message.

Functionchar * fgets unlocked (char *s, int count, FILE *stream)
The fgets_unlocked function is equivalent to the fgets function, except
that it does not implicitly lock the stream.

This function is a GNU extension.

Functionwchar_t * fgetws unlocked (wchar_t *ws, int count,
FILE *stream)

The fgetws_unlocked function is equivalent to the fgetws function, ex-
cept that it does not implicitly lock the stream.

This function is a GNU extension.

Deprecated functionchar * gets (char *s)
The function gets reads characters from the stream stdin up to the next
newline character, and stores them in the string s. The newline character is
discarded (note that this differs from the behavior of fgets, which copies the
newline character into the string). If gets encounters a read error or end of file,
it returns a null pointer. Otherwise, it returns s.

Warning: The gets function is very dangerous because it provides no protec-
tion against overflowing the string s. The GNU library includes it for compat-
ibility only. You should always use fgets or getline instead. To remind
you of this, the linker (if using GNU ld) will issue a warning whenever you use
gets.

458 The GNU C Library: Application Fundamentals

17.10 Unreading
In parser programs, it is often useful to examine the next character in the input

stream without removing it from the stream. This is called peeking ahead at the
input because your program gets a glimpse of the input it will read next.

Using stream I/O, you can peek ahead at input by first reading it and then un-
reading it (also called pushing it back on the stream). Unreading a character makes
it available to be input again from the stream, by the next call to fgetc or other
input function on that stream.

17.10.1 What Unreading Means

Here is a pictorial explanation of unreading. Suppose you have a stream reading
a file that contains just six characters, the letters ‘foobar’. Suppose you have read
three characters so far. The situation looks like this:

f o o b a r

ˆ

so the next input character will be ‘b’.
If instead of reading ‘b’, you unread the letter ‘o’, you get a situation like this:

f o o b a r

|

o--

ˆ

so that the next input characters will be ‘o’ and ‘b’.
If you unread ‘9’ instead of ‘o’, you get this situation:

f o o b a r

|

9--

ˆ

so that the next input characters will be ‘9’ and ‘b’.

17.10.2 Using ungetc to Do Unreading

The function to unread a character is called ungetc, because it reverses the
action of getc.

Functionint ungetc (int c, FILE *stream)
The ungetc function pushes back the character c onto the input stream stream.
So the next input from stream will read c before anything else.
If c is EOF, ungetc does nothing and just returns EOF. This lets you call
ungetc with the return value of getc without needing to check for an error
from getc.
The character that you push back doesn’t have to be the same as the last charac-
ter that was actually read from the stream. In fact, it isn’t necessary to actually

Chapter 17: Input/Output on Streams 459

read any characters from the stream before unreading them with ungetc! But
that is a strange way to write a program; usually ungetc is used only to un-
read a character that was just read from the same stream. The GNU C Library
supports this even on files opened in binary mode, but other systems might not.
The GNU C Library only supports one character of push back—in other words,
it does not work to call ungetc twice without doing input in between. Other
systems might let you push back multiple characters; then reading from the
stream retrieves the characters in the reverse order that they were pushed.
Pushing back characters doesn’t alter the file; only the internal buffering for
the stream is affected. If a file-positioning function (such as fseek, fseeko
or rewind) is called, any pending pushed-back characters are discarded (see
Section 17.18 [File Positioning], page 500).
Unreading a character on a stream that is at end of file clears the end-of-file
indicator for the stream, because it makes the character of input available. After
you read that character, trying to read again will encounter end of file.

Functionwint_t ungetwc (wint_t wc, FILE *stream)
The ungetwc function behaves just like ungetc just that it pushes back a
wide character.

Here is an example showing the use of getc and ungetc to skip over white-
space characters. When this function reaches a non-white-space character, it un-
reads that character to be seen again on the next read operation on the stream:

#include <stdio.h>

#include <ctype.h>

void

skip_whitespace (FILE *stream)

{

int c;

do

/* No need to check for EOF because it is not

isspace, and ungetc ignores EOF. */

c = getc (stream);

while (isspace (c));

ungetc (c, stream);

}

17.11 Block Input/Output
This section describes how to do input and output operations on blocks of data.

You can use these functions to read and write binary data, as well as to read and
write text in fixed-size blocks instead of by characters or lines.

Binary files are typically used to read and write blocks of data in the same format
as is used to represent the data in a running program. In other words, arbitrary

460 The GNU C Library: Application Fundamentals

blocks of memory—not just character or string objects—can be written to a binary
file, and meaningfully read in again by the same program.

Storing data in binary form is often considerably more efficient than using the
formatted I/O functions. Also, for floating-point numbers, the binary form avoids
possible loss of precision in the conversion process. On the other hand, binary files
can’t be examined or modified easily using many standard file utilities (such as text
editors), and are not portable between different implementations of the language,
or different kinds of computers.

These functions are declared in ‘stdio.h’.

Functionsize_t fread (void *data, size_t size, size_t count,
FILE *stream)

This function reads up to count objects of size size into the array data, from
the stream stream. It returns the number of objects actually read, which might
be less than count if a read error occurs or the end of the file is reached. This
function returns a value of zero (and doesn’t read anything) if either size or
count is zero.
If fread encounters end of file in the middle of an object, it returns the number
of complete objects read, and discards the partial object. Therefore, the stream
remains at the actual end of the file.

Functionsize_t fread unlocked (void *data, size_t size, size_t
count, FILE *stream)

The fread_unlocked function is equivalent to the fread function, except
that it does not implicitly lock the stream.
This function is a GNU extension.

Functionsize_t fwrite (const void *data, size_t size, size_t
count, FILE *stream)

This function writes up to count objects of size size from the array data, to the
stream stream. The return value is normally count, if the call succeeds. Any
other value indicates some sort of error, such as running out of space.

Functionsize_t fwrite unlocked (const void *data, size_t size,
size_t count, FILE *stream)

The fwrite_unlocked function is equivalent to the fwrite function, ex-
cept that it does not implicitly lock the stream.
This function is a GNU extension.

17.12 Formatted Output
The functions described in this section (printf and related functions) provide

a convenient way to perform formatted output. You call printf with a format
string or template string that specifies how to format the values of the remaining
arguments.

Chapter 17: Input/Output on Streams 461

Unless your program is a filter that specifically performs line- or character-
oriented processing, using printf or one of the other related functions described
in this section is usually the easiest and most concise way to perform output. These
functions are especially useful for printing error messages, tables of data, and the
like.

17.12.1 Formatted Output Basics

The printf function can be used to print any number of arguments. The tem-
plate string argument you supply in a call provides information not only about the
number of additional arguments, but also about their types and what style should
be used for printing them.

Ordinary characters in the template string are simply written to the output stream
as-is, while conversion specifications introduced by a ‘%’ character in the template
cause subsequent arguments to be formatted and written to the output stream. For
example:

int pct = 37;

char filename[] = "foo.txt";

printf ("Processing of ‘%s’ is %d%% finished.\nPlease be patient.\n",

filename, pct);

produces output like:
Processing of ‘foo.txt’ is 37% finished.

Please be patient.

This example shows the use of the ‘%d’ conversion to specify that an int argu-
ment should be printed in decimal notation, the ‘%s’ conversion to specify printing
of a string argument, and the ‘%%’ conversion to print a literal ‘%’ character.

There are also conversions for printing an integer argument as an unsigned value
in octal, decimal, or hexadecimal radix (‘%o’, ‘%u’, or ‘%x’, respectively); or as a
character value (‘%c’).

Floating-point numbers can be printed in normal, fixed-point notation using the
‘%f’ conversion or in exponential notation using the ‘%e’ conversion. The ‘%g’
conversion uses either ‘%e’ or ‘%f’ format, depending on what is more appropriate
for the magnitude of the particular number.

You can control formatting more precisely by writing modifiers between the ‘%’
and the character that indicates which conversion to apply. These slightly alter the
ordinary behavior of the conversion. For example, most conversion specifications
permit you to specify a minimum field width and a flag indicating whether you
want the result left- or right-justified within the field.

The specific flags and modifiers that are permitted and their interpretation vary
depending on the particular conversion. They’re all described in more detail in the
following sections. Don’t worry if this all seems excessively complicated at first;
you can almost always get reasonable free-format output without using any of the
modifiers at all. The modifiers are mostly used to make the output look “prettier”
in tables.

462 The GNU C Library: Application Fundamentals

17.12.2 Output Conversion Syntax

This section provides details about the precise syntax of conversion specifica-
tions that can appear in a printf template string.

Characters in the template string that are not part of a conversion specification
are printed as-is to the output stream. Multibyte-character sequences (see Chapter 6
[Character-Set Handling], page 133) are permitted in a template string.

The conversion specifications in a printf template string have the general
form:

% [param-no $] flags width [. precision] type conversion

or
% [param-no $] flags width . * [param-no $] type conversion

For example, in the conversion specifier ‘%-10.8ld’, the ‘-’ is a flag, ‘10’
specifies the field width, the precision is ‘8’, the letter ‘l’ is a type modifier, and ‘d’
specifies the conversion style. (This particular type specifier says to print a long
int argument in decimal notation, with a minimum of eight digits left-justified in
a field at least ten characters wide.)

In more detail, output conversion specifications consist of an initial ‘%’ character
followed in sequence by:

• An optional specification of the parameter used for this format. Normally, the
parameters to the printf function are assigned to the formats in the order of
appearance in the format string. But in some situations (such as message trans-
lation), this is not desirable, and this extension allows an explicit parameter to
be specified.
The param-no parts of the format must be integers in the range of 1 to the
maximum number of arguments present to the function call. Some implemen-
tations limit this number to a certainly upper bound. The exact limit can be
retrieved by the following constant.

MacroNL ARGMAX
The value of NL_ARGMAX is the maximum value allowed for the speci-
fication of a positional parameter in a printf call. The actual value in
effect at run time can be retrieved by using sysconf using the _SC_NL_
ARGMAX parameter.8

Some systems have quite a low limit, such as 9 for System V systems. The
GNU C Library has no real limit.

If any of the formats has a specification for the parameter position, all of them
in the format string shall have one. Otherwise, the behavior is undefined.

• Zero or more flag characters that modify the normal behavior of the conversion
specification

8 Ibid., “Definition of sysconf”.

Chapter 17: Input/Output on Streams 463

• An optional decimal integer specifying the minimum field width ; if the normal
conversion produces fewer characters than this, the field is padded with spaces
to the specified width. This is a minimum value; if the normal conversion
produces more characters than this, the field is not truncated. Normally, the
output is right-justified within the field.
You can also specify a field width of ‘*’. This means that the next argument
in the argument list (before the actual value to be printed) is used as the field
width. The value must be an int. If the value is negative, this means to set
the ‘-’ flag (see below), and to use the absolute value as the field width.

• An optional precision to specify the number of digits to be written for the
numeric conversions; if the precision is specified, it consists of a period (‘.’)
followed optionally by a decimal integer (which defaults to zero if omitted).
You can also specify a precision of ‘*’. This means that the next argument in
the argument list (before the actual value to be printed) is used as the precision.
The value must be an int, and is ignored if it is negative. If you specify ‘*’
for both the field width and precision, the field width argument precedes the
precision argument. Other C library versions may not recognize this syntax.

• An optional type modifier character, which is used to specify the data type of
the corresponding argument if it differs from the default type; for example, the
integer conversions assume a type of int, but you can specify ‘h’, ‘l’, or ‘L’
for other integer types.

• A character that specifies the conversion to be applied

The exact options that are permitted and how they are interpreted vary between
the different conversion specifiers. See the descriptions of the individual conver-
sions for information about the particular options that they use.

With the ‘-Wformat’ option, the GNU C Compiler checks calls to printf
and related functions. It examines the format string and verifies that the correct
number and types of arguments are supplied. There is also a GNU C syntax to tell
the compiler that a function you write uses a printf-style format string.9

17.12.3 Table of Output Conversions

Here is a table summarizing what all the different conversions do:

‘%d’, ‘%i’ Print an integer as a signed decimal number (see Section 17.12.4 [In-
teger Conversions], page 465). ‘%d’ and ‘%i’ are synonymous for
output, but are different when used with scanf for input (see Sec-
tion 17.14.3 [Table of Input Conversions], page 489).

‘%o’ Print an integer as an unsigned octal number (see Section 17.12.4 [In-
teger Conversions], page 465).

9 See Richard M. Stallman and the GCC Developer Community, “Decaring Attributes of Functions”
in Using GCC: The GNU Compiler Collection Reference Manual (Boston, MA: GNU Press, Oc-
tober 2003), http:// gcc.gnu.org/ onlinedocs/ gcc-3.3.2/ gcc/.

http:// gcc.gnu.org/ onlinedocs/ gcc-3.3.2/ gcc/

464 The GNU C Library: Application Fundamentals

‘%u’ Print an integer as an unsigned decimal number (see Section 17.12.4
[Integer Conversions], page 465).

‘%x’, ‘%X’ Print an integer as an unsigned hexadecimal number. ‘%x’ uses low-
ercase letters and ‘%X’ uses uppercase (see Section 17.12.4 [Integer
Conversions], page 465).

‘%f’ Print a floating-point number in normal (fixed-point) notation (see
Section 17.12.5 [Floating-Point Conversions], page 467).

‘%e’, ‘%E’ Print a floating-point number in exponential notation. ‘%e’ uses low-
ercase letters and ‘%E’ uses uppercase (see Section 17.12.5 [Floating-
Point Conversions], page 467).

‘%g’, ‘%G’ Print a floating-point number in either normal or exponential notation,
whichever is more appropriate for its magnitude. ‘%g’ uses lowercase
letters and ‘%G’ uses uppercase (see Section 17.12.5 [Floating-Point
Conversions], page 467).

‘%a’, ‘%A’ Print a floating-point number in a hexadecimal fractional notation
which the exponent to base 2 represented in decimal digits. ‘%a’
uses lowercase letters and ‘%A’ uses uppercase (see Section 17.12.5
[Floating-Point Conversions], page 467).

‘%c’ Print a single character (see Section 17.12.6 [Other Output Conver-
sions], page 469).

‘%C’ This is an alias for ‘%lc’ that is supported for compatibility with the
Unix standard.

‘%s’ Print a string (see Section 17.12.6 [Other Output Conversions],
page 469).

‘%S’ This is an alias for ‘%ls’ that is supported for compatibility with the
Unix standard.

‘%p’ Print the value of a pointer (see Section 17.12.6 [Other Output Con-
versions], page 469).

‘%n’ Get the number of characters printed so far (see Section 17.12.6
[Other Output Conversions], page 469). This conversion specification
never produces any output.

‘%m’ Print the string corresponding to the value of errno (see Sec-
tion 17.12.6 [Other Output Conversions], page 469). This is a GNU
extension.

‘%%’ Print a literal ‘%’ character (see Section 17.12.6 [Other Output Con-
versions], page 469).

If the syntax of a conversion specification is invalid, unpredictable things will
happen, so don’t do this. If there aren’t enough function arguments provided to
supply values for all of the conversion specifications in the template string, or if

Chapter 17: Input/Output on Streams 465

the arguments are not of the correct types, the results are unpredictable. If you
supply more arguments than conversion specifications, the extra argument values
are simply ignored; this is sometimes useful.

17.12.4 Integer Conversions

This section describes the options for the ‘%d’, ‘%i’, ‘%o’, ‘%u’, ‘%x’ and ‘%X’
conversion specifications. These conversions print integers in various formats.

The ‘%d’ and ‘%i’ conversion specifications both print an int argument as a
signed decimal number; while ‘%o’, ‘%u’ and ‘%x’ print the argument as an un-
signed octal, decimal, or hexadecimal number, respectively. The ‘%X’ conversion
specification is just like ‘%x’, except that it uses the characters ‘ABCDEF’ as digits
instead of ‘abcdef’.

The following flags are meaningful:

‘-’ Left-justify the result in the field (instead of the normal
right-justification).

‘+’ For the signed ‘%d’ and ‘%i’ conversions, print a plus sign if the value
is positive.

‘ ’ For the signed ‘%d’ and ‘%i’ conversions, if the result doesn’t start
with a plus or minus sign, prefix it with a space character instead.
Since the ‘+’ flag ensures that the result includes a sign, this flag is
ignored if you supply both of them.

‘#’ For the ‘%o’ conversion, this forces the leading digit to be ‘0’, as if by
increasing the precision. For ‘%x’ or ‘%X’, this prefixes a leading ‘0x’
or ‘0X’, respectively, to the result. This doesn’t do anything useful for
the ‘%d’, ‘%i’, or ‘%u’ conversions. Using this flag produces out-
put that can be parsed by the strtoul function (see Section 9.11.1
[Parsing of Integers], page 268) and scanf with the ‘%i’ conversion
(see Section 17.14.4 [Numeric Input Conversions], page 490).

‘’’ Separate the digits into groups as specified by the locale specified for
the LC_NUMERIC category (see Section 7.6.1.1 [Generic Numeric
Formatting Parameters], page 187). This flag is a GNU extension.

‘0’ Pad the field with zeros instead of spaces. The zeros are placed after
any indication of sign or base. This flag is ignored if the ‘-’ flag is
also specified, or if a precision is specified.

If a precision is supplied, it specifies the minimum number of digits to appear;
leading zeros are produced if necessary. If you don’t specify a precision, the num-
ber is printed with as many digits as it needs. If you convert a value of zero with an
explicit precision of zero, then no characters at all are produced.

Without a type modifier, the corresponding argument is treated as an int (for
the signed conversions ‘%i’ and ‘%d’) or unsigned int (for the unsigned con-
versions ‘%o’, ‘%u’, ‘%x’ and ‘%X’). Recall that since printf and friends are

466 The GNU C Library: Application Fundamentals

variadic, any char and short arguments are automatically converted to int by
the default argument promotions. For arguments of other integer types, you can use
these modifiers:

‘hh’ This modifier specifies that the argument is a signed char or
unsigned char, as appropriate. A char argument is converted
to an int or unsigned int by the default argument promotions
anyway, but the ‘h’ modifier says to convert it back to a char again.
This modifier was introduced in ISO C99.

‘h’ This modifier specifies that the argument is a short int or
unsigned short int, as appropriate. A short argument is
converted to an int or unsigned int by the default argument
promotions anyway, but the ‘h’ modifier says to convert it back to a
short again.

‘j’ This modifier specifies that the argument is an intmax_t or
uintmax_t, as appropriate.
It was introduced in ISO C99.

‘l’ This modifier specifies that the argument is a long int or
unsigned long int, as appropriate. Two ‘l’ characters is like
the ‘L’ modifier, below.
If used with ‘%c’ or ‘%s’, the corresponding parameter is considered
as a wide character or wide-character string respectively. This use of
‘l’ was introduced in Amendment 1 to ISO C90.

‘L’
‘ll’
‘q’ This modifier specifies that the argument is a long long int. (This

type is an extension supported by the GNU C Compiler. On systems
that don’t support extra-long integers, this is the same as long int.)
The ‘q’ modifier is another name for the same thing, which comes
from 4.4 BSD; a long long int is sometimes called a quad int.

‘t’ This modifier specifies that the argument is a ptrdiff_t.
It was introduced in ISO C99.

‘z’
‘Z’ This modifier specifies that the argument is a size_t.

‘z’ was introduced in ISO C99. ‘Z’ is a GNU extension pre-dating this
addition and should not be used in new code.

Here is an example. Using the template string:
"|%5d|%-5d|%+5d|%+-5d|% 5d|%05d|%5.0d|%5.2d|%d|\n"

to print numbers using the different options for the ‘%d’ conversion gives results
like:

Chapter 17: Input/Output on Streams 467

| 0|0 | +0|+0 | 0|00000| | 00|0|

| 1|1 | +1|+1 | 1|00001| 1| 01|1|

| -1|-1 | -1|-1 | -1|-0001| -1| -01|-1|

|100000|100000|+100000|+100000| 100000|100000|100000|100000|100000|

In particular, notice what happens in the last case where the number is too large
to fit in the minimum field width specified.

Here are some more examples showing how unsigned integers print under vari-
ous format options, using the template string:

"|%5u|%5o|%5x|%5X|%#5o|%#5x|%#5X|%#10.8x|\n"

| 0| 0| 0| 0| 0| 0| 0| 00000000|

| 1| 1| 1| 1| 01| 0x1| 0X1|0x00000001|

|100000|303240|186a0|186A0|0303240|0x186a0|0X186A0|0x000186a0|

17.12.5 Floating-Point Conversions

This section discusses the conversion specifications for floating-point numbers:
the ‘%f’, ‘%e’, ‘%E’, ‘%g’ and ‘%G’ conversions.

The ‘%f’ conversion prints its argument in fixed-point notation, producing output
of the form [-]ddd.ddd , where the number of digits following the decimal point
is controlled by the precision you specify.

The ‘%e’ conversion prints its argument in exponential notation, producing out-
put of the form [-]d.ddde[+|-]dd . Again, the number of digits following the
decimal point is controlled by the precision. The exponent always contains at least
two digits. The ‘%E’ conversion is similar, but the exponent is marked with the
letter ‘E’ instead of ‘e’.

The ‘%g’ and ‘%G’ conversions print the argument in the style of ‘%e’ or ‘%E’,
respectively, if the exponent would be less than -4 or greater than or equal to the
precision. Otherwise, they use the ‘%f’ style. A precision of 0, is taken as 1. is
Trailing zeros are removed from the fractional portion of the result, and a decimal-
point character appears only if it is followed by a digit.

The ‘%a’ and ‘%A’ conversions are meant for representing floating-point num-
bers exactly in textual form so that they can be exchanged as texts between
different programs and/or machines. The numbers are represented in the form
[-]0xh.hhhp[+|-]dd . At the left of the decimal-point character exactly one digit
is printed. This character is only 0 if the number is de-normalized. Otherwise, the
value is unspecified; it is implementation dependent how many bits are used. The
number of hexadecimal digits on the right side of the decimal-point character is
equal to the precision. If the precision is zero, it is determined to be large enough
to provide an exact representation of the number or it is large enough to distinguish
two adjacent values if the FLT_RADIX is not a power of 2.10 For the ‘%a’ conver-
sion, lowercase characters are used to represent the hexadecimal number, and the
prefix and exponent sign are printed as 0x and p respectively. Otherwise, upper-
case characters are used, and 0X and P are used for the representation of prefix and
10 Ibid., “Floating-Point Parameters”.

468 The GNU C Library: Application Fundamentals

exponent string. The exponent to the base of two is printed as a decimal number
using at least one digit but at most as many digits as necessary to represent the value
exactly.

If the value to be printed represents infinity or a NaN, the output is [-]inf or
nan, respectively, if the conversion specifier is ‘%a’, ‘%e’, ‘%f’ or ‘%g’. The
output is [-]INF or NAN, respectively, if the conversion is ‘%A’, ‘%E’ or ‘%G’.

The following flags can be used to modify the behavior:

‘-’ Left-justify the result in the field. Normally the result is right-justified.

‘+’ Always include a plus or minus sign in the result.

‘ ’ If the result doesn’t start with a plus or minus sign, prefix it with a
space instead. Since the ‘+’ flag ensures that the result includes a
sign, this flag is ignored if you supply both of them.

‘#’ Specify that the result should always include a decimal point, even if
no digits follow it. For the ‘%g’ and ‘%G’ conversions, this also forces
trailing zeros after the decimal point to be left in place where they
would otherwise be removed.

‘’’ Separate the digits of the integer part of the result into groups as
specified by the locale specified for the LC_NUMERIC category (see
Section 7.6.1.1 [Generic Numeric Formatting Parameters], page 187).
This flag is a GNU extension.

‘0’ Pad the field with zeros instead of spaces; the zeros are placed after
any sign. This flag is ignored if the ‘-’ flag is also specified.

The precision specifies how many digits follow the decimal-point character for
the ‘%f’, ‘%e’ and ‘%E’ conversions. For these conversions, the default precision
is 6. If the precision is explicitly 0, this suppresses the decimal-point character
entirely. For the ‘%g’ and ‘%G’ conversions, the precision specifies how many
significant digits to print. Significant digits are the first digit before the decimal
point and all the digits after it. If the precision is 0 or not specified for ‘%g’ or
‘%G’, it is treated like a value of 1. If the value being printed cannot be expressed
accurately in the specified number of digits, the value is rounded to the nearest
number that fits.

Without a type modifier, the floating-point conversions use an argument of type
double. (By the default argument promotions, any float arguments are auto-
matically converted to double.) The following type modifier is supported:

‘L’ An uppercase ‘L’ specifies that the argument is a long double.

Here are some examples showing how numbers print using the various floating-
point conversions. All of the numbers were printed using this template string:

"|%13.4a|%13.4f|%13.4e|%13.4g|\n"

Here is the output:
| 0x0.0000p+0| 0.0000| 0.0000e+00| 0|

| 0x1.0000p-1| 0.5000| 5.0000e-01| 0.5|

Chapter 17: Input/Output on Streams 469

| 0x1.0000p+0| 1.0000| 1.0000e+00| 1|

| -0x1.0000p+0| -1.0000| -1.0000e+00| -1|

| 0x1.9000p+6| 100.0000| 1.0000e+02| 100|

| 0x1.f400p+9| 1000.0000| 1.0000e+03| 1000|

| 0x1.3880p+13| 10000.0000| 1.0000e+04| 1e+04|

| 0x1.81c8p+13| 12345.0000| 1.2345e+04| 1.234e+04|

| 0x1.86a0p+16| 100000.0000| 1.0000e+05| 1e+05|

| 0x1.e240p+16| 123456.0000| 1.2346e+05| 1.235e+05|

Notice how the ‘%g’ conversion drops trailing zeros.

17.12.6 Other Output Conversions

This section describes miscellaneous conversions for printf.
The ‘%c’ conversion prints a single character. In case there is no ‘l’ modifier, the

int argument is first converted to an unsigned char. Then, if used in a wide
stream function, the character is converted into the corresponding wide character.
The ‘-’ flag can be used to specify left-justification in the field, but no other flags
are defined, and no precision or type modifier can be given. For example:

printf ("%c%c%c%c%c", ’h’, ’e’, ’l’, ’l’, ’o’);

prints ‘hello’.
If there is a ‘l’ modifier present, the argument is expected to be of type wint_

t. If used in a multibyte function, the wide character is converted into a multibyte
character before being added to the output. In this case, more than 1 output byte
can be produced.

The ‘%s’ conversion prints a string. If no ‘l’ modifier is present, the corre-
sponding argument must be of type char * (or const char *). If used in a wide
stream function the string is first converted in a wide-character string. A precision
can be specified to indicate the maximum number of characters to write. Other-
wise, characters in the string up to but not including the terminating null character
are written to the output stream. The ‘-’ flag can be used to specify left-justification
in the field, but no other flags or type modifiers are defined for this conversion. For
example:

printf ("%3s%-6s", "no", "where");

prints ‘ nowhere ’.
If there is a ‘l’ modifier present, the argument is expected to be of type wchar_

t (or const wchar_t *).
If you accidentally pass a null pointer as the argument for a ‘%s’ conversion, the

GNU library prints it as ‘(null)’. We think this is more useful than crashing. But
it’s not good practice to pass a null argument intentionally.

The ‘%m’ conversion prints the string corresponding to the error code in errno
(see Section 2.3 [Error Messages], page 32). Thus:

fprintf (stderr, "can’t open ‘%s’: %m\n", filename);

is equivalent to:

470 The GNU C Library: Application Fundamentals

fprintf (stderr, "can’t open ‘%s’: %s\n", filename, strerror (errno));

The ‘%m’ conversion is a GNU C Library extension.
The ‘%p’ conversion prints a pointer value. The corresponding argument must

be of type void *. In practice, you can use any type of pointer.
In the GNU system, nonnull pointers are printed as unsigned integers, as if a

‘%#x’ conversion were used. Null pointers print as ‘(nil)’. (Pointers might print
differently in other systems.)

For example:
printf ("%p", "testing");

prints ‘0x’ followed by a hexadecimal number—the address of the string constant
"testing". It does not print the word ‘testing’.

You can supply the ‘-’ flag with the ‘%p’ conversion to specify left-justification,
but no other flags, precision, or type modifiers are defined.

The ‘%n’ conversion is unlike any of the other output conversions. It uses an
argument that must be a pointer to an int, but instead of printing anything, it
stores the number of characters printed so far by this call at that location. The ‘h’
and ‘l’ type modifiers are permitted to specify that the argument is of type short
int * or long int * instead of int *, but no flags, field width, or precision are
permitted.

For example:
int nchar;

printf ("%d %s%n\n", 3, "bears", &nchar);

prints:
3 bears

and sets nchar to 7, because ‘3 bears’ is seven characters.
The ‘%%’ conversion prints a literal ‘%’ character. This conversion doesn’t use an

argument, and no flags, field width, precision, or type modifiers are permitted.

17.12.7 Formatted Output Functions

This section describes how to call printf and related functions. Prototypes for
these functions are in the header file ‘stdio.h’. Because these functions take a
variable number of arguments, you must declare prototypes for them before using
them. Of course, the easiest way to make sure you have all the right prototypes is
to just include ‘stdio.h’.

Functionint printf (const char *template, ...)
The printf function prints the optional arguments under the control of the
template string template to the stream stdout. It returns the number of char-
acters printed, or a negative value if there was an output error.

Chapter 17: Input/Output on Streams 471

Functionint wprintf (const wchar_t *template, ...)
The wprintf function prints the optional arguments under the control of the
wide template string template to the stream stdout. It returns the number of
wide characters printed, or a negative value if there was an output error.

Functionint fprintf (FILE *stream, const char *template, ...)
This function is just like printf, except that the output is written to the stream
stream instead of stdout.

Functionint fwprintf (FILE *stream, const wchar_t *template,
...)

This function is just like wprintf, except that the output is written to the
stream stream instead of stdout.

Functionint sprintf (char *s, const char *template, ...)
This is like printf, except that the output is stored in the character array s
instead of written to a stream. A null character is written to mark the end of the
string.
The sprintf function returns the number of characters stored in the array s,
not including the terminating null character.
The behavior of this function is undefined if copying takes place between objects
that overlap—for example, if s is also given as an argument to be printed under
control of the ‘%s’ conversion (see Section 5.4 [Copying and Concatenation],
page 93).
Warning: The sprintf function can be dangerous because it can potentially
output more characters than can fit in the allocation size of the string s. Remem-
ber that the field width given in a conversion specification is only a minimum
value.
To avoid this problem, you can use snprintf or asprintf, described below.

Functionint swprintf (wchar_t *s, size_t size, const wchar_t
*template, ...)

This is like wprintf, except that the output is stored in the wide-character
array ws instead of written to a stream. A null wide character is written to
mark the end of the string. The size argument specifies the maximum number
of characters to produce. The trailing null character is counted toward this limit,
so you should allocate at least size wide characters for the string ws.
The return value is the number of characters generated for the given input, ex-
cluding the trailing null. If not all output fits into the provided buffer, a negative
value is returned. You should try again with a bigger output string. This is
different from how snprintf handles this situation.
The corresponding narrow stream function takes fewer parameters. swprintf
in fact corresponds to the snprintf function. Since the sprintf function
can be dangerous and should be avoided, the ISO C committee refused to make

472 The GNU C Library: Application Fundamentals

the same mistake again and decided to not define a function exactly correspond-
ing to sprintf.

Functionint snprintf (char *s, size_t size, const char
*template, ...)

The snprintf function is similar to sprintf, except that the size argument
specifies the maximum number of characters to produce. The trailing null char-
acter is counted toward this limit, so you should allocate at least size characters
for the string s.
The return value is the number of characters that would be generated for the
given input, excluding the trailing null. If this value is greater or equal to size,
not all characters from the result have been stored in s. You should try again
with a bigger output string. Here is an example of doing this:

/* Construct a message describing the value of a variable

whose name is name and whose value is value. */

char *

make_message (char *name, char *value)

{

/* Guess we need no more than 100 chars of space. */

int size = 100;

char *buffer = (char *) xmalloc (size);

int nchars;

if (buffer == NULL)

return NULL;

/* Try to print in the allocated space. */

nchars = snprintf (buffer, size, "value of %s is %s",

name, value);

if (nchars >= size)

{

/* Reallocate buffer now that we know

how much space is needed. */

buffer = (char *) xrealloc (buffer, nchars + 1);

if (buffer != NULL)

/* Try again. */

snprintf (buffer, size, "value of %s is %s",

name, value);

}

Chapter 17: Input/Output on Streams 473

/* The last call worked, return the string. */

return buffer;

}

In practice, it is often easier just to use asprintf (see Section 17.12.8 [Dy-
namically Allocating Formatted Output], page 473).
Attention: In versions of the GNU C Library prior to 2.1, the return value is
the number of characters stored, not including the terminating null; unless there
was not enough space in s to store the result, in which case -1 is returned. This
was changed in order to comply with the ISO C99 standard.

17.12.8 Dynamically Allocating Formatted Output

The functions in this section do formatted output and place the results in dynam-
ically allocated memory.

Functionint asprintf (char **ptr, const char *template, ...)
This function is similar to sprintf, except that it dynamically allocates a
string (as with malloc; see Section 3.2.2 [Unconstrained Allocation], page 42)
to hold the output, instead of putting the output in a buffer you allocate in
advance. The ptr argument should be the address of a char * object, and
asprintf stores a pointer to the newly allocated string at that location.
The return value is the number of characters allocated for the buffer, or less
than zero if an error occurred. Usually this means that the buffer could not be
allocated.
Here is how to use asprintf to get the same result as the snprintf exam-
ple, but more easily:

/* Construct a message describing the value of a variable

whose name is name and whose value is value. */

char *

make_message (char *name, char *value)

{

char *result;

if (asprintf (&result, "value of %s is %s", name, value) < 0)

return NULL;

return result;

}

Functionint obstack printf (struct obstack *obstack, const
char *template, ...)

This function is similar to asprintf, except that it uses the obstack obstack
to allocate the space (see Section 3.2.4 [Obstacks], page 59).
The characters are written onto the end of the current object. To get at them, you
must finish the object with obstack_finish (see Section 3.2.4.6 [Growing
Objects], page 64).

474 The GNU C Library: Application Fundamentals

17.12.9 Variable Arguments Output Functions

The functions vprintf and friends are provided so that you can define your
own variadic printf-like functions that make use of the same internals as the
built-in formatted output functions.

The most natural way to define such functions would be to use a language con-
struct to say, “Call printf and pass this template plus all of my arguments after
the first five.” But there is no way to do this in C, and it would be hard to provide
a way, since at the C language level, there is no way to tell how many arguments
your function received.

Since that method is impossible, we provide alternative functions, the vprintf
series, which lets you pass a va_list to describe “all of my arguments after the
first five.”

When it is sufficient to define a macro rather than a real function, the GNU C
Compiler provides a way to do this much more easily with macros.11

For example:
#define myprintf(a, b, c, d, e, rest...) \

printf (mytemplate , ## rest)

See section “Macros with Variable Numbers of Arguments” in Using GNU CC , for
details. But this is limited to macros, and does not apply to real functions at all.

Before calling vprintf or the other functions listed in this section, you must
call va_start to initialize a pointer to the variable arguments.12 Then you can
call va_arg to fetch the arguments that you want to handle yourself. This ad-
vances the pointer past those arguments.

Once your va_list pointer is pointing at the argument of your choice, you are
ready to call vprintf. That argument and all subsequent arguments that were
passed to your function are used by vprintf along with the template that you
specified separately.

In some other systems, the va_list pointer may become invalid after the call
to vprintf, so you must not use va_arg after you call vprintf. Instead, you
should call va_end to retire the pointer from service. However, you can safely
call va_start on another pointer variable and begin fetching the arguments again
through that pointer. Calling vprintf does not destroy the argument list of your
function, merely the particular pointer that you passed to it.

GNU C does not have such restrictions. You can safely continue to fetch ar-
guments from a va_list pointer after passing it to vprintf, and va_end is a
no-op. Note, however, that subsequent va_arg calls will fetch the same arguments
that vprintf previously used.

Prototypes for these functions are declared in ‘stdio.h’.

11 See Richard M. Stallman and the GCC Developer Community, “Macros with a Variable Number
of Arguments” in Using GCC: The GNU Compiler Collection Reference Manual (Boston, MA:
GNU Press, October 2003), http:// gcc.gnu.org/ onlinedocs/ gcc-3.3.2/ gcc/.

12 Ibid., “Variadic Functions”.

http:// gcc.gnu.org/ onlinedocs/ gcc-3.3.2/ gcc/

Chapter 17: Input/Output on Streams 475

Functionint vprintf (const char *template, va_list ap)
This function is similar to printf except that, instead of taking a variable
number of arguments directly, it takes an argument list pointer ap.

Functionint vwprintf (const wchar_t *template, va_list ap)
This function is similar to wprintf except that, instead of taking a variable
number of arguments directly, it takes an argument list pointer ap.

Functionint vfprintf (FILE *stream, const char *template,
va_list ap)

This is the equivalent of fprintf with the variable argument list specified
directly as for vprintf.

Functionint vfwprintf (FILE *stream, const wchar_t *template,
va_list ap)

This is the equivalent of fwprintf with the variable argument list specified
directly as for vwprintf.

Functionint vsprintf (char *s, const char *template, va_list
ap)

This is the equivalent of sprintf with the variable argument list specified
directly as for vprintf.

Functionint vswprintf (wchar_t *s, size_t size, const wchar_t
*template, va_list ap)

This is the equivalent of swprintf with the variable argument list specified
directly as for vwprintf.

Functionint vsnprintf (char *s, size_t size, const char
*template, va_list ap)

This is the equivalent of snprintf with the variable argument list specified
directly as for vprintf.

Functionint vasprintf (char **ptr, const char *template,
va_list ap)

The vasprintf function is the equivalent of asprintf with the variable
argument list specified directly as for vprintf.

Functionint obstack vprintf (struct obstack *obstack, const
char *template, va_list ap)

The obstack_vprintf function is the equivalent of obstack_printf
with the variable argument list specified directly as for vprintf.

476 The GNU C Library: Application Fundamentals

Here is an example showing how you might use vfprintf. This is a function
that prints error messages to the stream stderr, along with a prefix indicating the
name of the program (see Section 2.3 [Error Messages], page 32, for a description
of program_invocation_short_name).

#include <stdio.h>

#include <stdarg.h>

void

eprintf (const char *template, ...)

{

va_list ap;

extern char *program_invocation_short_name;

fprintf (stderr, "%s: ", program_invocation_short_name);

va_start (ap, template);

vfprintf (stderr, template, ap);

va_end (ap);

}

You could call eprintf like this:
eprintf ("file ‘%s’ does not exist\n", filename);

In GNU C, there is a special construct you can use to let the compiler know that
a function uses a printf-style format string. Then it can check the number and
types of arguments in each call to the function, and warn you when they do not
match the format string. For example, take this declaration of eprintf:

void eprintf (const char *template, ...)

__attribute__ ((format (printf, 1, 2)));

This tells the compiler that eprintf uses a format string like printf (as op-
posed to scanf; see Section 17.14 [Formatted Input], page 486); the format string
appears as the first argument and the arguments to satisfy the format begin with the
second.13

17.12.10 Parsing a Template String

You can use the function parse_printf_format to obtain information
about the number and types of arguments that are expected by a given template
string. This function permits interpreters that provide interfaces to printf to
avoid passing along invalid arguments from the user’s program, which could cause
a crash.

13 See Richard M. Stallman and the GCC Developer Community, “Declaring Attributes of Func-
tions” in Using GCC: The GNU Compiler Collection Reference Manual (Boston, MA: GNU Press,
October 2003), http:// gcc.gnu.org/ onlinedocs/ gcc-3.3.2/ gcc/.

http:// gcc.gnu.org/ onlinedocs/ gcc-3.3.2/ gcc/

Chapter 17: Input/Output on Streams 477

All the symbols described in this section are declared in the header file
‘printf.h’.

Functionsize_t parse printf format (const char *template,
size_t n, int *argtypes)

This function returns information about the number and types of arguments ex-
pected by the printf template string template. The information is stored in
the array argtypes; each element of this array describes one argument. This
information is encoded using the various ‘PA_’ macros, listed below.
The argument n specifies the number of elements in the array argtypes. This is
the maximum number of elements that parse_printf_format will try to
write.
parse_printf_format returns the total number of arguments required by
template. If this number is greater than n, then the information returned de-
scribes only the first n arguments. If you want information about additional
arguments, allocate a bigger array and call parse_printf_format again.

The argument types are encoded as a combination of a basic type and modifier
flag bits.

Macroint PA FLAG MASK
This macro is a bitmask for the type modifier flag bits. You can write the expres-
sion (argtypes[i] & PA_FLAG_MASK) to extract just the flag bits for an
argument, or (argtypes[i] & ˜PA_FLAG_MASK) to extract just the basic
type code.

Here are symbolic constants that represent the basic types; they stand for integer
values:

PA_INT This specifies that the base type is int.

PA_CHAR This specifies that the base type is int, cast to char.

PA_STRING
This specifies that the base type is char *, a null-terminated string.

PA_POINTER
This specifies that the base type is void *, an arbitrary pointer.

PA_FLOAT
This specifies that the base type is float.

PA_DOUBLE
This specifies that the base type is double.

PA_LAST You can define additional base types for your own programs as off-
sets from PA_LAST. For example, if you have data types ‘foo’ and
‘bar’ with their own specialized printf conversions, you could de-
fine encodings for these types as:

478 The GNU C Library: Application Fundamentals

#define PA_FOO PA_LAST

#define PA_BAR (PA_LAST + 1)

Here are the flag bits that modify a basic type. They are combined with the code
for the basic type using inclusive-or.

PA_FLAG_PTR
If this bit is set, it indicates that the encoded type is a pointer
to the base type, rather than an immediate value. For example,
‘PA_INT|PA_FLAG_PTR’ represents the type ‘int *’.

PA_FLAG_SHORT
If this bit is set, it indicates that the base type is modified with short.
This corresponds to the ‘h’ type modifier.

PA_FLAG_LONG
If this bit is set, it indicates that the base type is modified with long.
This corresponds to the ‘l’ type modifier.

PA_FLAG_LONG_LONG
If this bit is set, it indicates that the base type is modified with long
long. This corresponds to the ‘L’ type modifier.

PA_FLAG_LONG_DOUBLE
This is a synonym for PA_FLAG_LONG_LONG, used by convention
with a base type of PA_DOUBLE to indicate a type of long double.

17.12.11 Example of Parsing a Template String

Here is an example of decoding argument types for a format string. We as-
sume this is part of an interpreter that contains arguments of type NUMBER, CHAR,
STRING and STRUCTURE (and perhaps others that are not valid here).

/* Test whether the nargs specified objects

in the vector args are valid

for the format string format ;

if so, return 1.

If not, return 0 after printing an error message. */

int

validate_args (char *format, int nargs, OBJECT *args)

{

int *argtypes;

int nwanted;

/* Get the information about the arguments.

Each conversion specification must be at least two characters

long, so there cannot be more specifications than half the

Chapter 17: Input/Output on Streams 479

length of the string. */

argtypes = (int *) alloca (strlen (format) / 2 * sizeof (int));

nwanted = parse_printf_format (string, nelts, argtypes);

/* Check the number of arguments. */

if (nwanted > nargs)

{

error ("too few arguments (at least %d required)", nwanted);

return 0;

}

/* Check the C type wanted for each argument

and see if the object given is suitable. */

for (i = 0; i < nwanted; i++)

{

int wanted;

if (argtypes[i] & PA_FLAG_PTR)

wanted = STRUCTURE;

else

switch (argtypes[i] & ˜PA_FLAG_MASK)

{

case PA_INT:

case PA_FLOAT:

case PA_DOUBLE:

wanted = NUMBER;

break;

case PA_CHAR:

wanted = CHAR;

break;

case PA_STRING:

wanted = STRING;

break;

case PA_POINTER:

wanted = STRUCTURE;

break;

}

if (TYPE (args[i]) != wanted)

{

error ("type mismatch for arg number %d", i);

return 0;

}

}

480 The GNU C Library: Application Fundamentals

return 1;

}

17.13 Customizing printf

The GNU C Library lets you define your own custom conversion specifiers for
printf template strings, to teach printf clever ways to print the important data
structures of your program.

The way you do this is by registering the conversion with the function
register_printf_function (see Section 17.13.1 [Registering New
Conversions], page 480). One of the arguments you pass to this function is a
pointer to a handler function that produces the actual output (see Section 17.13.3
[Defining the Output Handler], page 482, for information on how to write this
function).

You can also install a function that just returns information about the number
and type of arguments expected by the conversion specifier (see Section 17.12.10
[Parsing a Template String], page 476).

The facilities of this section are declared in the header file ‘printf.h’.
Portability Note: The ability to extend the syntax of printf template strings

is a GNU extension. ISO standard C has nothing similar.

17.13.1 Registering New Conversions

The function to register a new output conversion is register_printf_
function, declared in ‘printf.h’.

Functionint register printf function (int spec, printf_function
handler-function, printf_arginfo_function
arginfo-function)

This function defines the conversion specifier character spec. Thus, if spec is
’Y’, it defines the conversion ‘%Y’. You can redefine the built-in conversions
like ‘%s’, but flag characters like ‘#’ and type modifiers like ‘l’ can never be
used as conversions; calling register_printf_function for those char-
acters has no effect. It is advisable not to use lowercase letters, since the ISO C
standard warns that additional lowercase letters may be standardized in future
editions of the standard.
The handler-function is the function called by printf and friends when this
conversion appears in a template string (see Section 17.13.3 [Defining the Out-
put Handler], page 482, for information about how to define a function to pass
as this argument). If you specify a null pointer, any existing handler function
for spec is removed.
The arginfo-function is the function called by parse_printf_format
when this conversion appears in a template string (see Section 17.12.10 [Parsing
a Template String], page 476).

Chapter 17: Input/Output on Streams 481

Attention: In the GNU C Library versions before 2.0, the arginfo-function func-
tion did not need to be installed unless the user used the parse_printf_
format function. This has changed. Now a call to any of the printf func-
tions will call this function when this format specifier appears in the format
string.
The return value is 0 on success, and -1 on failure (which occurs if spec is out
of range).
You can redefine the standard output conversions, but this is probably not a
good idea because of the potential for confusion. Library routines written by
other people could break if you do this.

17.13.2 Conversion Specifier Options

If you define a meaning for ‘%A’, what if the template contains ‘%+23A’ or
‘%-#A’? To implement a sensible meaning for these, the handler, when called,
needs to be able to get the options specified in the template.

Both the handler-function and arginfo-function accept an argument that points
to a struct printf_info, which contains information about the options ap-
pearing in an instance of the conversion specifier. This data type is declared in the
header file ‘printf.h’.

Typestruct printf info
This structure is used to pass information about the options appearing in an
instance of a conversion specifier in a printf template string to the handler
and arginfo functions for that specifier. It contains the following members:

int prec This is the precision specified. The value is -1 if no precision was
specified. If the precision was given as ‘*’, the printf_info
structure passed to the handler function contains the actual value
retrieved from the argument list. But the structure passed to the
arginfo function contains a value of INT_MIN, since the actual
value is not known.

int width
This is the minimum field width specified. The value is 0 if
no width was specified. If the field width was given as ‘*’, the
printf_info structure passed to the handler function contains
the actual value retrieved from the argument list. But the structure
passed to the arginfo function contains a value of INT_MIN, since
the actual value is not known.

wchar_t spec
This is the conversion specifier character specified. It’s stored in
the structure so that you can register the same handler function for
multiple characters, but still have a way to tell them apart when the
handler function is called.

482 The GNU C Library: Application Fundamentals

unsigned int is_long_double
This is a Boolean that is true if the ‘L’, ‘ll’, or ‘q’ type modifier
was specified. For integer conversions, this indicates long long
int, as opposed to long double for floating-point conversions.

unsigned int is_char
This is a Boolean that is true if the ‘hh’ type modifier was speci-
fied.

unsigned int is_short
This is a Boolean that is true if the ‘h’ type modifier was specified.

unsigned int is_long
This is a Boolean that is true if the ‘l’ type modifier was specified.

unsigned int alt
This is a Boolean that is true if the ‘#’ flag was specified.

unsigned int space
This is a Boolean that is true if the ‘ ’ flag was specified.

unsigned int left
This is a Boolean that is true if the ‘-’ flag was specified.

unsigned int showsign
This is a Boolean that is true if the ‘+’ flag was specified.

unsigned int group
This is a Boolean that is true if the ‘’’ flag was specified.

unsigned int extra
This flag has a special meaning depending on the context. It could
be used freely by the user-defined handlers, but when called from
the printf function, this variable always contains the value 0.

unsigned int wide
This flag is set if the stream is wide oriented.

wchar_t pad
This is the character to use for padding the output to the minimum
field width. The value is ’0’ if the ‘0’ flag was specified, and ’ ’
otherwise.

17.13.3 Defining the Output Handler

Now let’s look at how to define the handler and arginfo functions that are passed
as arguments to register_printf_function.

Compatibility Note: The interface changed in GNU libc version 2.0. Previously,
the third argument was of type va_list *.

You should define your handler functions with a prototype like:

Chapter 17: Input/Output on Streams 483

int function (FILE *stream, const struct printf_info *info,

const void *const *args)

The stream argument passed to the handler function is the stream to which it
should write output.

The info argument is a pointer to a structure that contains information about the
various options that were included with the conversion in the template string. You
should not modify this structure inside your handler function (see Section 17.13.2
[Conversion Specifier Options], page 481, for a description of this data structure).

The args is a vector of pointers to the arguments data. The number of arguments
was determined by calling the argument information function provided by the user.

Your handler function should return a value just like printf does—it should
return the number of characters it has written, or a negative value to indicate an
error.

Data Typeprintf function
This is the data type that a handler function should have.

If you are going to use parse_printf_format in your application, you
must also define a function to pass as the arginfo-function argument for each new
conversion you install with register_printf_function.

You have to define these functions with a prototype like:
int function (const struct printf_info *info,

size_t n, int *argtypes)

The return value from the function should be the number of arguments the con-
version expects. The function should also fill in no more than n elements of the
argtypes array with information about the types of each of these arguments. This
information is encoded using the various ‘PA_’ macros. (This is the same calling
convention that parse_printf_format itself uses.)

Data Typeprintf arginfo function
This type is used to describe functions that return information about the number
and type of arguments used by a conversion specifier.

17.13.4 printf Extension Example

Here is an example showing how to define a printf handler function. This
program defines a data structure called a Widget and defines the ‘%W’ conversion
to print information about Widget * arguments, including the pointer value and
the name stored in the data structure. The ‘%W’ conversion supports the minimum
field width and left-justification options, but ignores everything else.

#include <stdio.h>

#include <stdlib.h>

#include <printf.h>

484 The GNU C Library: Application Fundamentals

typedef struct

{

char *name;

}

Widget;

int

print_widget (FILE *stream,

const struct printf_info *info,

const void *const *args)

{

const Widget *w;

char *buffer;

int len;

/* Format the output into a string. */

w = *((const Widget **) (args[0]));

len = asprintf (&buffer, "<Widget %p: %s>", w, w->name);

if (len == -1)

return -1;

/* Pad to the minimum field width and print to the stream. */

len = fprintf (stream, "%*s",

(info->left ? -info->width : info->width),

buffer);

/* Clean up and return. */

free (buffer);

return len;

}

int

print_widget_arginfo (const struct printf_info *info, size_t n,

int *argtypes)

{

/* We always take exactly one argument and this is a pointer to the

structure. */

if (n > 0)

argtypes[0] = PA_POINTER;

return 1;

}

Chapter 17: Input/Output on Streams 485

int

main (void)

{

/* Make a widget to print. */

Widget mywidget;

mywidget.name = "mywidget";

/* Register the print function for widgets. */

register_printf_function (’W’, print_widget, print_widget_arginfo);

/* Now print the widget. */

printf ("|%W|\n", &mywidget);

printf ("|%35W|\n", &mywidget);

printf ("|%-35W|\n", &mywidget);

return 0;

}

The output produced by this program looks like:

|<Widget 0xffeffb7c: mywidget>|

| <Widget 0xffeffb7c: mywidget>|

|<Widget 0xffeffb7c: mywidget> |

17.13.5 Predefined printf Handlers

The GNU libc also contains a concrete and useful application of the printf
handler extension. There are two functions available that implement a special way
to print floating-point numbers.

Functionint printf size (FILE *fp, const struct printf_info
*info, const void *const *args)

Print a given floating-point number as for the format %f, except that there is
a postfix character indicating the divisor for the number to make this less than
1000. There are two possible divisors: powers of 1024 or powers of 1000.
Which one is used depends on the format character specified while registering
this handler. If the character is lowercase, 1024 is used. For uppercase charac-
ters, 1000 is used.

The postfix tag corresponds to bytes, kilobytes, megabytes, gigabytes, etc. The
full table is

486 The GNU C Library: Application Fundamentals

low Multiplier From Upper Multiplier
1 1

k 210 = 1024 kilo K 103 = 1000
m 220 mega M 106

g 230 giga G 109

t 240 tera T 1012

p 250 peta P 1015

e 260 exa E 1018

z 270 zetta Z 1021

y 280 yotta Y 1024

The default precision is 3, i.e., 1024 is printed with a lowercase format character
as if it were %.3fk and will yield 1.000k.

Due to the requirements of register_printf_function, we must also
provide the function that returns information about the arguments.

Functionint printf size info (const struct printf_info *info,
size_t n, int *argtypes)

This function will return in argtypes the information about the used parameters
in the way the vfprintf implementation expects it. The format always takes
one argument.

To use these functions, both functions must be registered with a call like:
register_printf_function (’B’, printf_size, printf_size_info);

Here we register the functions to print numbers as powers of 1000, since the
format character ’B’ is an uppercase character. If we would additionally use ’b’
in a line like:

register_printf_function (’b’, printf_size, printf_size_info);

we could also print using a power of 1024. All that is different in these two lines
is the format specifier. The printf_size function knows about the difference
between lowercase and uppercase format specifiers.

The use of ’B’ and ’b’ is no coincidence. It is the preferred way to use this
functionality, since it is available on some other systems that also use format spec-
ifiers.

17.14 Formatted Input
The functions described in this section (scanf and related functions) provide

facilities for formatted input analogous to the formatted output facilities. These
functions provide a mechanism for reading arbitrary values under the control of a
format string or template string.

17.14.1 Formatted Input Basics

Calls to scanf are superficially similar to calls to printf, in that arbitrary
arguments are read under the control of a template string. While the syntax of

Chapter 17: Input/Output on Streams 487

the conversion specifications in the template is very similar to that for printf,
the interpretation of the template is oriented more toward free-format input and
simple pattern matching, rather than fixed-field formatting. For example, most
scanf conversions skip over any amount of white space (including spaces, tabs
and newlines) in the input file, and there is no concept of precision for the numeric
input conversions as there is for the corresponding output conversions. Ordinarily,
non-white-space characters in the template are expected to match characters in the
input stream exactly, but a matching failure is distinct from an input error on the
stream.

Another area of difference between scanf and printf is that you must re-
member to supply pointers rather than immediate values as the optional arguments
to scanf; the values that are read are stored in the objects that the pointers point
to. Even experienced programmers tend to forget this occasionally, so if your pro-
gram is getting strange errors that seem to be related to scanf, you might want to
double-check this.

When a matching failure occurs, scanf returns immediately, leaving the first
nonmatching character as the next character to be read from the stream. The normal
return value from scanf is the number of values that were assigned, so you can
use this to determine if a matching error happened before all the expected values
were read.

The scanf function is typically used for things like reading in the contents of
tables. For example, here is a function that uses scanf to initialize an array of
double:

void

readarray (double *array, int n)

{

int i;

for (i=0; i<n; i++)

if (scanf (" %lf", &(array[i])) != 1)

invalid_input_error ();

}

The formatted input functions are not used as frequently as the formatted output
functions. Partly, this is because it takes some care to use them properly. Another
reason is that it is difficult to recover from a matching error.

If you are trying to read input that doesn’t match a single, fixed pattern, you may
be better off using a tool such as Flex to generate a lexical scanner,14 or Bison to
generate a parser,15 rather than using scanf.

14 See G.T. Nicol, Flex: The Lexical Scanner Generator (Boston, MA: GNU Press, February 1993),
http:// www.gnu.org/ software/ flex/ manual/.

15 See Charles Donnelly and Richard M. Stallman, The Bison Manual (Boston, MA: GNU Press,
September 2003), http:// www.gnu.org/ software/ bison/ manual/.

http:// www.gnu.org/ software/ flex/ manual/
http:// www.gnu.org/ software/ bison/ manual/

488 The GNU C Library: Application Fundamentals

17.14.2 Input Conversion Syntax

A scanf template string is a string that contains ordinary multibyte characters
interspersed with conversion specifications that start with ‘%’.

Any white-space character (as defined by the isspace function; see Section 4.1
[Classification of Characters], page 79) in the template causes any number of white-
space characters in the input stream to be read and discarded. The white-space
characters that are matched need not be exactly the same white-space characters
that appear in the template string. For example, write ‘ , ’ in the template to rec-
ognize a comma with optional white space before and after.

Other characters in the template string that are not part of conversion specifica-
tions must match characters in the input stream exactly; if this is not the case, a
matching failure occurs.

The conversion specifications in a scanf template string have the general form:
% flags width type conversion

In more detail, an input conversion specification consists of an initial ‘%’ charac-
ter followed in sequence by:

• An optional flag character ‘*’, which says to ignore the text read for this
specification; when scanf finds a conversion specification that uses this flag,
it reads input as directed by the rest of the conversion specification, but it
discards this input, does not use a pointer argument, and does not increment
the count of successful assignments.

• An optional flag character ‘a’ (valid with string conversions only), which
requests allocation of a buffer long enough to store the string in (see Sec-
tion 17.14.6 [Dynamically Allocating String Conversions], page 494). This is
a GNU extension.

• An optional decimal integer that specifies the maximum field width ; reading
of characters from the input stream stops either when this maximum is reached
or when a nonmatching character is found, whichever happens first. Most con-
versions discard initial white-space characters (those that don’t are explicitly
documented), and these discarded characters don’t count toward the maximum
field width. String input conversions store a null character to mark the end of
the input; the maximum field width does not include this terminator.

• An optional type modifier character; for example, you can specify a type mod-
ifier of ‘l’ with integer conversions such as ‘%d’ to specify that the argument
is a pointer to a long int rather than a pointer to an int.

• A character that specifies the conversion to be applied

The exact options that are permitted and how they are interpreted vary between
the different conversion specifiers. See the descriptions of the individual conver-
sions for information about the particular options that they allow.

With the ‘-Wformat’ option, the GNU C Compiler checks calls to scanf and
related functions. It examines the format string and verifies that the correct number

Chapter 17: Input/Output on Streams 489

and types of arguments are supplied. There is also a GNU C syntax to tell the
compiler that a function you write uses a scanf-style format string.16

17.14.3 Table of Input Conversions

Here is a table that summarizes the various conversion specifications:

‘%d’ Match an optionally signed integer written in decimal (see Sec-
tion 17.14.4 [Numeric Input Conversions], page 490).

‘%i’ Match an optionally signed integer in any of the formats that the C lan-
guage defines for specifying an integer constant (see Section 17.14.4
[Numeric Input Conversions], page 490).

‘%o’ Match an unsigned integer written in octal radix (see Section 17.14.4
[Numeric Input Conversions], page 490).

‘%u’ Match an unsigned integer written in decimal radix (see
Section 17.14.4 [Numeric Input Conversions], page 490).

‘%x’, ‘%X’ Match an unsigned integer written in hexadecimal radix (see Sec-
tion 17.14.4 [Numeric Input Conversions], page 490).

‘%e’, ‘%f’, ‘%g’, ‘%E’, ‘%G’
Match an optionally signed floating-point number (see Sec-
tion 17.14.4 [Numeric Input Conversions], page 490).

‘%s’
Match a string containing only non-white-space characters (see Sec-
tion 17.14.5 [String Input Conversions], page 492). The presence of
the ‘l’ modifier determines whether the output is stored as a wide-
character string or a multibyte string. If ‘%s’ is used in a wide-
character function, the string is converted as with multiple calls to
wcrtomb into a multibyte string. This means that the buffer must
provide room for MB_CUR_MAX bytes for each wide character read.
In case ‘%ls’ is used in a multibyte function, the result is converted
into wide characters, as with multiple calls of mbrtowc, before being
stored in the user-provided buffer.

‘%S’ This is an alias for ‘%ls’ that is supported for compatibility with the
Unix standard.

‘%[’ Match a string of characters that belong to a specified set (see Sec-
tion 17.14.5 [String Input Conversions], page 492). The presence of
the ‘l’ modifier determines whether the output is stored as a wide-
character string or a multibyte string. If ‘%[’ is used in a wide-
character function, the string is converted as with multiple calls to

16 See Richard M. Stallman and the GCC Developer Community, “Declaring Attributes of Func-
tions” in Using GCC: The GNU Compiler Collection Reference Manual (Boston, MA: GNU Press,
October 2003), http:// gcc.gnu.org/ onlinedocs/ gcc-3.3.2/ gcc/.

http:// gcc.gnu.org/ onlinedocs/ gcc-3.3.2/ gcc/

490 The GNU C Library: Application Fundamentals

wcrtomb into a multibyte string. This means that the buffer must
provide room for MB_CUR_MAX bytes for each wide character read.
In case ‘%l[’ is used in a multibyte function, the result is converted
into wide characters, as with multiple calls of mbrtowc, before being
stored in the user-provided buffer.

‘%c’ Match a string of one or more characters; the number of characters
read is controlled by the maximum field width given for the conver-
sion (see Section 17.14.5 [String Input Conversions], page 492).
If the ‘%c’ is used in a wide stream function, the read value is con-
verted from a wide character to the corresponding multibyte character
before storing it. This conversion can produce more than 1 byte of
output, and therefore the provided buffer must be large enough for
up to MB_CUR_MAX bytes for each character. If ‘%lc’ is used in a
multibyte function, the input is treated as a multibyte sequence (and
not bytes), and the result is converted as with calls to mbrtowc.

‘%C’ This is an alias for ‘%lc’ that is supported for compatibility with the
Unix standard.

‘%p’ Match a pointer value in the same implementation-defined format
used by the ‘%p’ output conversion for printf (see Section 17.14.7
[Other Input Conversions], page 494).

‘%n’ This conversion doesn’t read any characters; it records the number of
characters read so far by this call (see Section 17.14.7 [Other Input
Conversions], page 494).

‘%%’ This matches a literal ‘%’ character in the input stream. No corre-
sponding argument is used (see Section 17.14.7 [Other Input Conver-
sions], page 494).

If the syntax of a conversion specification is invalid, the behavior is undefined.
If there aren’t enough function arguments provided to supply addresses for all the
conversion specifications in the template strings that perform assignments, or if the
arguments are not of the correct types, the behavior is also undefined. On the other
hand, extra arguments are simply ignored.

17.14.4 Numeric Input Conversions

This section describes the scanf conversions for reading numeric values.
The ‘%d’ conversion matches an optionally signed integer in decimal radix. The

syntax that is recognized is the same as that for the strtol function (see Sec-
tion 9.11.1 [Parsing of Integers], page 268) with the value 10 for the base argu-
ment.

The ‘%i’ conversion matches an optionally signed integer in any of the formats
that the C language defines for specifying an integer constant. The syntax that is
recognized is the same as that for the strtol function (see Section 9.11.1 [Parsing
of Integers], page 268) with the value 0 for the base argument. You can print

Chapter 17: Input/Output on Streams 491

integers in this syntax with printf by using the ‘#’ flag character with the ‘%x’,
‘%o’, or ‘%d’ conversion (see Section 17.12.4 [Integer Conversions], page 465).

For example, any of the strings ‘10’, ‘0xa’ or ‘012’ could be read in as integers
under the ‘%i’ conversion. Each of these specifies a number with decimal value
10.

The ‘%o’, ‘%u’ and ‘%x’ conversions match unsigned integers in octal, decimal
and hexadecimal radices, respectively. The syntax that is recognized is the same as
that for the strtoul function (see Section 9.11.1 [Parsing of Integers], page 268)
with the appropriate value (8, 10, or 16) for the base argument.

The ‘%X’ conversion is identical to the ‘%x’ conversion. They both permit either
uppercase or lowercase letters to be used as digits.

The default type of the corresponding argument for the %d and %i conversions
is int *, and unsigned int * for the other integer conversions. You can use
the following type modifiers to specify other sizes of integer:

‘hh’ Specify that the argument is a signed char * or unsigned char
*.
This modifier was introduced in ISO C99.

‘h’ Specify that the argument is a short int * or unsigned short
int *.

‘j’ Specify that the argument is a intmax_t * or uintmax_t *.
This modifier was introduced in ISO C99.

‘l’ Specify that the argument is a long int * or unsigned long
int *. Two ‘l’ characters is like the ‘L’ modifier, below.
If used with ‘%c’ or ‘%s’, the corresponding parameter is considered
as a pointer to a wide character or wide-character string respectively.
This use of ‘l’ was introduced in Amendment 1 to ISO C90.

‘ll’
‘L’
‘q’ Specify that the argument is a long long int * or unsigned

long long int * (the long long type is an extension supported
by the GNU C Compiler. For systems that don’t provide extra-long
integers, this is the same as long int).
The ‘q’ modifier is another name for the same thing, which comes
from 4.4 BSD; a long long int is sometimes called a quad int.

‘t’ Specify that the argument is a ptrdiff_t *.
This modifier was introduced in ISO C99.

‘z’ Specify that the argument is a size_t *.
This modifier was introduced in ISO C99.

All of the ‘%e’, ‘%f’, ‘%g’, ‘%E’ and ‘%G’ input conversions are interchangeable.
They all match an optionally signed floating-point number, in the same syntax as
for the strtod function (see Section 9.11.2 [Parsing of Floats], page 273).

492 The GNU C Library: Application Fundamentals

For the floating-point input conversions, the default argument type is float
*. This is different from the corresponding output conversions, where the default
type is double; remember that float arguments to printf are converted to
double by the default argument promotions, but float * arguments are not pro-
moted to double *. You can specify other sizes of float using these type modi-
fiers:

‘l’ Specify that the argument is of type double *.

‘L’ Specify that the argument is of type long double *.

For all of the above number-parsing formats, there is an additional optional
flag ‘’’. When this flag is given, the scanf function expects the number rep-
resented in the input string to be formatted according to the grouping rules of the
currently selected locale (see Section 7.6.1.1 [Generic Numeric Formatting Param-
eters], page 187).

If the ‘C’ or ‘POSIX’ locale is selected, there is no difference. But for a locale
that specifies values for the appropriate fields in the locale, the input must have
the correct form in the input. Otherwise, the longest prefix with a correct form is
processed.

17.14.5 String Input Conversions

This section describes the scanf input conversions for reading string and char-
acter values: ‘%s’, ‘%S’, ‘%[’, ‘%c’ and ‘%C’.

You have two options for how to receive the input from these conversions:
• Provide a buffer to store it in. This is the default. You should provide an argu-

ment of type char * or wchar_t * (the latter if the ‘l’ modifier is present).
Warning: To make a robust program, you must make sure that the input (plus
its terminating null) cannot possibly exceed the size of the buffer you provide.
In general, the only way to do this is to specify a maximum field width one
less than the buffer size. If you provide the buffer, always specify a maximum
field width to prevent overflow.

• Ask scanf to allocate a big enough buffer, by specifying the ‘a’ flag charac-
ter. This is a GNU extension. You should provide an argument of type char
** for the buffer address to be stored in (see Section 17.14.6 [Dynamically
Allocating String Conversions], page 494).

The ‘%c’ conversion is the simplest—it matches a fixed number of characters,
always. The maximum field width says how many characters to read; if you don’t
specify the maximum, the default is 1. This conversion doesn’t append a null char-
acter to the end of the text it reads. It also does not skip over initial white-space
characters. It reads precisely the next n characters, and fails if it cannot get that
many. Since there is always a maximum field width with ‘%c’ (whether speci-
fied, or 1 by default), you can always prevent overflow by making the buffer long
enough.

Chapter 17: Input/Output on Streams 493

If the format is ‘%lc’ or ‘%C’, the function stores wide characters that are con-
verted using the conversion determined at the time the stream was opened from the
external byte stream. The number of bytes read from the medium is limited by
MB_CUR_LEN * n , but at most n wide characters get stored in the output string.

The ‘%s’ conversion matches a string of non-white-space characters. It skips
and discards initial white space, but stops when it encounters more white space
after having read something. It stores a null character at the end of the text that it
reads.

For example, reading the input:
hello, world

with the conversion ‘%10c’ produces " hello, wo", but reading the same input
with the conversion ‘%10s’ produces "hello,".

Warning: If you do not specify a field width for ‘%s’, then the number of char-
acters read is limited only by where the next white-space character appears. This
almost certainly means that invalid input can make your program crash—which is
a bug.

The ‘%ls’ and ‘%S’ format are handled just like ‘%s’, except that the external
byte-sequence is converted using the conversion associated with the stream to wide
characters with their own encoding. A width or precision specified with the format
do not directly determine how many bytes are read from the stream since they
measure wide characters. But an upper limit can be computed by multiplying the
value of the width or precision by MB_CUR_MAX.

To read in characters that belong to an arbitrary set of your choice, use the ‘%[’
conversion. You specify the set between the ‘[’ character and a following ‘]’
character, using the same syntax used in regular expressions. As special cases:

• A literal ‘]’ character can be specified as the first character of the set.
• An embedded ‘-’ character (that is, one that is not the first or last character of

the set) is used to specify a range of characters.
• If a caret character ‘ˆ’ immediately follows the initial ‘[’, then the set of

allowed input characters is the everything except the characters listed.

The ‘%[’ conversion does not skip over initial white-space characters.
Here are some examples of ‘%[’ conversions and what they mean:

‘%25[1234567890]’
Match a string of up to twenty-five digits.

‘%25[][]’
Match a string of up to twenty-five square brackets.

‘%25[ˆ \f\n\r\t\v]’
Match a string up to twenty-five characters long that doesn’t contain
any of the standard white-space characters. This is slightly different
from ‘%s’, because if the input begins with a white-space character,
‘%[’ reports a matching failure while ‘%s’ simply discards the initial
white space.

494 The GNU C Library: Application Fundamentals

‘%25[a-z]’
Match up to twenty-five lowercase characters.

As for ‘%c’ and ‘%s’, the ‘%[’ format is also modified to produce wide characters
if the ‘l’ modifier is present. All that was said about ‘%ls’ above is true for ‘%l[’.

The ‘%s’ and ‘%[’ conversions are dangerous if you don’t specify a maximum
width or use the ‘a’ flag, because input too long would overflow whatever buffer
you have provided for it. No matter how long your buffer is, a user could supply
input that is longer. A well-written program reports invalid input with a compre-
hensible error message, not with a crash.

17.14.6 Dynamically Allocating String Conversions

A GNU extension to formatted input lets you safely read a string with no maxi-
mum size. Using this feature, you don’t supply a buffer; instead, scanf allocates
a buffer big enough to hold the data and gives you its address. To use this feature,
write ‘a’ as a flag character, as in ‘%as’ or ‘%a[0-9a-z]’.

The pointer argument you supply for where to store the input should have type
char **. The scanf function allocates a buffer and stores its address in the
word that the argument points to. You should free the buffer with free when you
no longer need it.

Here is an example of using the ‘a’ flag with the ‘%[...]’ conversion specifi-
cation to read a variable assignment of the form ‘variable = value’.

{

char *variable, *value;

if (2 > scanf ("%a[a-zA-Z0-9] = %a[ˆ\n]\n",

&variable, &value))

{

invalid_input_error ();

return 0;

}

...

}

17.14.7 Other Input Conversions

This section describes the miscellaneous input conversions.
The ‘%p’ conversion is used to read a pointer value. It recognizes the same

syntax used by the ‘%p’ output conversion for printf (see Section 17.12.6 [Other
Output Conversions], page 469); that is, a hexadecimal number, just as the ‘%x’
conversion accepts. The corresponding argument should be of type void **; that
is, the address of a place to store a pointer.

Chapter 17: Input/Output on Streams 495

The resulting pointer value is not guaranteed to be valid if it was not originally
written during the same program execution that reads it in.

The ‘%n’ conversion produces the number of characters read so far by this call.
The corresponding argument should be of type int *. This conversion works in
the same way as the ‘%n’ conversion for printf (see Section 17.12.6 [Other Out-
put Conversions], page 469, for an example).

The ‘%n’ conversion is the only mechanism for determining the success of literal
matches or conversions with suppressed assignments. If the ‘%n’ follows the locus
of a matching failure, then no value is stored for it since scanf returns before
processing the ‘%n’. If you store -1 in that argument slot before calling scanf,
the presence of -1 after scanf indicates an error occurred before the ‘%n’ was
reached.

Finally, the ‘%%’ conversion matches a literal ‘%’ character in the input stream,
without using an argument. This conversion does not permit any flags, field width,
or type modifier to be specified.

17.14.8 Formatted Input Functions

Here are the descriptions of the functions for performing formatted input. Proto-
types for these functions are in the header file ‘stdio.h’.

Functionint scanf (const char *template, ...)
The scanf function reads formatted input from the stream stdin under the
control of the template string template. The optional arguments are pointers to
the places that receive the resulting values.
The return value is normally the number of successful assignments. If an end-of-
file condition is detected before any matches are performed, including matches
against white-space and literal characters in the template, then EOF is returned.

Functionint wscanf (const wchar_t *template, ...)
The wscanf function reads formatted input from the stream stdin under the
control of the template string template. The optional arguments are pointers to
the places which receive the resulting values.
The return value is normally the number of successful assignments. If an end-of-
file condition is detected before any matches are performed, including matches
against white-space and literal characters in the template, then WEOF is returned.

Functionint fscanf (FILE *stream, const char *template, ...)
This function is just like scanf, except that the input is read from the stream
stream instead of stdin.

Functionint fwscanf (FILE *stream, const wchar_t *template,
...)

This function is just like wscanf, except that the input is read from the stream
stream instead of stdin.

496 The GNU C Library: Application Fundamentals

Functionint sscanf (const char *s, const char *template, ...)
This is like scanf, except that the characters are taken from the null-terminated
string s instead of from a stream. Reaching the end of the string is treated as an
end-of-file condition.
The behavior of this function is undefined if copying takes place between objects
that overlap—for example, if s is also given as an argument to receive a string
read under control of the ‘%s’, ‘%S’, or ‘%[’ conversion.

Functionint swscanf (const wchar_t *ws, const char *template,
...)

This is like wscanf, except that the characters are taken from the null-
terminated string ws instead of from a stream. Reaching the end of the string is
treated as an end-of-file condition.
The behavior of this function is undefined if copying takes place between objects
that overlap—for example, if ws is also given as an argument to receive a string
read under control of the ‘%s’, ‘%S’, or ‘%[’ conversion.

17.14.9 Variable Arguments Input Functions

The functions vscanf and friends are provided so that you can define your own
variadic scanf-like functions that make use of the same internals as the built-in
formatted output functions. These functions are analogous to the vprintf series
of output functions (see Section 17.12.9 [Variable Arguments Output Functions],
page 474, for important information on how to use them).

Portability Note: The functions listed in this section were introduced in ISO C99
and were previously available as GNU extensions.

Functionint vscanf (const char *template, va_list ap)
This function is similar to scanf, but instead of taking a variable number of
arguments directly, it takes an argument list pointer ap of type va_list.17

Functionint vwscanf (const wchar_t *template, va_list ap)
This function is similar to wscanf, but instead of taking a variable number of
arguments directly, it takes an argument list pointer ap of type va_list.18

Functionint vfscanf (FILE *stream, const char *template,
va_list ap)

This is the equivalent of fscanf with the variable argument list specified di-
rectly as for vscanf.

Functionint vfwscanf (FILE *stream, const wchar_t *template,
va_list ap)

This is the equivalent of fwscanf with the variable argument list specified
directly as for vwscanf.

17 Ibid., “Variadic Functions”.
18 Ibid., “Variadic Functions”.

Chapter 17: Input/Output on Streams 497

Functionint vsscanf (const char *s, const char *template,
va_list ap)

This is the equivalent of sscanf with the variable argument list specified di-
rectly as for vscanf.

Functionint vswscanf (const wchar_t *s, const wchar_t
*template, va_list ap)

This is the equivalent of swscanf with the variable argument list specified
directly as for vwscanf.

In GNU C, there is a special construct you can use to let the compiler know that a
function uses a scanf-style format string. Then it can check the number and types
of arguments in each call to the function, and warn you when they do not match the
format string.19

17.15 End-of-File and Errors
Many of the functions described in this chapter return the value of the macro

EOF to indicate unsuccessful completion of the operation. Since EOF is used to
report both end-of-file and random errors, it’s often better to use the feof function
to check explicitly for end of file and ferror to check for errors. These functions
check indicators that are part of the internal state of the stream object, indicators
set if the appropriate condition was detected by a previous I/O operation on that
stream.

Macroint EOF
This macro is an integer value that is returned by a number of narrow stream
functions to indicate an end-of-file condition, or some other error situation. With
the GNU library, EOF is -1. In other libraries, its value may be some other
negative number.
This symbol is declared in ‘stdio.h’.

Macroint WEOF
This macro is an integer value that is returned by a number of wide stream
functions to indicate an end-of-file condition, or some other error situation. With
the GNU library, WEOF is -1. In other libraries, its value may be some other
negative number.
This symbol is declared in ‘wchar.h’.

Functionint feof (FILE *stream)
The feof function returns nonzero if and only if the end-of-file indicator for
the stream stream is set.
This symbol is declared in ‘stdio.h’.

19 See Richard M. Stallman and the GCC Developer Community, “Declaring Attributes of Func-
tions” in Using GCC: The GNU Compiler Collection Reference Manual (Boston, MA: GNU Press,
October 2003), http:// gcc.gnu.org/ onlinedocs/ gcc-3.3.2/ gcc/.

http:// gcc.gnu.org/ onlinedocs/ gcc-3.3.2/ gcc/

498 The GNU C Library: Application Fundamentals

Functionint feof unlocked (FILE *stream)
The feof_unlocked function is equivalent to the feof function, except that
it does not implicitly lock the stream.
This function is a GNU extension.
This symbol is declared in ‘stdio.h’.

Functionint ferror (FILE *stream)
The ferror function returns nonzero if and only if the error indicator for the
stream stream is set, indicating that an error has occurred on a previous opera-
tion on the stream.
This symbol is declared in ‘stdio.h’.

Functionint ferror unlocked (FILE *stream)
The ferror_unlocked function is equivalent to the ferror function, ex-
cept that it does not implicitly lock the stream.
This function is a GNU extension.
This symbol is declared in ‘stdio.h’.

In addition to setting the error indicator associated with the stream, the functions
that operate on streams also set errno in the same way as the corresponding low-
level functions that operate on file descriptors. For example, all of the functions
that perform output to a stream—such as fputc, printf and fflush—are im-
plemented in terms of write, and all of the errno error conditions defined for
write are meaningful for these functions.20

17.16 Recovering from Errors
You may explicitly clear the error and EOF flags with the clearerr function.

Functionvoid clearerr (FILE *stream)
This function clears the end-of-file and error indicators for the stream stream.
The file-positioning functions (see Section 17.18 [File Positioning], page 500)
also clear the end-of-file indicator for the stream.

Functionvoid clearerr unlocked (FILE *stream)
The clearerr_unlocked function is equivalent to the clearerr func-
tion, except that it does not implicitly lock the stream.
This function is a GNU extension.

It is not correct to just clear the error flag and retry a failed stream operation.
After a failed write, any number of characters since the last buffer flush may have

20 For more information about the descriptor-level I/O functions, see Loosemore et al., “Low-Level
Input/Output”.

Chapter 17: Input/Output on Streams 499

been committed to the file, while some buffered data may have been discarded.
Merely retrying can thus cause lost or repeated data.

A failed read may leave the file pointer in an inappropriate position for a second
try. In both cases, you should seek to a known position before retrying.

Most errors that can happen are not recoverable—a second try will always fail
again in the same way. So usually it is best to give up and report the error to the
user, rather than install complicated recovery logic.

One important exception is EINTR.21 Many stream I/O implementations will
treat it as an ordinary error, which can be quite inconvenient. You can avoid this
hassle by installing all signals with the SA_RESTART flag.

For similar reasons, setting nonblocking I/O on a stream’s file descriptor is not
usually advisable.

17.17 Text and Binary Streams
The GNU system and other POSIX-compatible operating systems organize all files

as uniform sequences of characters. However, some other systems make a distinc-
tion between files containing text and files containing binary data, and the input and
output facilities of ISO C provide for this distinction. This section tells you how to
write programs portable to such systems.

When you open a stream, you can specify either a text stream or a binary stream.
You indicate that you want a binary stream by specifying the ‘b’ modifier in the
opentype argument to fopen (see Section 17.3 [Opening Streams], page 440).
Without this option, fopen opens the file as a text stream.

Text and binary streams differ in several ways:
• The data read from a text stream is divided into lines that are terminated by

newline (’\n’) characters, while a binary stream is simply a long series of
characters. A text stream might on some systems fail to handle lines more than
254 characters long (including the terminating newline character).

• On some systems, text files can contain only printing characters, horizontal tab
characters, and newlines, and so text streams may not support other characters.
However, binary streams can handle any character value.

• Space characters that are written immediately preceding a newline character
in a text stream may disappear when the file is read in again.

• More generally, there need not be a one-to-one mapping between characters
that are read from or written to a text stream, and the characters in the actual
file.

Since a binary stream is always more capable and more predictable than a text
stream, you might wonder what purpose text streams serve. Why not simply always
use binary streams? The answer is that on these operating systems, text and binary
streams use different file formats, and the only way to read or write “an ordinary file
of text” that can work with other text-oriented programs is through a text stream.

21 Ibid., “Primitives Interrupted by Signals”.

500 The GNU C Library: Application Fundamentals

In the GNU library, and on all POSIX systems, there is no difference between text
streams and binary streams. When you open a stream, you get the same kind of
stream regardless of whether you ask for binary. This stream can handle any file
content, and has none of the restrictions that text streams sometimes have.

17.18 File Positioning
The file position of a stream describes where in the file the stream is currently

reading or writing. I/O on the stream advances the file position through the file.
In the GNU system, the file position is represented as an integer, which counts the
number of bytes from the beginning of the file (see Section 15.1.2 [File Position],
page 430).

During I/O to an ordinary disk file, you can change the file position whenever
you wish, so as to read or write any portion of the file. Some other kinds of files
may also permit this. Files that support changing the file position are sometimes
referred to as random-access files.

You can use the functions in this section to examine or modify the file position
indicator associated with a stream. The symbols listed below are declared in the
header file ‘stdio.h’.

Functionlong int ftell (FILE *stream)
This function returns the current file position of the stream stream.
This function can fail if the stream doesn’t support file positioning, or if the file
position can’t be represented in a long int, and possibly for other reasons as
well. If a failure occurs, a value of -1 is returned.

Functionoff_t ftello (FILE *stream)
The ftello function is similar to ftell, except that it returns a value of type
off_t. Systems that support this type use it to describe all file positions, unlike
the POSIX specification, which uses a long int. The two are not necessarily the
same size. Therefore, using ftell can lead to problems if the implementation
is written on top of a POSIX compliant low-level I/O implementation, and using
ftello is preferable whenever it is available.
If this function fails, it returns (off_t) -1. This can happen due to missing
support for file positioning or internal errors. Otherwise, the return value is the
current file position.
The function is an extension defined in the Unix Single Specification version 2.
When the sources are compiled with _FILE_OFFSET_BITS == 64 on a 32-
bit system, this function is in fact ftello64—the LFS interface transparently
replaces the old interface.

Functionoff64_t ftello64 (FILE *stream)
This function is similar to ftello except that the return value is of type
off64_t. This also requires that the stream stream was opened using either

Chapter 17: Input/Output on Streams 501

fopen64, freopen64 or tmpfile64, since otherwise the underlying file
operations to position the file pointer beyond the 231 bytes limit might fail.
If the sources are compiled with _FILE_OFFSET_BITS == 64 on a 32-bit
machine, this function is available under the name ftello and so transparently
replaces the old interface.

Functionint fseek (FILE *stream, long int offset, int whence)
The fseek function is used to change the file position of the stream stream.
The value of whence must be one of the constants SEEK_SET, SEEK_CUR,
or SEEK_END, to indicate whether the offset is relative to the beginning of the
file, the current file position, or the end of the file, respectively.
This function returns a value of zero if the operation was successful, and a
nonzero value to indicate failure. A successful call also clears the end-of-file
indicator of stream and discards any characters that were pushed back by the
use of ungetc.
fseek either flushes any buffered output before setting the file position, or else
remembers it so it will be written later in its proper place in the file.

Functionint fseeko (FILE *stream, off_t offset, int whence)
This function is similar to fseek, but it corrects a problem with fseek in a
system with POSIX types. Using a value of type long int for the offset is not
compatible with POSIX. fseeko uses the correct type off_t for the offset
parameter.
For this reason, it is a good idea to prefer ftello whenever it is available,
since its functionality is (if different at all) closer the underlying definition.
The functionality and return value are the same as for fseek.
The function is an extension defined in the Unix Single Specification version 2.
When the sources are compiled with _FILE_OFFSET_BITS == 64 on a 32-
bit system, this function is in fact fseeko64—the LFS interface transparently
replaces the old interface.

Functionint fseeko64 (FILE *stream, off64_t offset, int whence)
This function is similar to fseeko except that the offset parameter is of type
off64_t. This also requires that the stream stream was opened using either
fopen64, freopen64 or tmpfile64, since otherwise the underlying file
operations to position the file pointer beyond the 231 bytes limit might fail.
If the sources are compiled with _FILE_OFFSET_BITS == 64 on a 32-bit
machine, this function is available under the name fseeko and so transparently
replaces the old interface.

Portability Note: In non-POSIX systems, ftell, ftello, fseek and
fseeko might work reliably only on binary streams (see Section 17.17 [Text and
Binary Streams], page 499).

502 The GNU C Library: Application Fundamentals

The following symbolic constants are defined for use as the whence argument to
fseek. They are also used with the lseek function22 and to specify offsets for
file locks.23

Macroint SEEK SET
This is an integer constant which, when used as the whence argument to the
fseek or fseeko function, specifies that the offset provided is relative to the
beginning of the file.

Macroint SEEK CUR
This is an integer constant which, when used as the whence argument to the
fseek or fseeko function, specifies that the offset provided is relative to the
current file position.

Macroint SEEK END
This is an integer constant which, when used as the whence argument to the
fseek or fseeko function, specifies that the offset provided is relative to the
end of the file.

Functionvoid rewind (FILE *stream)
The rewind function positions the stream stream at the beginning of the file.
It is equivalent to calling fseek or fseeko on the stream with an offset argu-
ment of 0L and a whence argument of SEEK_SET, except that the return value
is discarded and the error indicator for the stream is reset.

These three aliases for the ‘SEEK_...’ constants exist for the sake of com-
patibility with older BSD systems. They are defined in two different header files:
‘fcntl.h’ and ‘sys/file.h’.

L_SET An alias for SEEK_SET

L_INCR An alias for SEEK_CUR

L_XTND An alias for SEEK_END

17.19 Portable File-Position Functions
On the GNU system, the file position is truly a character count. You can specify

any character count value as an argument to fseek or fseeko and get reliable
results for any random-access file. However, some ISO C systems do not represent
file positions in this way.

On some systems where text streams truly differ from binary streams, it is impos-
sible to represent the file position of a text stream as a count of characters from the

22 Ibid., “Input and Output Primitives”.
23 Ibid., “Control Operations on Files”.

Chapter 17: Input/Output on Streams 503

beginning of the file. For example, the file position on some systems must encode
both a record offset within the file, and a character offset within the record.

As a consequence, if you want your programs to be portable to these systems,
you must observe certain rules:

• The value returned from ftell on a text stream has no predictable relation-
ship to the number of characters you have read so far. The only thing you can
rely on is that you can use it subsequently as the offset argument to fseek or
fseeko to move back to the same file position.

• In a call to fseek or fseeko on a text stream, either the offset must be zero,
or whence must be SEEK_SET and the offset must be the result of an earlier
call to ftell on the same stream.

• The value of the file-position indicator of a text stream is undefined while there
are characters that have been pushed back with ungetc that haven’t been read
or discarded (see Section 17.10 [Unreading], page 458).

But even if you observe these rules, you may still have trouble with long files,
because ftell and fseek use a long int value to represent the file position.
This type may not have room to encode all the file positions in a large file. Using
the ftello and fseeko functions might help here, since the off_t type is
expected to be able to hold all file-position values but this still does not help to
handle additional information that must be associated with a file position.

So if you do want to support systems with peculiar encodings for the file po-
sitions, it is better to use the functions fgetpos and fsetpos instead. These
functions represent the file position using the data type fpos_t, whose internal
representation varies from system to system.

These symbols are declared in the header file ‘stdio.h’.

Data Typefpos t
This is the type of an object that can encode information about the file position
of a stream, for use by the functions fgetpos and fsetpos.
In the GNU system, fpos_t is an opaque data structure that contains internal
data to represent file-offset and conversion-state information. In other systems,
it might have a different internal representation.
When compiling with _FILE_OFFSET_BITS == 64 on a 32-bit machine,
this type is in fact equivalent to fpos64_t, since the LFS interface transpar-
ently replaces the old interface.

Data Typefpos64 t
This is the type of an object that can encode information about the file position
of a stream, for use by the functions fgetpos64 and fsetpos64.
In the GNU system, fpos64_t is an opaque data structure that contains internal
data to represent file-offset and conversion-state information. In other systems,
it might have a different internal representation.

504 The GNU C Library: Application Fundamentals

Functionint fgetpos (FILE *stream, fpos_t *position)
This function stores the value of the file-position indicator for the stream stream
in the fpos_t object pointed to by position. If successful, fgetpos re-
turns zero. Otherwise, it returns a nonzero value and stores an implementation-
defined positive value in errno.
When the sources are compiled with _FILE_OFFSET_BITS == 64 on a 32-
bit system, the function is in fact fgetpos64—the LFS interface transparently
replaces the old interface.

Functionint fgetpos64 (FILE *stream, fpos64_t *position)
This function is similar to fgetpos, but the file position is returned in a vari-
able of type fpos64_t to which position points.
If the sources are compiled with _FILE_OFFSET_BITS == 64 on a 32-bit
machine, this function is available under the name fgetpos, and so transpar-
ently replaces the old interface.

Functionint fsetpos (FILE *stream, const fpos_t *position)
This function sets the file-position indicator for the stream stream to the position
position, which must have been set by a previous call to fgetpos on the same
stream. If successful, fsetpos clears the end-of-file indicator on the stream,
discards any characters that were pushed back by the use of ungetc, and re-
turns a value of zero. Otherwise, fsetpos returns a nonzero value and stores
an implementation-defined positive value in errno.
When the sources are compiled with _FILE_OFFSET_BITS == 64 on a 32-
bit system, the function is in fact fsetpos64—the LFS interface transparently
replaces the old interface.

Functionint fsetpos64 (FILE *stream, const fpos64_t *position)
This function is similar to fsetpos, but the file position used for positioning
is provided in a variable of type fpos64_t to which position points.
If the sources are compiled with _FILE_OFFSET_BITS == 64 on a 32-bit
machine, this function is available under the name fsetpos, and so transpar-
ently replaces the old interface.

17.20 Stream Buffering
Characters that are written to a stream are normally accumulated and transmitted

asynchronously to the file in a block, instead of appearing as soon as they are output
by the application program. Similarly, streams often retrieve input from the host
environment in blocks rather than on a character-by-character basis. This is called
buffering.

If you are writing programs that do interactive input and output using streams,
you need to understand how buffering works when you design the user interface to
your program. Otherwise, you might find that output (such as progress or prompt

Chapter 17: Input/Output on Streams 505

messages) doesn’t appear when you intended it to, or displays some other unex-
pected behavior.

This section deals only with controlling when characters are transmitted between
the stream and the file or device, and not with how things like echoing, flow control
and the like are handled on specific classes of devices.24

You can bypass the stream buffering facilities altogether by using the low-level
input and output functions that operate on file descriptors instead.25

17.20.1 Buffering Concepts

There are three different kinds of buffering strategies:
• Characters written to or read from an unbuffered stream are transmitted indi-

vidually to or from the file as soon as possible.
• Characters written to a line buffered stream are transmitted to the file in blocks

when a newline character is encountered.
• Characters written to or read from a fully buffered stream are transmitted to

or from the file in blocks of arbitrary size.

Newly opened streams are normally fully buffered, with one exception: a stream
connected to an interactive device such as a terminal is initially line buffered (see
Section 17.20.3 [Controlling Which Kind of Buffering], page 506, for information
on how to select a different kind of buffering). Usually, the automatic selection
gives you the most convenient kind of buffering for the file or device you open.

The use of line buffering for interactive devices implies that output messages
ending in a newline will appear immediately—which is usually what you want.
Output that doesn’t end in a newline might or might not show up immediately, so if
you want them to appear immediately, you should flush buffered output explicitly
with fflush, as described in Section 17.20.2 [Flushing Buffers], page 505.

17.20.2 Flushing Buffers

Flushing output on a buffered stream means transmitting all accumulated char-
acters to the file. There are many circumstances when buffered output on a stream
is flushed automatically:

• When you try to do output and the output buffer is full
• When the stream is closed (see Section 17.4 [Closing Streams], page 444)
• When the program terminates by calling exit (see Section 14.6.1 [Normal

Termination], page 425)
• When a newline is written, if the stream is line buffered
• Whenever an input operation on any stream actually reads data from its file

24 For information on common control operations on terminal devices, see Loosemore et al., “Low-
Level Terminal Interface”.

25 Ibid., “Low-Level Input/Output”.

506 The GNU C Library: Application Fundamentals

If you want to flush the buffered output at another time, call fflush, which is
declared in the header file ‘stdio.h’.

Functionint fflush (FILE *stream)
This function causes any buffered output on stream to be delivered to the file. If
stream is a null pointer, then fflush causes buffered output on all open output
streams to be flushed.
This function returns EOF if a write error occurs, or zero otherwise.

Functionint fflush unlocked (FILE *stream)
The fflush_unlocked function is equivalent to the fflush function, ex-
cept that it does not implicitly lock the stream.

The fflush function can be used to flush all streams currently opened. While
this is useful in some situations, it often does more than necessary. It could be used
when terminal input is required and the programmer wants to be sure that all output
is visible on the terminal. But this means that only line-buffered streams have to be
flushed. Solaris introduced a function especially for this. It was always available in
the GNU C Library in some form but never officially exported.

Functionvoid flushlbf (void)
The _flushlbf function flushes all line buffered streams currently opened.
This function is declared in the ‘stdio_ext.h’ header.

Compatibility Note: Some operating systems have been known to be so thor-
oughly fixated on line-oriented input and output that flushing a line buffered stream
causes a newline to be written! Fortunately, this “feature” seems to be becoming
less common. You do not need to worry about this in the GNU system.

In some situations, it might be useful to not flush the output pending for a stream
but instead simply forget it. If transmission is costly and the output is not needed
anymore, this is valid reasoning. In this situation, a nonstandard function intro-
duced in Solaris and available in the GNU C Library can be used.

Functionvoid fpurge (FILE *stream)
The __fpurge function causes the buffer of the stream stream to be emptied.
If the stream is currently in read mode, all input in the buffer is lost. If the stream
is in output mode, the buffered output is not written to the device (or whatever
other underlying storage), and the buffer is cleared.
This function is declared in ‘stdio_ext.h’.

17.20.3 Controlling Which Kind of Buffering

After opening a stream (but before any other operations have been performed on
it), you can explicitly specify what kind of buffering you want it to have using the
setvbuf function.

The facilities listed in this section are declared in the header file ‘stdio.h’.

Chapter 17: Input/Output on Streams 507

Functionint setvbuf (FILE *stream, char *buf, int mode, size_t
size)

This function is used to specify that the stream stream should have the buffering
mode mode, which can be either _IOFBF (for full buffering), _IOLBF (for line
buffering), or _IONBF (for unbuffered input/output).
If you specify a null pointer as the buf argument, then setvbuf allocates a
buffer itself using malloc. This buffer will be freed when you close the stream.
Otherwise, buf should be a character array that can hold at least size characters.
You should not free the space for this array as long as the stream remains open
and this array remains its buffer. You should usually either allocate it statically,
or malloc (see Section 3.2.2 [Unconstrained Allocation], page 42) the buffer.
Using an automatic array is not a good idea unless you close the file before
exiting the block that declares the array.
While the array remains a stream buffer, the stream I/O functions will use the
buffer for their internal purposes. You shouldn’t try to access the values in the
array directly while the stream is using it for buffering.
The setvbuf function returns zero on success, or a nonzero value if the value
of mode is not valid, or if the request could not be honored.

Macroint IOFBF
The value of this macro is an integer constant expression that can be used as the
mode argument to the setvbuf function to specify that the stream should be
fully buffered.

Macroint IOLBF
The value of this macro is an integer constant expression that can be used as the
mode argument to the setvbuf function to specify that the stream should be
line buffered.

Macroint IONBF
The value of this macro is an integer constant expression that can be used as the
mode argument to the setvbuf function to specify that the stream should be
unbuffered.

Macroint BUFSIZ
The value of this macro is an integer constant expression that is good to use for
the size argument to setvbuf. This value is guaranteed to be at least 256.
The value of BUFSIZ is chosen on each system so as to make stream I/O effi-
cient. So it is a good idea to use BUFSIZ as the size for the buffer when you
call setvbuf.
Actually, you can get an even better value to use for the buffer size by means
of the fstat system call—it is found in the st_blksize field of the file
attributes.26

26 Ibid., “Attribute Meanings”.

508 The GNU C Library: Application Fundamentals

Sometimes people also use BUFSIZ as the allocation size of buffers used for
related purposes, such as strings used to receive a line of input with fgets (see
Section 17.8 [Character Input], page 453). There is no particular reason to use
BUFSIZ for this instead of any other integer, except that it might lead to doing
I/O in chunks of an efficient size.

Functionvoid setbuf (FILE *stream, char *buf)
If buf is a null pointer, the effect of this function is equivalent to calling
setvbuf with a mode argument of _IONBF. Otherwise, it is equivalent to
calling setvbuf with buf, and a mode of _IOFBF and a size argument of
BUFSIZ.
The setbuf function is provided for compatibility with old code. Use
setvbuf in all new programs.

Functionvoid setbuffer (FILE *stream, char *buf, size_t size)
If buf is a null pointer, this function makes stream unbuffered. Otherwise, it
makes stream fully buffered using buf as the buffer. The size argument specifies
the length of buf.
This function is provided for compatibility with old BSD code. Use setvbuf
instead.

Functionvoid setlinebuf (FILE *stream)
This function makes stream be line buffered, and allocates the buffer for you.
This function is provided for compatibility with old BSD code. Use setvbuf
instead.

It is possible to query whether a given stream is line buffered or not using a
nonstandard function introduced in Solaris and available in the GNU C Library.

Functionint flbf (FILE *stream)
The __flbf function will return a nonzero value in case the stream stream is
line buffered. Otherwise, the return value is zero.
This function is declared in the ‘stdio_ext.h’ header.

Two more extensions allow you to determine the size of the buffer and how much
of it is used. These functions were also introduced in Solaris.

Functionsize_t fbufsize (FILE *stream)
The __fbufsize function returns the size of the buffer in the stream stream.
This value can be used to optimize the use of the stream.
This function is declared in the ‘stdio_ext.h’ header.

Functionsize_t fpending (FILE *stream)
The __fpending function returns the number of bytes currently in the output
buffer. For a wide-oriented stream, the measuring unit is wide characters. This
function should not be used on buffers in read mode or opened read-only.
This function is declared in the ‘stdio_ext.h’ header.

Chapter 17: Input/Output on Streams 509

17.21 Other Kinds of Streams
The GNU library provides ways for you to define additional kinds of streams that

do not necessarily correspond to an open file.
One such type of stream takes input from or writes output to a string. These kinds

of streams are used internally to implement the sprintf and sscanf functions.
You can also create such a stream explicitly, using the functions described in Sec-
tion 17.21.1 [String Streams], page 509.

More generally, you can define streams that do input/output to arbitrary objects
using functions supplied by your program. This protocol is discussed in Sec-
tion 17.21.3 [Programming Your Own Custom Streams], page 512.

Portability Note: The facilities described in this section are specific to GNU.
Other systems or C implementations might or might not provide equivalent func-
tionality.

17.21.1 String Streams

The fmemopen and open_memstream functions allow you to do I/O to a
string or memory buffer. These facilities are declared in ‘stdio.h’.

FunctionFILE * fmemopen (void *buf, size_t size, const char
*opentype)

This function opens a stream that allows the access specified by the opentype
argument, that reads from or writes to the buffer specified by the argument buf.
This array must be at least size bytes long.
If you specify a null pointer as the buf argument, fmemopen dynamically al-
locates an array size bytes long (as with malloc; see Section 3.2.2 [Uncon-
strained Allocation], page 42). This is really only useful if you are going to
write things to the buffer and then read them back in again, because you have no
way of actually getting a pointer to the buffer (for this, try open_memstream,
below). The buffer is freed when the stream is closed.
The argument opentype is the same as in fopen (see Section 17.3 [Opening
Streams], page 440). If the opentype specifies append mode, then the initial file
position is set to the first null character in the buffer. Otherwise, the initial file
position is at the beginning of the buffer.
When a stream open for writing is flushed or closed, a null character (zero byte)
is written at the end of the buffer if it fits. You should add an extra byte to the
size argument to account for this. Attempts to write more than size bytes to the
buffer result in an error.
For a stream open for reading, null characters (0 bytes) in the buffer do not
count as end of file. Read operations indicate end of file only when the file
position advances past size bytes. So, if you want to read characters from a
null-terminated string, you should supply the length of the string as the size
argument.

510 The GNU C Library: Application Fundamentals

Here is an example of using fmemopen to create a stream for reading from a
string:

#include <stdio.h>

static char buffer[] = "foobar";

int

main (void)

{

int ch;

FILE *stream;

stream = fmemopen (buffer, strlen (buffer), "r");

while ((ch = fgetc (stream)) != EOF)

printf ("Got %c\n", ch);

fclose (stream);

return 0;

}

This program produces the following output:
Got f

Got o

Got o

Got b

Got a

Got r

FunctionFILE * open memstream (char **ptr, size_t *sizeloc)
This function opens a stream for writing to a buffer. The buffer is allocated
dynamically (as with malloc; see Section 3.2.2 [Unconstrained Allocation],
page 42) and grown as necessary.
When the stream is closed with fclose or flushed with fflush, the locations
ptr and sizeloc are updated to contain the pointer to the buffer and its size. The
values thus stored remain valid only as long as no further output on the stream
takes place. If you do more output, you must flush the stream again to store new
values before you use them again.
A null character is written at the end of the buffer. This null character is not
included in the size value stored at sizeloc.
You can move the stream’s file position with fseek or fseeko (see Sec-
tion 17.18 [File Positioning], page 500). Moving the file position past the end
of the data already written fills the intervening space with zeros.

Here is an example of using open_memstream:

Chapter 17: Input/Output on Streams 511

#include <stdio.h>

int

main (void)

{

char *bp;

size_t size;

FILE *stream;

stream = open_memstream (&bp, &size);

fprintf (stream, "hello");

fflush (stream);

printf ("buf = ‘%s’, size = %d\n", bp, size);

fprintf (stream, ", world");

fclose (stream);

printf ("buf = ‘%s’, size = %d\n", bp, size);

return 0;

}

This program produces the following output:
buf = ‘hello’, size = 5

buf = ‘hello, world’, size = 12

17.21.2 Obstack Streams

You can open an output stream that puts it data in an obstack (see Section 3.2.4
[Obstacks], page 59).

FunctionFILE * open obstack stream (struct obstack *obstack)
This function opens a stream for writing data into the obstack obstack. This
starts an object in the obstack and makes it grow as data is written (see Sec-
tion 3.2.4.6 [Growing Objects], page 64).
Calling fflush on this stream updates the current size of the object to match
the amount of data that has been written. After a call to fflush, you can
examine the object temporarily.
You can move the file position of an obstack stream with fseek or fseeko
(see Section 17.18 [File Positioning], page 500). Moving the file position past
the end of the data written fills the intervening space with zeros.
To make the object permanent, update the obstack with fflush, and then use
obstack_finish to finalize the object and get its address. The following
write to the stream starts a new object in the obstack, and later writes add to that
object until you do another fflush and obstack_finish.

512 The GNU C Library: Application Fundamentals

But how do you find out how long the object is? You can get the length in
bytes by calling obstack_object_size (see Section 3.2.4.8 [Status of an
Obstack], page 67), or you can null-terminate the object like this:

obstack_1grow (obstack, 0);

Whichever one you do (you can do both if you wish), you must do it before
calling obstack_finish.

Here is a sample function that uses open_obstack_stream:
char *

make_message_string (const char *a, int b)

{

FILE *stream = open_obstack_stream (&message_obstack);

output_task (stream);

fprintf (stream, ": ");

fprintf (stream, a, b);

fprintf (stream, "\n");

fclose (stream);

obstack_1grow (&message_obstack, 0);

return obstack_finish (&message_obstack);

}

17.21.3 Programming Your Own Custom Streams

This section describes how you can make a stream that gets input from an ar-
bitrary data source or writes output to an arbitrary data sink programmed by you.
We call these custom streams. The functions and types described here are all GNU
extensions.

17.21.3.1 Custom Streams and Cookies

Inside every custom stream is a special object called the cookie. This is an object
supplied by you that records where to fetch or store the data read or written. It is
up to you to define a data type to use for the cookie. The stream functions in the
library never refer directly to its contents, and they don’t even know what the type
is; they record its address with type void *.

To implement a custom stream, you must specify how to fetch or store the data in
the specified place. You do this by defining hook functions to read, write, change
file position, and close the stream. All four of these functions will be passed the
stream’s cookie so they can tell where to fetch or store the data. The library func-
tions don’t know what’s inside the cookie, but your functions will know.

When you create a custom stream, you must specify the cookie pointer, and also
the four hook functions stored in a structure of type cookie_io_functions_
t.

These facilities are declared in ‘stdio.h’.

Chapter 17: Input/Output on Streams 513

Data Typecookie io functions t
This is a structure type that holds the functions that define the communications
protocol between the stream and its cookie. It has the following members:

cookie_read_function_t *read
This is the function that reads data from the cookie. If the value
is a null pointer instead of a function, then read operations on this
stream always return EOF.

cookie_write_function_t *write
This is the function that writes data to the cookie. If the value is a
null pointer instead of a function, then data written to the stream is
discarded.

cookie_seek_function_t *seek
This is the function that performs the equivalent of file positioning
on the cookie. If the value is a null pointer instead of a function,
calls to fseek or fseeko on this stream can only seek to loca-
tions within the buffer; any attempt to seek outside the buffer will
return an ESPIPE error.

cookie_close_function_t *close
This function performs any appropriate clean-up on the cookie
when closing the stream. If the value is a null pointer instead of
a function, nothing special is done to close the cookie when the
stream is closed.

FunctionFILE * fopencookie (void *cookie, const char *opentype,
cookie_io_functions_t io-functions)

This function actually creates the stream for communicating with the cookie
using the functions in the io-functions argument. The opentype argument is
interpreted as for fopen (see Section 17.3 [Opening Streams], page 440)—
but note that the truncate on open option is ignored. The new stream is fully
buffered.
The fopencookie function returns the newly created stream, or a null pointer
in case of an error.

17.21.3.2 Custom Stream Hook Functions

Here are more details on how you should define the four hook functions that a
custom stream needs.

You should define the function to read data from the cookie as:
ssize_t reader (void *cookie, char *buffer, size_t size)

This is very similar to the read function.27 Your function should transfer up to
size bytes into the buffer, and return the number of bytes read, or zero to indicate
end of file. You can return a value of -1 to indicate an error.
27 Ibid., “I/O Primitives”.

514 The GNU C Library: Application Fundamentals

You should define the function to write data to the cookie as:
ssize_t writer (void *cookie, const char *buffer, size_t size)

This is very similar to the write function.28 Your function should transfer up to
size bytes from the buffer, and return the number of bytes written. You can return
a value of -1 to indicate an error.

You should define the function to perform seek operations on the cookie as:
int seeker (void *cookie, fpos_t *position, int whence)

For this function, the position and whence arguments are interpreted as for
fgetpos (see Section 17.19 [Portable File-Position Functions], page 502). In the
GNU library, fpos_t is equivalent to off_t or long int, and simply represents
the number of bytes from the beginning of the file.

After doing the seek operation, your function should store the resulting file posi-
tion relative to the beginning of the file in position. Your function should return a
value of 0 on success and -1 to indicate an error.

You should define the function to do clean-up operations on the cookie appropri-
ate for closing the stream as:

int cleaner (void *cookie)

Your function should return -1 to indicate an error, and 0 otherwise.

Data Typecookie read function
This is the data type that the read function for a custom stream should have. If
you declare the function as shown above, this is the type it will have.

Data Typecookie write function
This is the data type of the write function for a custom stream.

Data Typecookie seek function
This is the data type of the seek function for a custom stream.

Data Typecookie close function
This is the data type of the close function for a custom stream.

17.22 Formatted Messages
On systems that are based on System V, messages of programs (especially the

system tools) are printed in a strict form using the fmtmsg function. The unifor-
mity sometimes helps the user to interpret messages, and the strictness tests of the
fmtmsg function ensure that the programmer follows some minimal requirements.

28 Ibid., “I/O Primitives”.

Chapter 17: Input/Output on Streams 515

17.22.1 Printing Formatted Messages

Messages can be printed to standard error and/or to the console. To select the
destination, the programmer can use the following two values, bit-wise OR com-
bined if wanted, for the classification parameter of fmtmsg:

MM_PRINT
Display the message in standard error.

MM_CONSOLE
Display the message on the system console.

The erroneous piece of the system can be signalled by exactly one of the follow-
ing values that also is bit-wise ORed with the classification parameter to fmtmsg:

MM_HARD The source of the condition is some hardware.

MM_SOFT The source of the condition is some software.

MM_FIRM The source of the condition is some firmware.

A third component of the classification parameter to fmtmsg can describe the
part of the system that detects the problem. This is done by using exactly one of
the following values:

MM_APPL The erroneous condition is detected by the application.

MM_UTIL The erroneous condition is detected by a utility.

MM_OPSYS
The erroneous condition is detected by the operating system.

A last component of classification can signal the results of this message. Exactly
one of the following values can be used:

MM_RECOVER
It is a recoverable error.

MM_NRECOV
It is a nonrecoverable error.

Functionint fmtmsg (long int classification, const char *label,
int severity, const char *text, const char *action, const
char *tag)

Display a message described by its parameters on the device(s) specified in the
classification parameter. The label parameter identifies the source of the mes-
sage. The string should consist of two colon-separated parts where the first part
has not more than ten and the second part not more than fourteen characters.
The text parameter describes the condition of the error, the action parameter
describes possible steps to recover from the error, and the tag parameter is a

516 The GNU C Library: Application Fundamentals

reference to the online documentation where more information can be found. It
should contain the label value and a unique identification number.
Each of the parameters can be a special value that means this value is to be
omitted. The symbolic names for these values are

MM_NULLLBL
Ignore label parameter.

MM_NULLSEV
Ignore severity parameter.

MM_NULLMC
Ignore classification parameter. This implies that nothing is actu-
ally printed.

MM_NULLTXT
Ignore text parameter.

MM_NULLACT
Ignore action parameter.

MM_NULLTAG
Ignore tag parameter.

There is another way certain fields can be omitted from the output to standard
error. This is described below in the description of environment variables influ-
encing the behavior.
The severity parameter can have one of the values in the following table:

MM_NOSEV
Nothing is printed; this value is the same as MM_NULLSEV.

MM_HALT This value is printed as HALT.

MM_ERROR
This value is printed as ERROR.

MM_WARNING
This value is printed as WARNING.

MM_INFO This value is printed as INFO.

The numeric values of these five macros are between 0 and 4. Using the en-
vironment variable SEV_LEVEL, or using the addseverity function, one
can add more severity levels with their corresponding string to print. This is
described below (see Section 17.22.2 [Adding Severity Classes], page 518).
If no parameter is ignored, the output looks like this:

Chapter 17: Input/Output on Streams 517

label: severity-string: text

TO FIX: action tag

The colons, newline characters and the TO FIX string are inserted if necessary,
i.e., if the corresponding parameter is not ignored.
This function is specified in the X/Open Portability Guide.29 It is also available
on all systems derived from System V.
The function returns the value MM_OK if no error occurred. If only the printing
to standard error failed, it returns MM_NOMSG. If printing to the console fails,
it returns MM_NOCON. If nothing is printed, MM_NOTOK is returned. Among
situations where all outputs fail, this last value is also returned if a parameter
value is incorrect.

There are two environment variables that influence the behavior of fmtmsg. The
first is MSGVERB. It is used to control the output actually happening on standard
error (not the console output). Each of the five fields can explicitly be enabled. To
do this, the user has to put the MSGVERB variable with a format like the following
in the environment before calling the fmtmsg function the first time:

MSGVERB=keyword[:keyword[:...]]

Valid keywords are label, severity, text, action and tag. If the en-
vironment variable is not given or is an empty string, an unsupported keyword is
given, or the value is somehow else invalid, no part of the message is masked out.

The second environment variable that influences the behavior of fmtmsg is
SEV_LEVEL. This variable and the change in the behavior of fmtmsg are not
specified in the X/Open Portability Guide.30 It is available in System V systems,
though. It can be used to introduce new severity levels. By default, only the five
severity levels described above are available. Any other numeric value would make
fmtmsg print nothing.

If the user puts SEV_LEVEL with a format like:
SEV_LEVEL=[description[:description[:...]]]

in the environment of the process before the first call to fmtmsg, where description
has a value of the form:

severity-keyword,level,printstring

The severity-keyword part is not used by fmtmsg, but it has to be present. The
level part is a string representation of a number. The numeric value must be a num-
ber greater than 4. This value must be used in the severity parameter of fmtmsg
to select this class. It is not possible to overwrite any of the predefined classes.
The printstring is the string printed when a message of this class is processed by
fmtmsg (see above; fmtsmg does not print the numeric value but instead the
string representation).

29 X/Open Company, X/Open Portability Guide, Issue 4, Version 2 (Reading, UK: X/Open Company,
Ltd., 1994).

30 X/Open Company, X/Open Portability Guide, Issue 4, Version 2 (Reading, UK: X/Open Company,
Ltd., 1994).

518 The GNU C Library: Application Fundamentals

17.22.2 Adding Severity Classes

There is another way to introduce severity classes besides using the environ-
ment variable SEV_LEVEL. This simplifies the task of introducing new classes
in a running program. One could use the setenv or putenv function to set the
environment variable, but this is toilsome.

Functionint addseverity (int severity, const char *string)
This function allows the introduction of new severity classes that can be ad-
dressed by the severity parameter of the fmtmsg function. The severity pa-
rameter of addseverity must match the value for the parameter with the
same name of fmtmsg, and string is the string printed in the actual messages
instead of the numeric value.
If string is NULL, the severity class with the numeric value according to severity
is removed.
It is not possible to overwrite or remove one of the default severity classes. All
calls to addseverity with severity set to one of the values for the default
classes will fail.
The return value is MM_OK if the task was successfully performed. If the return
value is MM_NOTOK, something went wrong. This could mean that no more
memory is available, or a class is not available when it has to be removed.
This function is not specified in the X/Open Portability Guide31, although the
fmtsmg function is. It is available on System V systems.

17.22.3 How to Use fmtmsg and addseverity

Here is a simple example program to illustrate the use of both of the functions
described in this section:

#include <fmtmsg.h>

int

main (void)

{

addseverity (5, "NOTE2");

fmtmsg (MM_PRINT, "only1field", MM_INFO, "text2", "action2", "tag2");

fmtmsg (MM_PRINT, "UX:cat", 5, "invalid syntax", "refer to manual",

"UX:cat:001");

fmtmsg (MM_PRINT, "label:foo", 6, "text", "action", "tag");

return 0;

}

31 X/Open Company, X/Open Portability Guide, Issue 4, Version 2 (Reading, UK: X/Open Company,
Ltd., 1994).

Chapter 17: Input/Output on Streams 519

The second call to fmtmsg illustrates a use of this function as it usually occurs
on System V systems, which heavily use this function. It seems worthwhile to give
a short explanation here of how this system works on System V. The value of the
label field (UX:cat) says that the error occurred in the Unix program cat. The
explanation of the error follows and the value for the action parameter is refer to
manual. One could be more specific here, if necessary. The tag field contains, as
proposed above, the value of the string given for the label parameter, and addi-
tionally a unique ID (001 in this case). For a GNU environment, this string could
contain a reference to the corresponding node in the Info page for the program.
Running this program without specifying the MSGVERB and SEV_LEVEL function
produces the following output:

UX:cat: NOTE2: invalid syntax

TO FIX: refer to manual UX:cat:001

We see the different fields of the message and how the extra glue (the colons and
the TO FIX string) is printed. But only one of the three calls to fmtmsg produced
output. The first call does not print anything because the label parameter is not
in the correct form. The string must contain two fields, separated by a colon (see
Section 17.22.1 [Printing Formatted Messages], page 515). The third fmtmsg
call produced no output, since the class with the numeric value 6 is not defined.
Although a class with numeric value 5 is also not defined by default, the call to
addseverity introduces it, and the second call to fmtmsg produces the above
output.

When we change the environment of the program to contain SEV_
LEVEL=XXX,6,NOTE, we get a different result:

UX:cat: NOTE2: invalid syntax

TO FIX: refer to manual UX:cat:001

label:foo: NOTE: text

TO FIX: action tag

Now the third call to fmtmsg produced some output, and we see how the string
NOTE from the environment variable appears in the message.

Now we can reduce the output by specifying which fields we are interested
in. If we additionally set the environment variable MSGVERB to the value
severity:label:action we get the following output:

UX:cat: NOTE2

TO FIX: refer to manual

label:foo: NOTE

TO FIX: action

The output produced by the text and the tag parameters to fmtmsg vanished.
Please also note that now there is no colon after the NOTE and NOTE2 strings in
the output. This is not necessary, since there is no more output on this line because
the text is missing.

520 The GNU C Library: Application Fundamentals

Appendix A: Summary of Library Facilities 521

Appendix A Summary of Library Facilities
This appendix is a complete list of the facilities declared within the header files

supplied with the GNU C Library. Each entry also lists the standard or other source
from which each facility is derived, and tells you where in the manual you can find
more information about how to use it.

long int a64l (const char *string)
‘stdlib.h’ (XPG): Section 5.11 [Encode Binary Data], page 125.

void abort (void)
‘stdlib.h’ (ISO): Section 14.6.4 [Aborting a Program], page 427.

int abs (int number)
‘stdlib.h’ (ISO): Section 9.8.1 [Absolute Value], page 258.

double acos (double x)
‘math.h’ (ISO): Section 8.3 [Inverse Trigonometric Functions], page 206.

float acosf (float x)
‘math.h’ (ISO): Section 8.3 [Inverse Trigonometric Functions], page 206.

double acosh (double x)
‘math.h’ (ISO): Section 8.5 [Hyperbolic Functions], page 212.

float acoshf (float x)
‘math.h’ (ISO): Section 8.5 [Hyperbolic Functions], page 212.

long double acoshl (long double x)
‘math.h’ (ISO): Section 8.5 [Hyperbolic Functions], page 212.

long double acosl (long double x)
‘math.h’ (ISO): Section 8.3 [Inverse Trigonometric Functions], page 206.

int adjtime (const struct timeval *delta, struct timeval *olddelta)
‘sys/time.h’ (BSD): Section 10.4.2 [High-Resolution Calendar], page 283.

int adjtimex (struct timex *timex)
‘sys/timex.h’ (GNU): Section 10.4.2 [High-Resolution Calendar], page 283.

unsigned int alarm (unsigned int seconds)
‘unistd.h’ (POSIX.1): Section 10.5 [Setting an Alarm], page 310.

void * alloca (size_t size);
‘stdlib.h’ (GNU, BSD): Section 3.2.5 [Automatic Storage with Variable Size],
page 71.

error_t argp_err_exit_status
‘argp.h’ (GNU): Section 14.3.2 [Argp Global Variables], page 390.

void argp_error (const struct argp_state *state, const char *fmt, ...)
‘argp.h’ (GNU): Section 14.3.5.2 [Functions for Use in Argp Parsers], page 397.

int ARGP_ERR_UNKNOWN
‘argp.h’ (GNU): Section 14.3.5 [Argp Parser Functions], page 394.

void argp_failure (const struct argp_state *state, int status, int errnum,
const char *fmt, ...)

‘argp.h’ (GNU): Section 14.3.5.2 [Functions for Use in Argp Parsers], page 397.

522 The GNU C Library: Application Fundamentals

void argp_help (const struct argp *argp, FILE *stream, unsigned flags, char
*name)

‘argp.h’ (GNU): Section 14.3.9 [The argp_help Function], page 403.

ARGP_IN_ORDER
‘argp.h’ (GNU): Section 14.3.7 [Flags for argp_parse], page 401.

ARGP_KEY_ARG
‘argp.h’ (GNU): Section 14.3.5.1 [Special Keys for Argp Parser Functions],
page 395.

ARGP_KEY_ARGS
‘argp.h’ (GNU): Section 14.3.5.1 [Special Keys for Argp Parser Functions],
page 395.

ARGP_KEY_END
‘argp.h’ (GNU): Section 14.3.5.1 [Special Keys for Argp Parser Functions],
page 395.

ARGP_KEY_ERROR
‘argp.h’ (GNU): Section 14.3.5.1 [Special Keys for Argp Parser Functions],
page 395.

ARGP_KEY_FINI
‘argp.h’ (GNU): Section 14.3.5.1 [Special Keys for Argp Parser Functions],
page 395.

ARGP_KEY_HELP_ARGS_DOC
‘argp.h’ (GNU): Section 14.3.8.1 [Special Keys for Argp Help Filter Functions],
page 403.

ARGP_KEY_HELP_DUP_ARGS_NOTE
‘argp.h’ (GNU): Section 14.3.8.1 [Special Keys for Argp Help Filter Functions],
page 403.

ARGP_KEY_HELP_EXTRA
‘argp.h’ (GNU): Section 14.3.8.1 [Special Keys for Argp Help Filter Functions],
page 403.

ARGP_KEY_HELP_HEADER
‘argp.h’ (GNU): Section 14.3.8.1 [Special Keys for Argp Help Filter Functions],
page 403.

ARGP_KEY_HELP_POST_DOC
‘argp.h’ (GNU): Section 14.3.8.1 [Special Keys for Argp Help Filter Functions],
page 403.

ARGP_KEY_HELP_PRE_DOC
‘argp.h’ (GNU): Section 14.3.8.1 [Special Keys for Argp Help Filter Functions],
page 403.

ARGP_KEY_INIT
‘argp.h’ (GNU): Section 14.3.5.1 [Special Keys for Argp Parser Functions],
page 395.

ARGP_KEY_NO_ARGS
‘argp.h’ (GNU): Section 14.3.5.1 [Special Keys for Argp Parser Functions],
page 395.

Appendix A: Summary of Library Facilities 523

ARGP_KEY_SUCCESS
‘argp.h’ (GNU): Section 14.3.5.1 [Special Keys for Argp Parser Functions],
page 395.

ARGP_LONG_ONLY
‘argp.h’ (GNU): Section 14.3.7 [Flags for argp_parse], page 401.

ARGP_NO_ARGS
‘argp.h’ (GNU): Section 14.3.7 [Flags for argp_parse], page 401.

ARGP_NO_ERRS
‘argp.h’ (GNU): Section 14.3.7 [Flags for argp_parse], page 401.

ARGP_NO_EXIT
‘argp.h’ (GNU): Section 14.3.7 [Flags for argp_parse], page 401.

ARGP_NO_HELP
‘argp.h’ (GNU): Section 14.3.7 [Flags for argp_parse], page 401.

error_t argp_parse (const struct argp *argp, int argc, char **argv, unsigned
flags, int *arg index, void *input)

‘argp.h’ (GNU): Section 14.3 [Parsing Program Options with Argp], page 389.

ARGP_PARSE_ARGV0
‘argp.h’ (GNU): Section 14.3.7 [Flags for argp_parse], page 401.

const char * argp_program_bug_address
‘argp.h’ (GNU): Section 14.3.2 [Argp Global Variables], page 390.

const char * argp_program_version
‘argp.h’ (GNU): Section 14.3.2 [Argp Global Variables], page 390.

argp_program_version_hook
‘argp.h’ (GNU): Section 14.3.2 [Argp Global Variables], page 390.

ARGP_SILENT
‘argp.h’ (GNU): Section 14.3.7 [Flags for argp_parse], page 401.

void argp_state_help (const struct argp_state *state, FILE *stream,
unsigned flags)

‘argp.h’ (GNU): Section 14.3.5.2 [Functions for Use in Argp Parsers], page 397.

void argp_usage (const struct argp_state *state)
‘argp.h’ (GNU): Section 14.3.5.2 [Functions for Use in Argp Parsers], page 397.

error_t argz_add (char **argz, size_t *argz len, const char *str)
‘argz.h’ (GNU): Section 5.12.1 [Argz Functions], page 127.

error_t argz_add_sep (char **argz, size_t *argz len, const char *str, int
delim)

‘argz.h’ (GNU): Section 5.12.1 [Argz Functions], page 127.

error_t argz_append (char **argz, size_t *argz len, const char *buf, size_t
buf len)

‘argz.h’ (GNU): Section 5.12.1 [Argz Functions], page 127.

size_t argz_count (const char *argz, size_t arg len)
‘argz.h’ (GNU): Section 5.12.1 [Argz Functions], page 127.

error_t argz_create (char *const argv[], char **argz, size_t *argz len)
‘argz.h’ (GNU): Section 5.12.1 [Argz Functions], page 127.

524 The GNU C Library: Application Fundamentals

error_t argz_create_sep (const char *string, int sep, char **argz, size_t
*argz len)

‘argz.h’ (GNU): Section 5.12.1 [Argz Functions], page 127.

error_t argz_delete (char **argz, size_t *argz len, char *entry)
‘argz.h’ (GNU): Section 5.12.1 [Argz Functions], page 127.

void argz_extract (char *argz, size_t argz len, char **argv)
‘argz.h’ (GNU): Section 5.12.1 [Argz Functions], page 127.

error_t argz_insert (char **argz, size_t *argz len, char *before, const char
*entry)

‘argz.h’ (GNU): Section 5.12.1 [Argz Functions], page 127.

char * argz_next (char *argz, size_t argz len, const char *entry)
‘argz.h’ (GNU): Section 5.12.1 [Argz Functions], page 127.

error_t argz_replace (char **argz, size_t *argz len,
const char *str, const char *with, unsigned *replace count)

‘argz.h’ (GNU): Section 5.12.1 [Argz Functions], page 127.

void argz_stringify (char *argz, size_t len, int sep)
‘argz.h’ (GNU): Section 5.12.1 [Argz Functions], page 127.

char * asctime (const struct tm *brokentime)
‘time.h’ (ISO): Section 10.4.5 [Formatting Calendar Time], page 291.

char * asctime_r (const struct tm *brokentime, char *buffer)
‘time.h’ (POSIX.1c): Section 10.4.5 [Formatting Calendar Time], page 291.

double asin (double x)
‘math.h’ (ISO): Section 8.3 [Inverse Trigonometric Functions], page 206.

float asinf (float x)
‘math.h’ (ISO): Section 8.3 [Inverse Trigonometric Functions], page 206.

double asinh (double x)
‘math.h’ (ISO): Section 8.5 [Hyperbolic Functions], page 212.

float asinhf (float x)
‘math.h’ (ISO): Section 8.5 [Hyperbolic Functions], page 212.

long double asinhl (long double x)
‘math.h’ (ISO): Section 8.5 [Hyperbolic Functions], page 212.

long double asinl (long double x)
‘math.h’ (ISO): Section 8.3 [Inverse Trigonometric Functions], page 206.

int asprintf (char **ptr, const char *template, ...)
‘stdio.h’ (GNU): Section 17.12.8 [Dynamically Allocating Formatted Output],
page 473.

double atan (double x)
‘math.h’ (ISO): Section 8.3 [Inverse Trigonometric Functions], page 206.

double atan2 (double y, double x)
‘math.h’ (ISO): Section 8.3 [Inverse Trigonometric Functions], page 206.

float atan2f (float y, float x)
‘math.h’ (ISO): Section 8.3 [Inverse Trigonometric Functions], page 206.

Appendix A: Summary of Library Facilities 525

long double atan2l (long double y, long double x)
‘math.h’ (ISO): Section 8.3 [Inverse Trigonometric Functions], page 206.

float atanf (float x)
‘math.h’ (ISO): Section 8.3 [Inverse Trigonometric Functions], page 206.

double atanh (double x)
‘math.h’ (ISO): Section 8.5 [Hyperbolic Functions], page 212.

float atanhf (float x)
‘math.h’ (ISO): Section 8.5 [Hyperbolic Functions], page 212.

long double atanhl (long double x)
‘math.h’ (ISO): Section 8.5 [Hyperbolic Functions], page 212.

long double atanl (long double x)
‘math.h’ (ISO): Section 8.3 [Inverse Trigonometric Functions], page 206.

int atexit (void (*function) (void))
‘stdlib.h’ (ISO): Section 14.6.3 [Clean-Ups on Exit], page 426.

double atof (const char *string)
‘stdlib.h’ (ISO): Section 9.11.2 [Parsing of Floats], page 273.

int atoi (const char *string)
‘stdlib.h’ (ISO): Section 9.11.1 [Parsing of Integers], page 268.

long int atol (const char *string)
‘stdlib.h’ (ISO): Section 9.11.1 [Parsing of Integers], page 268.

long long int atoll (const char *string)
‘stdlib.h’ (ISO): Section 9.11.1 [Parsing of Integers], page 268.

int backtrace (void **buffer, int size)
‘execinfo.h’ (GNU): Section 16.1 [Backtraces], page 435.

char ** backtrace_symbols (void *const *buffer, int size)
‘execinfo.h’ (GNU): Section 16.1 [Backtraces], page 435.

void backtrace_symbols_fd (void *const *buffer, int size, int fd)
‘execinfo.h’ (GNU): Section 16.1 [Backtraces], page 435.

char * basename (char *path)
‘libgen.h’ (XPG): Section 5.8 [Finding Tokens in a String], page 119.

char * basename (const char *filename)
‘string.h’ (GNU): Section 5.8 [Finding Tokens in a String], page 119.

int bcmp (const void *a1, const void *a2, size_t size)
‘string.h’ (BSD): Section 5.5 [String/Array Comparison], page 105.

void bcopy (const void *from, void *to, size_t size)
‘string.h’ (BSD): Section 5.4 [Copying and Concatenation], page 93.

char * bindtextdomain (const char *domainname, const char *dirname)
‘libintl.h’ (GNU): Section 11.2.1.2 [How to Determine Which Catalog to Use],
page 328.

char * bind_textdomain_codeset (const char *domainname, const char
*codeset)

‘libintl.h’ (GNU): Section 11.2.1.4 [How to Specify the Output Character Set
That gettext Uses], page 335.

526 The GNU C Library: Application Fundamentals

int brk (void *addr)
‘unistd.h’ (BSD): Section 3.3 [Resizing the Data Segment], page 74.

_BSD_SOURCE
(GNU): Section 1.3.4 [Feature-Test Macros], page 8.

void * bsearch (const void *key, const void *array, size_t count, size_t size,
comparison_fn_t compare)

‘stdlib.h’ (ISO): Section 12.2 [Array Search Function], page 343.

wint_t btowc (int c)
‘wchar.h’ (ISO): Section 6.3.3 [Converting Single Characters], page 140.

int BUFSIZ
‘stdio.h’ (ISO): Section 17.20.3 [Controlling Which Kind of Buffering],
page 506.

void bzero (void *block, size_t size)
‘string.h’ (BSD): Section 5.4 [Copying and Concatenation], page 93.

double cabs (complex double z)
‘complex.h’ (ISO): Section 9.8.1 [Absolute Value], page 258.

float cabsf (complex float z)
‘complex.h’ (ISO): Section 9.8.1 [Absolute Value], page 258.

long double cabsl (complex long double z)
‘complex.h’ (ISO): Section 9.8.1 [Absolute Value], page 258.

complex double cacos (complex double z)
‘complex.h’ (ISO): Section 8.3 [Inverse Trigonometric Functions], page 206.

complex float cacosf (complex float z)
‘complex.h’ (ISO): Section 8.3 [Inverse Trigonometric Functions], page 206.

complex double cacosh (complex double z)
‘complex.h’ (ISO): Section 8.5 [Hyperbolic Functions], page 212.

complex float cacoshf (complex float z)
‘complex.h’ (ISO): Section 8.5 [Hyperbolic Functions], page 212.

complex long double cacoshl (complex long double z)
‘complex.h’ (ISO): Section 8.5 [Hyperbolic Functions], page 212.

complex long double cacosl (complex long double z)
‘complex.h’ (ISO): Section 8.3 [Inverse Trigonometric Functions], page 206.

void * calloc (size_t count, size_t eltsize)
‘malloc.h’, ‘stdlib.h’ (ISO): Section 3.2.2.5 [Allocating Cleared Space],
page 46.

double carg (complex double z)
‘complex.h’ (ISO): Section 9.10 [Projections, Conjugates and Decomposing of
Complex Numbers], page 267.

float cargf (complex float z)
‘complex.h’ (ISO): Section 9.10 [Projections, Conjugates and Decomposing of
Complex Numbers], page 267.

long double cargl (complex long double z)
‘complex.h’ (ISO): Section 9.10 [Projections, Conjugates and Decomposing of
Complex Numbers], page 267.

Appendix A: Summary of Library Facilities 527

complex double casin (complex double z)
‘complex.h’ (ISO): Section 8.3 [Inverse Trigonometric Functions], page 206.

complex float casinf (complex float z)
‘complex.h’ (ISO): Section 8.3 [Inverse Trigonometric Functions], page 206.

complex double casinh (complex double z)
‘complex.h’ (ISO): Section 8.5 [Hyperbolic Functions], page 212.

complex float casinhf (complex float z)
‘complex.h’ (ISO): Section 8.5 [Hyperbolic Functions], page 212.

complex long double casinhl (complex long double z)
‘complex.h’ (ISO): Section 8.5 [Hyperbolic Functions], page 212.

complex long double casinl (complex long double z)
‘complex.h’ (ISO): Section 8.3 [Inverse Trigonometric Functions], page 206.

complex double catan (complex double z)
‘complex.h’ (ISO): Section 8.3 [Inverse Trigonometric Functions], page 206.

complex float catanf (complex float z)
‘complex.h’ (ISO): Section 8.3 [Inverse Trigonometric Functions], page 206.

complex double catanh (complex double z)
‘complex.h’ (ISO): Section 8.5 [Hyperbolic Functions], page 212.

complex float catanhf (complex float z)
‘complex.h’ (ISO): Section 8.5 [Hyperbolic Functions], page 212.

complex long double catanhl (complex long double z)
‘complex.h’ (ISO): Section 8.5 [Hyperbolic Functions], page 212.

complex long double catanl (complex long double z)
‘complex.h’ (ISO): Section 8.3 [Inverse Trigonometric Functions], page 206.

nl_catd catopen (const char *cat name, int flag)
‘nl_types.h’ (X/Open): Section 11.1.1 [The catgets Function Family],
page 316.

double cbrt (double x)
‘math.h’ (BSD): Section 8.4 [Exponentiation and Logarithms], page 207.

float cbrtf (float x)
‘math.h’ (BSD): Section 8.4 [Exponentiation and Logarithms], page 207.

long double cbrtl (long double x)
‘math.h’ (BSD): Section 8.4 [Exponentiation and Logarithms], page 207.

complex double ccos (complex double z)
‘complex.h’ (ISO): Section 8.2 [Trigonometric Functions], page 204.

complex float ccosf (complex float z)
‘complex.h’ (ISO): Section 8.2 [Trigonometric Functions], page 204.

complex double ccosh (complex double z)
‘complex.h’ (ISO): Section 8.5 [Hyperbolic Functions], page 212.

complex float ccoshf (complex float z)
‘complex.h’ (ISO): Section 8.5 [Hyperbolic Functions], page 212.

528 The GNU C Library: Application Fundamentals

complex long double ccoshl (complex long double z)
‘complex.h’ (ISO): Section 8.5 [Hyperbolic Functions], page 212.

complex long double ccosl (complex long double z)
‘complex.h’ (ISO): Section 8.2 [Trigonometric Functions], page 204.

double ceil (double x)
‘math.h’ (ISO): Section 9.8.3 [Rounding Functions], page 260.

float ceilf (float x)
‘math.h’ (ISO): Section 9.8.3 [Rounding Functions], page 260.

long double ceill (long double x)
‘math.h’ (ISO): Section 9.8.3 [Rounding Functions], page 260.

complex double cexp (complex double z)
‘complex.h’ (ISO): Section 8.4 [Exponentiation and Logarithms], page 207.

complex float cexpf (complex float z)
‘complex.h’ (ISO): Section 8.4 [Exponentiation and Logarithms], page 207.

complex long double cexpl (complex long double z)
‘complex.h’ (ISO): Section 8.4 [Exponentiation and Logarithms], page 207.

void cfree (void *ptr)
‘stdlib.h’ (Sun): Section 3.2.2.3 [Freeing Memory Allocated with malloc],
page 44.

double cimag (complex double z)
‘complex.h’ (ISO): Section 9.10 [Projections, Conjugates and Decomposing of
Complex Numbers], page 267.

float cimagf (complex float z)
‘complex.h’ (ISO): Section 9.10 [Projections, Conjugates and Decomposing of
Complex Numbers], page 267.

long double cimagl (complex long double z)
‘complex.h’ (ISO): Section 9.10 [Projections, Conjugates and Decomposing of
Complex Numbers], page 267.

int clearenv (void)
‘stdlib.h’ (GNU): Section 14.4.1 [Environment Access], page 419.

void clearerr (FILE *stream)
‘stdio.h’ (ISO): Section 17.16 [Recovering from Errors], page 498.

void clearerr_unlocked (FILE *stream)
‘stdio.h’ (GNU): Section 17.16 [Recovering from Errors], page 498.

int CLK_TCK
‘time.h’ (POSIX.1): Section 10.3.1 [CPU Time Inquiry], page 280.

clock_t clock (void)
‘time.h’ (ISO): Section 10.3.1 [CPU Time Inquiry], page 280.

int CLOCKS_PER_SEC
‘time.h’ (ISO): Section 10.3.1 [CPU Time Inquiry], page 280.

clock_t

‘time.h’ (ISO): Section 10.3.1 [CPU Time Inquiry], page 280.

Appendix A: Summary of Library Facilities 529

complex double clog (complex double z)
‘complex.h’ (ISO): Section 8.4 [Exponentiation and Logarithms], page 207.

complex double clog10 (complex double z)
‘complex.h’ (GNU): Section 8.4 [Exponentiation and Logarithms], page 207.

complex float clog10f (complex float z)
‘complex.h’ (GNU): Section 8.4 [Exponentiation and Logarithms], page 207.

complex long double clog10l (complex long double z)
‘complex.h’ (GNU): Section 8.4 [Exponentiation and Logarithms], page 207.

complex float clogf (complex float z)
‘complex.h’ (ISO): Section 8.4 [Exponentiation and Logarithms], page 207.

complex long double clogl (complex long double z)
‘complex.h’ (ISO): Section 8.4 [Exponentiation and Logarithms], page 207.

complex double conj (complex double z)
‘complex.h’ (ISO): Section 9.10 [Projections, Conjugates and Decomposing of
Complex Numbers], page 267.

complex float conjf (complex float z)
‘complex.h’ (ISO): Section 9.10 [Projections, Conjugates and Decomposing of
Complex Numbers], page 267.

complex long double conjl (complex long double z)
‘complex.h’ (ISO): Section 9.10 [Projections, Conjugates and Decomposing of
Complex Numbers], page 267.

cookie_close_function
‘stdio.h’ (GNU): Section 17.21.3.2 [Custom Stream Hook Functions], page 513.

cookie_io_functions_t
‘stdio.h’ (GNU): Section 17.21.3.1 [Custom Streams and Cookies], page 512.

cookie_read_function
‘stdio.h’ (GNU): Section 17.21.3.2 [Custom Stream Hook Functions], page 513.

cookie_seek_function
‘stdio.h’ (GNU): Section 17.21.3.2 [Custom Stream Hook Functions], page 513.

cookie_write_function
‘stdio.h’ (GNU): Section 17.21.3.2 [Custom Stream Hook Functions], page 513.

double copysign (double x, double y)
‘math.h’ (ISO): Section 9.8.5 [Setting and Modifying Single Bits of FP Values],
page 263.

float copysignf (float x, float y)
‘math.h’ (ISO): Section 9.8.5 [Setting and Modifying Single Bits of FP Values],
page 263.

long double copysignl (long double x, long double y)
‘math.h’ (ISO): Section 9.8.5 [Setting and Modifying Single Bits of FP Values],
page 263.

double cos (double x)
‘math.h’ (ISO): Section 8.2 [Trigonometric Functions], page 204.

530 The GNU C Library: Application Fundamentals

float cosf (float x)
‘math.h’ (ISO): Section 8.2 [Trigonometric Functions], page 204.

double cosh (double x)
‘math.h’ (ISO): Section 8.5 [Hyperbolic Functions], page 212.

float coshf (float x)
‘math.h’ (ISO): Section 8.5 [Hyperbolic Functions], page 212.

long double coshl (long double x)
‘math.h’ (ISO): Section 8.5 [Hyperbolic Functions], page 212.

long double cosl (long double x)
‘math.h’ (ISO): Section 8.2 [Trigonometric Functions], page 204.

complex double cpow (complex double base, complex double power)
‘complex.h’ (ISO): Section 8.4 [Exponentiation and Logarithms], page 207.

complex float cpowf (complex float base, complex float power)
‘complex.h’ (ISO): Section 8.4 [Exponentiation and Logarithms], page 207.

complex long double cpowl (complex long double base, complex long double
power)

‘complex.h’ (ISO): Section 8.4 [Exponentiation and Logarithms], page 207.

complex double cproj (complex double z)
‘complex.h’ (ISO): Section 9.10 [Projections, Conjugates and Decomposing of
Complex Numbers], page 267.

complex float cprojf (complex float z)
‘complex.h’ (ISO): Section 9.10 [Projections, Conjugates and Decomposing of
Complex Numbers], page 267.

complex long double cprojl (complex long double z)
‘complex.h’ (ISO): Section 9.10 [Projections, Conjugates and Decomposing of
Complex Numbers], page 267.

double creal (complex double z)
‘complex.h’ (ISO): Section 9.10 [Projections, Conjugates and Decomposing of
Complex Numbers], page 267.

float crealf (complex float z)
‘complex.h’ (ISO): Section 9.10 [Projections, Conjugates and Decomposing of
Complex Numbers], page 267.

long double creall (complex long double z)
‘complex.h’ (ISO): Section 9.10 [Projections, Conjugates and Decomposing of
Complex Numbers], page 267.

complex double csin (complex double z)
‘complex.h’ (ISO): Section 8.2 [Trigonometric Functions], page 204.

complex float csinf (complex float z)
‘complex.h’ (ISO): Section 8.2 [Trigonometric Functions], page 204.

complex double csinh (complex double z)
‘complex.h’ (ISO): Section 8.5 [Hyperbolic Functions], page 212.

complex float csinhf (complex float z)
‘complex.h’ (ISO): Section 8.5 [Hyperbolic Functions], page 212.

Appendix A: Summary of Library Facilities 531

complex long double csinhl (complex long double z)
‘complex.h’ (ISO): Section 8.5 [Hyperbolic Functions], page 212.

complex long double csinl (complex long double z)
‘complex.h’ (ISO): Section 8.2 [Trigonometric Functions], page 204.

complex double csqrt (complex double z)
‘complex.h’ (ISO): Section 8.4 [Exponentiation and Logarithms], page 207.

complex float csqrtf (complex float z)
‘complex.h’ (ISO): Section 8.4 [Exponentiation and Logarithms], page 207.

complex long double csqrtl (complex long double z)
‘complex.h’ (ISO): Section 8.4 [Exponentiation and Logarithms], page 207.

complex double ctan (complex double z)
‘complex.h’ (ISO): Section 8.2 [Trigonometric Functions], page 204.

complex float ctanf (complex float z)
‘complex.h’ (ISO): Section 8.2 [Trigonometric Functions], page 204.

complex double ctanh (complex double z)
‘complex.h’ (ISO): Section 8.5 [Hyperbolic Functions], page 212.

complex float ctanhf (complex float z)
‘complex.h’ (ISO): Section 8.5 [Hyperbolic Functions], page 212.

complex long double ctanhl (complex long double z)
‘complex.h’ (ISO): Section 8.5 [Hyperbolic Functions], page 212.

complex long double ctanl (complex long double z)
‘complex.h’ (ISO): Section 8.2 [Trigonometric Functions], page 204.

char * ctime (const time_t *time)
‘time.h’ (ISO): Section 10.4.5 [Formatting Calendar Time], page 291.

char * ctime_r (const time_t *time, char *buffer)
‘time.h’ (POSIX.1c): Section 10.4.5 [Formatting Calendar Time], page 291.

int daylight
‘time.h’ (SVID): Section 10.4.8 [Functions and Variables for Time Zones],
page 308.

char * dcgettext (const char *domainname, const char *msgid, int category)
‘libintl.h’ (GNU): Section 11.2.1.1 [What Has to Be Done to Translate a Mes-
sage?], page 326.

char * dcngettext (const char *domain, const char *msgid1, const char
*msgid2, unsigned long int n, int category)

‘libintl.h’ (GNU): Section 11.2.1.3 [Additional Functions for More Compli-
cated Situations], page 330.

char * dgettext (const char *domainname, const char *msgid)
‘libintl.h’ (GNU): Section 11.2.1.1 [What Has to Be Done to Translate a Mes-
sage?], page 326.

double difftime (time_t time1, time_t time0)
‘time.h’ (ISO): Section 10.2 [Elapsed Time], page 277.

char * dirname (char *path)
‘libgen.h’ (XPG): Section 5.8 [Finding Tokens in a String], page 119.

532 The GNU C Library: Application Fundamentals

div_t div (int numerator, int denominator)
‘stdlib.h’ (ISO): Section 9.2 [Integer Division], page 244.

div_t

‘stdlib.h’ (ISO): Section 9.2 [Integer Division], page 244.

char * dngettext (const char *domain, const char *msgid1, const char
*msgid2, unsigned long int n)

‘libintl.h’ (GNU): Section 11.2.1.3 [Additional Functions for More Compli-
cated Situations], page 330.

double drand48 (void)
‘stdlib.h’ (SVID): Section 8.8.3 [SVID Random-Number Functions], page 237.

int drand48_r (struct drand48_data *buffer, double *result)
‘stdlib.h’ (GNU): Section 8.8.3 [SVID Random-Number Functions], page 237.

double drem (double numerator, double denominator)
‘math.h’ (BSD): Section 9.8.4 [Remainder Functions], page 262.

float dremf (float numerator, float denominator)
‘math.h’ (BSD): Section 9.8.4 [Remainder Functions], page 262.

long double dreml (long double numerator, long double denominator)
‘math.h’ (BSD): Section 9.8.4 [Remainder Functions], page 262.

int E2BIG

‘errno.h’ (POSIX.1: Argument list too long): Section 2.2 [Error Codes], page 18.

int EACCES
‘errno.h’ (POSIX.1: Permission denied): Section 2.2 [Error Codes], page 18.

int EADDRINUSE
‘errno.h’ (BSD: Address already in use): Section 2.2 [Error Codes], page 18.

int EADDRNOTAVAIL
‘errno.h’ (BSD: Cannot assign requested address): Section 2.2 [Error Codes],
page 18.

int EADV

‘errno.h’ (Undocumented: Advertise error): Section 2.2 [Error Codes], page 18.

int EAFNOSUPPORT
‘errno.h’ (BSD: Address family not supported by protocol): Section 2.2 [Error
Codes], page 18.

int EAGAIN
‘errno.h’ (POSIX.1: Resource temporarily unavailable): Section 2.2 [Error
Codes], page 18.

int EALREADY
‘errno.h’ (BSD: Operation already in progress): Section 2.2 [Error Codes],
page 18.

int EAUTH

‘errno.h’ (BSD: Authentication error): Section 2.2 [Error Codes], page 18.

int EBACKGROUND
‘errno.h’ (GNU: Inappropriate operation for background process): Section 2.2
[Error Codes], page 18.

Appendix A: Summary of Library Facilities 533

int EBADE

‘errno.h’ (Undocumented: Invalid exchange): Section 2.2 [Error Codes], page 18.

int EBADF

‘errno.h’ (POSIX.1: Bad file descriptor): Section 2.2 [Error Codes], page 18.

int EBADFD
‘errno.h’ (Undocumented: File descriptor in bad state): Section 2.2 [Error Codes],
page 18.

int EBADMSG
‘errno.h’ (XOPEN: Bad message): Section 2.2 [Error Codes], page 18.

int EBADR

‘errno.h’ (Undocumented: Invalid request descriptor): Section 2.2 [Error Codes],
page 18.

int EBADRPC
‘errno.h’ (BSD: RPC struct is bad): Section 2.2 [Error Codes], page 18.

int EBADRQC
‘errno.h’ (Undocumented: Invalid request code): Section 2.2 [Error Codes],
page 18.

int EBADSLT
‘errno.h’ (Undocumented: Invalid slot): Section 2.2 [Error Codes], page 18.

int EBFONT
‘errno.h’ (Undocumented: Bad font file format): Section 2.2 [Error Codes],
page 18.

int EBUSY

‘errno.h’ (POSIX.1: Device or resource busy): Section 2.2 [Error Codes],
page 18.

int ECANCELED
‘errno.h’ (POSIX.1: Operation canceled): Section 2.2 [Error Codes], page 18.

int ECHILD
‘errno.h’ (POSIX.1: No child processes): Section 2.2 [Error Codes], page 18.

int ECHRNG
‘errno.h’ (: Channel number out of range): Section 2.2 [Error Codes], page 18.

int ECOMM

‘errno.h’ (Undocumented: Communication error on send): Section 2.2 [Error
Codes], page 18.

int ECONNABORTED
‘errno.h’ (BSD: Software caused connection abort): Section 2.2 [Error Codes],
page 18.

int ECONNREFUSED
‘errno.h’ (BSD: Connection refused): Section 2.2 [Error Codes], page 18.

int ECONNRESET
‘errno.h’ (BSD: Connection reset by peer): Section 2.2 [Error Codes], page 18.

534 The GNU C Library: Application Fundamentals

char * ecvt (double value, int ndigit, int *decpt, int *neg)
‘stdlib.h’ (SVID, Unix98): Section 9.12 [Old-fashioned System V Number-to-
String Functions], page 275.

char * ecvt_r (double value, int ndigit, int *decpt, int *neg, char *buf, size_t
len)

‘stdlib.h’ (GNU): Section 9.12 [Old-fashioned System V Number-to-String
Functions], page 275.

int ED

‘errno.h’ (GNU: Undocumented): Section 2.2 [Error Codes], page 18.

int EDEADLK
‘errno.h’ (POSIX.1: Resource deadlock avoided): Section 2.2 [Error Codes],
page 18.

int EDEADLOCK
‘errno.h’ (Undocumented: File-locking deadlock error): Section 2.2 [Error
Codes], page 18.

int EDESTADDRREQ
‘errno.h’ (BSD: Destination address required): Section 2.2 [Error Codes],
page 18.

int EDIED

‘errno.h’ (GNU: Translator died): Section 2.2 [Error Codes], page 18.

int EDOM

‘errno.h’ (ISO: Numerical argument out of domain): Section 2.2 [Error Codes],
page 18.

int EDOTDOT
‘errno.h’ (Undocumented: RFS specific error): Section 2.2 [Error Codes],
page 18.

int EDQUOT
‘errno.h’ (BSD: Disk quota exceeded): Section 2.2 [Error Codes], page 18.

int EEXIST
‘errno.h’ (POSIX.1: File exists): Section 2.2 [Error Codes], page 18.

int EFAULT
‘errno.h’ (POSIX.1: Bad address): Section 2.2 [Error Codes], page 18.

int EFBIG

‘errno.h’ (POSIX.1: File too large): Section 2.2 [Error Codes], page 18.

int EFTYPE
‘errno.h’ (BSD: Inappropriate file type or format): Section 2.2 [Error Codes],
page 18.

int EGRATUITOUS
‘errno.h’ (GNU: Gratuitous error): Section 2.2 [Error Codes], page 18.

int EGREGIOUS
‘errno.h’ (GNU: You really blew it this time): Section 2.2 [Error Codes], page 18.

int EHOSTDOWN
‘errno.h’ (BSD: Host is down): Section 2.2 [Error Codes], page 18.

Appendix A: Summary of Library Facilities 535

int EHOSTUNREACH
‘errno.h’ (BSD: No route to host): Section 2.2 [Error Codes], page 18.

int EIDRM

‘errno.h’ (XOPEN: Identifier removed): Section 2.2 [Error Codes], page 18.

int EIEIO

‘errno.h’ (GNU: Computer bought the farm): Section 2.2 [Error Codes], page 18.

int EILSEQ
‘errno.h’ (ISO: Invalid or incomplete multibyte or wide character): Section 2.2
[Error Codes], page 18.

int EINPROGRESS
‘errno.h’ (BSD: Operation now in progress): Section 2.2 [Error Codes], page 18.

int EINTR

‘errno.h’ (POSIX.1: Interrupted system call): Section 2.2 [Error Codes], page 18.

int EINVAL
‘errno.h’ (POSIX.1: Invalid argument): Section 2.2 [Error Codes], page 18.

int EIO

‘errno.h’ (POSIX.1: Input/output error): Section 2.2 [Error Codes], page 18.

int EISCONN
‘errno.h’ (BSD: Transport endpoint is already connected): Section 2.2 [Error
Codes], page 18.

int EISDIR
‘errno.h’ (POSIX.1: Is a directory): Section 2.2 [Error Codes], page 18.

int EISNAM
‘errno.h’ (Undocumented: Is a named type file): Section 2.2 [Error Codes],
page 18.

int EL2HLT
‘errno.h’ (Obsolete: Level 2 halted): Section 2.2 [Error Codes], page 18.

int EL2NSYNC
‘errno.h’ (Obsolete: Level 2 not synchronized): Section 2.2 [Error Codes],
page 18.

int EL3HLT
‘errno.h’ (Obsolete: Level 3 halted): Section 2.2 [Error Codes], page 18.

int EL3RST
‘errno.h’ (Obsolete: Level 3 reset): Section 2.2 [Error Codes], page 18.

int ELIBACC
‘errno.h’ (Undocumented: Can not access a needed shared library): Section 2.2
[Error Codes], page 18.

int ELIBBAD
‘errno.h’ (Undocumented: Accessing a corrupted shared library): Section 2.2 [Er-
ror Codes], page 18.

int ELIBEXEC
‘errno.h’ (Undocumented: Cannot exec a shared library directly): Section 2.2
[Error Codes], page 18.

536 The GNU C Library: Application Fundamentals

int ELIBMAX
‘errno.h’ (Undocumented: Attempting to link in too many shared libraries): Sec-
tion 2.2 [Error Codes], page 18.

int ELIBSCN
‘errno.h’ (Undocumented: .lib section in a.out corrupted): Section 2.2 [Error
Codes], page 18.

int ELNRNG
‘errno.h’ (Undocumented: Link number out of range): Section 2.2 [Error Codes],
page 18.

int ELOOP

‘errno.h’ (BSD: Too many levels of symbolic links): Section 2.2 [Error Codes],
page 18.

int EMEDIUMTYPE
‘errno.h’ (Undocumented: Wrong medium type): Section 2.2 [Error Codes],
page 18.

int EMFILE
‘errno.h’ (POSIX.1: Too many open files): Section 2.2 [Error Codes], page 18.

int EMLINK
‘errno.h’ (POSIX.1: Too many links): Section 2.2 [Error Codes], page 18.

int EMSGSIZE
‘errno.h’ (BSD: Message too long): Section 2.2 [Error Codes], page 18.

int EMULTIHOP
‘errno.h’ (XOPEN: Multihop attempted): Section 2.2 [Error Codes], page 18.

int ENAMETOOLONG
‘errno.h’ (POSIX.1: File name too long): Section 2.2 [Error Codes], page 18.

int ENAVAIL
‘errno.h’ (Undocumented: No XENIX semaphores available): Section 2.2 [Error
Codes], page 18.

int ENEEDAUTH
‘errno.h’ (BSD: Need authenticator): Section 2.2 [Error Codes], page 18.

int ENETDOWN
‘errno.h’ (BSD: Network is down): Section 2.2 [Error Codes], page 18.

int ENETRESET
‘errno.h’ (BSD: Network dropped connection on reset): Section 2.2 [Error
Codes], page 18.

int ENETUNREACH
‘errno.h’ (BSD: Network is unreachable): Section 2.2 [Error Codes], page 18.

int ENFILE
‘errno.h’ (POSIX.1: Too many open files in system): Section 2.2 [Error Codes],
page 18.

int ENOANO
‘errno.h’ (Undocumented: No anode): Section 2.2 [Error Codes], page 18.

Appendix A: Summary of Library Facilities 537

int ENOBUFS
‘errno.h’ (BSD: No buffer space available): Section 2.2 [Error Codes], page 18.

int ENOCSI
‘errno.h’ (Undocumented: No CSI structure available): Section 2.2 [Error Codes],
page 18.

int ENODATA
‘errno.h’ (XOPEN: No data available): Section 2.2 [Error Codes], page 18.

int ENODEV
‘errno.h’ (POSIX.1: No such device): Section 2.2 [Error Codes], page 18.

int ENOENT
‘errno.h’ (POSIX.1: No such file or directory): Section 2.2 [Error Codes],
page 18.

int ENOEXEC
‘errno.h’ (POSIX.1: Exec format error): Section 2.2 [Error Codes], page 18.

int ENOLCK
‘errno.h’ (POSIX.1: No locks available): Section 2.2 [Error Codes], page 18.

int ENOLINK
‘errno.h’ (XOPEN: Link has been severed): Section 2.2 [Error Codes], page 18.

int ENOMEDIUM
‘errno.h’ (Undocumented: No medium found): Section 2.2 [Error Codes],
page 18.

int ENOMEM
‘errno.h’ (POSIX.1: Cannot allocate memory): Section 2.2 [Error Codes],
page 18.

int ENOMSG
‘errno.h’ (XOPEN: No message of desired type): Section 2.2 [Error Codes],
page 18.

int ENONET
‘errno.h’ (Undocumented: Machine is not on the network): Section 2.2 [Error
Codes], page 18.

int ENOPKG
‘errno.h’ (Undocumented: Package not installed): Section 2.2 [Error Codes],
page 18.

int ENOPROTOOPT
‘errno.h’ (BSD: Protocol not available): Section 2.2 [Error Codes], page 18.

int ENOSPC
‘errno.h’ (POSIX.1: No space left on device): Section 2.2 [Error Codes], page 18.

int ENOSR

‘errno.h’ (XOPEN: Out of streams resources): Section 2.2 [Error Codes], page 18.

int ENOSTR
‘errno.h’ (XOPEN: Device not a stream): Section 2.2 [Error Codes], page 18.

int ENOSYS
‘errno.h’ (POSIX.1: Function not implemented): Section 2.2 [Error Codes],
page 18.

538 The GNU C Library: Application Fundamentals

int ENOTBLK
‘errno.h’ (BSD: Block device required): Section 2.2 [Error Codes], page 18.

int ENOTCONN
‘errno.h’ (BSD: Transport endpoint is not connected): Section 2.2 [Error Codes],
page 18.

int ENOTDIR
‘errno.h’ (POSIX.1: Not a directory): Section 2.2 [Error Codes], page 18.

int ENOTEMPTY
‘errno.h’ (POSIX.1: Directory not empty): Section 2.2 [Error Codes], page 18.

int ENOTNAM
‘errno.h’ (Undocumented: Not a XENIX named type file): Section 2.2 [Error
Codes], page 18.

int ENOTSOCK
‘errno.h’ (BSD: Socket operation on nonsocket): Section 2.2 [Error Codes],
page 18.

int ENOTSUP
‘errno.h’ (POSIX.1: Not supported): Section 2.2 [Error Codes], page 18.

int ENOTTY
‘errno.h’ (POSIX.1: Inappropriate ioctl for device): Section 2.2 [Error Codes],
page 18.

int ENOTUNIQ
‘errno.h’ (Undocumented: Name not unique on network): Section 2.2 [Error
Codes], page 18.

char ** environ
‘unistd.h’ (POSIX.1): Section 14.4.1 [Environment Access], page 419.

error_t envz_add (char **envz, size_t *envz len, const char *name, const
char *value)

‘envz.h’ (GNU): Section 5.12.2 [Envz Functions], page 130.

char * envz_entry (const char *envz, size_t envz len, const char *name)
‘envz.h’ (GNU): Section 5.12.2 [Envz Functions], page 130.

char * envz_get (const char *envz, size_t envz len, const char *name)
‘envz.h’ (GNU): Section 5.12.2 [Envz Functions], page 130.

error_t envz_merge (char **envz, size_t *envz len, const char *envz2, size_t
envz2 len, int override)

‘envz.h’ (GNU): Section 5.12.2 [Envz Functions], page 130.

void envz_strip (char **envz, size_t *envz len)
‘envz.h’ (GNU): Section 5.12.2 [Envz Functions], page 130.

int ENXIO

‘errno.h’ (POSIX.1: No such device or address): Section 2.2 [Error Codes],
page 18.

int EOF

‘stdio.h’ (ISO): Section 17.15 [End-of-File and Errors], page 497.

Appendix A: Summary of Library Facilities 539

int EOPNOTSUPP
‘errno.h’ (BSD: Operation not supported): Section 2.2 [Error Codes], page 18.

int EOVERFLOW
‘errno.h’ (XOPEN: Value too large for defined data type): Section 2.2 [Error
Codes], page 18.

int EPERM

‘errno.h’ (POSIX.1: Operation not permitted): Section 2.2 [Error Codes],
page 18.

int EPFNOSUPPORT
‘errno.h’ (BSD: Protocol family not supported): Section 2.2 [Error Codes],
page 18.

int EPIPE

‘errno.h’ (POSIX.1: Broken pipe): Section 2.2 [Error Codes], page 18.

int EPROCLIM
‘errno.h’ (BSD: Too many processes): Section 2.2 [Error Codes], page 18.

int EPROCUNAVAIL
‘errno.h’ (BSD: RPC bad procedure for program): Section 2.2 [Error Codes],
page 18.

int EPROGMISMATCH
‘errno.h’ (BSD: RPC program version wrong): Section 2.2 [Error Codes],
page 18.

int EPROGUNAVAIL
‘errno.h’ (BSD: RPC program not available): Section 2.2 [Error Codes], page 18.

int EPROTO
‘errno.h’ (XOPEN: Protocol error): Section 2.2 [Error Codes], page 18.

int EPROTONOSUPPORT
‘errno.h’ (BSD: Protocol not supported): Section 2.2 [Error Codes], page 18.

int EPROTOTYPE
‘errno.h’ (BSD: Protocol wrong type for socket): Section 2.2 [Error Codes],
page 18.

double erand48 (unsigned short int xsubi[3])
‘stdlib.h’ (SVID): Section 8.8.3 [SVID Random-Number Functions], page 237.

int erand48_r (unsigned short int xsubi[3], struct drand48_data *buffer,
double *result)

‘stdlib.h’ (GNU): Section 8.8.3 [SVID Random-Number Functions], page 237.

int ERANGE
‘errno.h’ (ISO: Numerical result out of range): Section 2.2 [Error Codes], page 18.

int EREMCHG
‘errno.h’ (Undocumented: Remote address changed): Section 2.2 [Error Codes],
page 18.

int EREMOTE
‘errno.h’ (BSD: Object is remote): Section 2.2 [Error Codes], page 18.

540 The GNU C Library: Application Fundamentals

int EREMOTEIO
‘errno.h’ (Undocumented: Remote I/O error): Section 2.2 [Error Codes], page 18.

int ERESTART
‘errno.h’ (Undocumented: Interrupted system call should be restarted): Sec-
tion 2.2 [Error Codes], page 18.

double erf (double x)
‘math.h’ (SVID): Section 8.6 [Special Functions], page 214.

double erfc (double x)
‘math.h’ (SVID): Section 8.6 [Special Functions], page 214.

float erfcf (float x)
‘math.h’ (SVID): Section 8.6 [Special Functions], page 214.

long double erfcl (long double x)
‘math.h’ (SVID): Section 8.6 [Special Functions], page 214.

float erff (float x)
‘math.h’ (SVID): Section 8.6 [Special Functions], page 214.

long double erfl (long double x)
‘math.h’ (SVID): Section 8.6 [Special Functions], page 214.

int EROFS

‘errno.h’ (POSIX.1: Read-only file system): Section 2.2 [Error Codes], page 18.

int ERPCMISMATCH
‘errno.h’ (BSD: RPC version wrong): Section 2.2 [Error Codes], page 18.

void err (int status, const char *format, ...)
‘err.h’ (BSD): Section 2.3 [Error Messages], page 32.

volatile int errno
‘errno.h’ (ISO): Section 2.1 [Checking for Errors], page 17.

void error (int status, int errnum, const char *format, ...)
‘error.h’ (GNU): Section 2.3 [Error Messages], page 32.

void error_at_line (int status, int errnum, const char *fname, unsigned int
lineno, const char *format, ...)

‘error.h’ (GNU): Section 2.3 [Error Messages], page 32.

unsigned int error_message_count
‘error.h’ (GNU): Section 2.3 [Error Messages], page 32.

int error_one_per_line
‘error.h’ (GNU): Section 2.3 [Error Messages], page 32.

void (* error_print_progname) (void)
‘error.h’ (GNU): Section 2.3 [Error Messages], page 32.

void errx (int status, const char *format, ...)
‘err.h’ (BSD): Section 2.3 [Error Messages], page 32.

int ESHUTDOWN
‘errno.h’ (BSD: Cannot send after transport endpoint shutdown): Section 2.2 [Er-
ror Codes], page 18.

Appendix A: Summary of Library Facilities 541

int ESOCKTNOSUPPORT
‘errno.h’ (BSD: Socket type not supported): Section 2.2 [Error Codes], page 18.

int ESPIPE
‘errno.h’ (POSIX.1: Illegal seek): Section 2.2 [Error Codes], page 18.

int ESRCH

‘errno.h’ (POSIX.1: No such process): Section 2.2 [Error Codes], page 18.

int ESRMNT
‘errno.h’ (Undocumented: Srmount error): Section 2.2 [Error Codes], page 18.

int ESTALE
‘errno.h’ (BSD: Stale NFS file handle): Section 2.2 [Error Codes], page 18.

int ESTRPIPE
‘errno.h’ (Undocumented: Streams pipe error): Section 2.2 [Error Codes],
page 18.

int ETIME

‘errno.h’ (XOPEN: Timer expired): Section 2.2 [Error Codes], page 18.

int ETIMEDOUT
‘errno.h’ (BSD: Connection timed out): Section 2.2 [Error Codes], page 18.

int ETOOMANYREFS
‘errno.h’ (BSD: Too many references: cannot splice): Section 2.2 [Error Codes],
page 18.

int ETXTBSY
‘errno.h’ (BSD: Text file busy): Section 2.2 [Error Codes], page 18.

int EUCLEAN
‘errno.h’ (Undocumented: Structure needs cleaning): Section 2.2 [Error Codes],
page 18.

int EUNATCH
‘errno.h’ (Undocumented: Protocol driver not attached): Section 2.2 [Error
Codes], page 18.

int EUSERS
‘errno.h’ (BSD: Too many users): Section 2.2 [Error Codes], page 18.

int EWOULDBLOCK
‘errno.h’ (BSD: Operation would block): Section 2.2 [Error Codes], page 18.

int EXDEV

‘errno.h’ (POSIX.1: Invalid cross-device link): Section 2.2 [Error Codes],
page 18.

int EXFULL
‘errno.h’ (Undocumented: Exchange full): Section 2.2 [Error Codes], page 18.

void exit (int status)
‘stdlib.h’ (ISO): Section 14.6.1 [Normal Termination], page 425.

void _Exit (int status)
‘stdlib.h’ (ISO): Section 14.6.5 [Termination Internals], page 428.

542 The GNU C Library: Application Fundamentals

void _exit (int status)
‘unistd.h’ (POSIX.1): Section 14.6.5 [Termination Internals], page 428.

int EXIT_FAILURE
‘stdlib.h’ (ISO): Section 14.6.2 [Exit Status], page 425.

int EXIT_SUCCESS
‘stdlib.h’ (ISO): Section 14.6.2 [Exit Status], page 425.

double exp (double x)
‘math.h’ (ISO): Section 8.4 [Exponentiation and Logarithms], page 207.

double exp10 (double x)
‘math.h’ (GNU): Section 8.4 [Exponentiation and Logarithms], page 207.

float exp10f (float x)
‘math.h’ (GNU): Section 8.4 [Exponentiation and Logarithms], page 207.

long double exp10l (long double x)
‘math.h’ (GNU): Section 8.4 [Exponentiation and Logarithms], page 207.

double exp2 (double x)
‘math.h’ (ISO): Section 8.4 [Exponentiation and Logarithms], page 207.

float exp2f (float x)
‘math.h’ (ISO): Section 8.4 [Exponentiation and Logarithms], page 207.

long double exp2l (long double x)
‘math.h’ (ISO): Section 8.4 [Exponentiation and Logarithms], page 207.

float expf (float x)
‘math.h’ (ISO): Section 8.4 [Exponentiation and Logarithms], page 207.

long double expl (long double x)
‘math.h’ (ISO): Section 8.4 [Exponentiation and Logarithms], page 207.

double expm1 (double x)
‘math.h’ (ISO): Section 8.4 [Exponentiation and Logarithms], page 207.

float expm1f (float x)
‘math.h’ (ISO): Section 8.4 [Exponentiation and Logarithms], page 207.

long double expm1l (long double x)
‘math.h’ (ISO): Section 8.4 [Exponentiation and Logarithms], page 207.

double fabs (double number)
‘math.h’ (ISO): Section 9.8.1 [Absolute Value], page 258.

float fabsf (float number)
‘math.h’ (ISO): Section 9.8.1 [Absolute Value], page 258.

long double fabsl (long double number)
‘math.h’ (ISO): Section 9.8.1 [Absolute Value], page 258.

size_t __fbufsize (FILE *stream)
‘stdio_ext.h’ (GNU): Section 17.20.3 [Controlling Which Kind of Buffering],
page 506.

int fclose (FILE *stream)
‘stdio.h’ (ISO): Section 17.4 [Closing Streams], page 444.

Appendix A: Summary of Library Facilities 543

int fcloseall (void)
‘stdio.h’ (GNU): Section 17.4 [Closing Streams], page 444.

char * fcvt (double value, int ndigit, int *decpt, int *neg)
‘stdlib.h’ (SVID, Unix98): Section 9.12 [Old-fashioned System V Number-to-
String Functions], page 275.

char * fcvt_r (double value, int ndigit, int *decpt, int *neg, char *buf, size_t
len)

‘stdlib.h’ (SVID, Unix98): Section 9.12 [Old-fashioned System V Number-to-
String Functions], page 275.

double fdim (double x, double y)
‘math.h’ (ISO): Section 9.8.7 [Miscellaneous FP Arithmetic Functions], page 265.

float fdimf (float x, float y)
‘math.h’ (ISO): Section 9.8.7 [Miscellaneous FP Arithmetic Functions], page 265.

long double fdiml (long double x, long double y)
‘math.h’ (ISO): Section 9.8.7 [Miscellaneous FP Arithmetic Functions], page 265.

int feclearexcept (int excepts)
‘fenv.h’ (ISO): Section 9.5.3 [Examining the FPU Status Word], page 252.

int fedisableexcept (int excepts)
‘fenv.h’ (GNU): Section 9.7 [Floating-Point Control Functions], page 256.

FE_DIVBYZERO
‘fenv.h’ (ISO): Section 9.5.3 [Examining the FPU Status Word], page 252.

FE_DOWNWARD
‘fenv.h’ (ISO): Section 9.6 [Rounding Modes], page 254.

int feenableexcept (int excepts)
‘fenv.h’ (GNU): Section 9.7 [Floating-Point Control Functions], page 256.

int fegetenv (fenv_t *envp)
‘fenv.h’ (ISO): Section 9.7 [Floating-Point Control Functions], page 256.

int fegetexcept (int excepts)
‘fenv.h’ (GNU): Section 9.7 [Floating-Point Control Functions], page 256.

int fegetexceptflag (fexcept_t *flagp, int excepts)
‘fenv.h’ (ISO): Section 9.5.3 [Examining the FPU Status Word], page 252.

int fegetround (void)
‘fenv.h’ (ISO): Section 9.6 [Rounding Modes], page 254.

int feholdexcept (fenv_t *envp)
‘fenv.h’ (ISO): Section 9.7 [Floating-Point Control Functions], page 256.

FE_INEXACT
‘fenv.h’ (ISO): Section 9.5.3 [Examining the FPU Status Word], page 252.

FE_INVALID
‘fenv.h’ (ISO): Section 9.5.3 [Examining the FPU Status Word], page 252.

int feof (FILE *stream)
‘stdio.h’ (ISO): Section 17.15 [End-of-File and Errors], page 497.

int feof_unlocked (FILE *stream)
‘stdio.h’ (GNU): Section 17.15 [End-of-File and Errors], page 497.

544 The GNU C Library: Application Fundamentals

FE_OVERFLOW
‘fenv.h’ (ISO): Section 9.5.3 [Examining the FPU Status Word], page 252.

int feraiseexcept (int excepts)
‘fenv.h’ (ISO): Section 9.5.3 [Examining the FPU Status Word], page 252.

int ferror (FILE *stream)
‘stdio.h’ (ISO): Section 17.15 [End-of-File and Errors], page 497.

int ferror_unlocked (FILE *stream)
‘stdio.h’ (GNU): Section 17.15 [End-of-File and Errors], page 497.

int fesetenv (const fenv_t *envp)
‘fenv.h’ (ISO): Section 9.7 [Floating-Point Control Functions], page 256.

int fesetexceptflag (const fexcept_t *flagp, int
‘fenv.h’ (ISO): Section 9.5.3 [Examining the FPU Status Word], page 252.

int fesetround (int round)
‘fenv.h’ (ISO): Section 9.6 [Rounding Modes], page 254.

int fetestexcept (int excepts)
‘fenv.h’ (ISO): Section 9.5.3 [Examining the FPU Status Word], page 252.

FE_TONEAREST
‘fenv.h’ (ISO): Section 9.6 [Rounding Modes], page 254.

FE_TOWARDZERO
‘fenv.h’ (ISO): Section 9.6 [Rounding Modes], page 254.

FE_UNDERFLOW
‘fenv.h’ (ISO): Section 9.5.3 [Examining the FPU Status Word], page 252.

int feupdateenv (const fenv_t *envp)
‘fenv.h’ (ISO): Section 9.7 [Floating-Point Control Functions], page 256.

FE_UPWARD

‘fenv.h’ (ISO): Section 9.6 [Rounding Modes], page 254.

int fflush (FILE *stream)
‘stdio.h’ (ISO): Section 17.20.2 [Flushing Buffers], page 505.

int fflush_unlocked (FILE *stream)
‘stdio.h’ (POSIX): Section 17.20.2 [Flushing Buffers], page 505.

int fgetc (FILE *stream)
‘stdio.h’ (ISO): Section 17.8 [Character Input], page 453.

int fgetc_unlocked (FILE *stream)
‘stdio.h’ (POSIX): Section 17.8 [Character Input], page 453.

int fgetpos (FILE *stream, fpos_t *position)
‘stdio.h’ (ISO): Section 17.19 [Portable File-Position Functions], page 502.

int fgetpos64 (FILE *stream, fpos64_t *position)
‘stdio.h’ (Unix98): Section 17.19 [Portable File-Position Functions], page 502.

char * fgets (char *s, int count, FILE *stream)
‘stdio.h’ (ISO): Section 17.9 [Line-Oriented Input], page 455.

char * fgets_unlocked (char *s, int count, FILE *stream)
‘stdio.h’ (GNU): Section 17.9 [Line-Oriented Input], page 455.

Appendix A: Summary of Library Facilities 545

wint_t fgetwc (FILE *stream)
‘wchar.h’ (ISO): Section 17.8 [Character Input], page 453.

wint_t fgetwc_unlocked (FILE *stream)
‘wchar.h’ (GNU): Section 17.8 [Character Input], page 453.

wchar_t * fgetws (wchar_t *ws, int count, FILE *stream)
‘wchar.h’ (ISO): Section 17.9 [Line-Oriented Input], page 455.

wchar_t * fgetws_unlocked (wchar_t *ws, int count, FILE *stream)
‘wchar.h’ (GNU): Section 17.9 [Line-Oriented Input], page 455.

FILE

‘stdio.h’ (ISO): Section 17.1 [Streams], page 439.

int finite (double x)
‘math.h’ (BSD): Section 9.4 [Floating-Point Number Classification Functions],
page 247.

int finitef (float x)
‘math.h’ (BSD): Section 9.4 [Floating-Point Number Classification Functions],
page 247.

int finitel (long double x)
‘math.h’ (BSD): Section 9.4 [Floating-Point Number Classification Functions],
page 247.

int __flbf (FILE *stream)
‘stdio_ext.h’ (GNU): Section 17.20.3 [Controlling Which Kind of Buffering],
page 506.

void flockfile (FILE *stream)
‘stdio.h’ (POSIX): Section 17.5 [Streams and Threads], page 445.

double floor (double x)
‘math.h’ (ISO): Section 9.8.3 [Rounding Functions], page 260.

float floorf (float x)
‘math.h’ (ISO): Section 9.8.3 [Rounding Functions], page 260.

long double floorl (long double x)
‘math.h’ (ISO): Section 9.8.3 [Rounding Functions], page 260.

void _flushlbf (void)
‘stdio_ext.h’ (GNU): Section 17.20.2 [Flushing Buffers], page 505.

double fma (double x, double y, double z)
‘math.h’ (ISO): Section 9.8.7 [Miscellaneous FP Arithmetic Functions], page 265.

float fmaf (float x, float y, float z)
‘math.h’ (ISO): Section 9.8.7 [Miscellaneous FP Arithmetic Functions], page 265.

long double fmal (long double x, long double y, long double z)
‘math.h’ (ISO): Section 9.8.7 [Miscellaneous FP Arithmetic Functions], page 265.

double fmax (double x, double y)
‘math.h’ (ISO): Section 9.8.7 [Miscellaneous FP Arithmetic Functions], page 265.

float fmaxf (float x, float y)
‘math.h’ (ISO): Section 9.8.7 [Miscellaneous FP Arithmetic Functions], page 265.

546 The GNU C Library: Application Fundamentals

long double fmaxl (long double x, long double y)
‘math.h’ (ISO): Section 9.8.7 [Miscellaneous FP Arithmetic Functions], page 265.

FILE * fmemopen (void *buf, size_t size, const char *opentype)
‘stdio.h’ (GNU): Section 17.21.1 [String Streams], page 509.

double fmin (double x, double y)
‘math.h’ (ISO): Section 9.8.7 [Miscellaneous FP Arithmetic Functions], page 265.

float fminf (float x, float y)
‘math.h’ (ISO): Section 9.8.7 [Miscellaneous FP Arithmetic Functions], page 265.

long double fminl (long double x, long double y)
‘math.h’ (ISO): Section 9.8.7 [Miscellaneous FP Arithmetic Functions], page 265.

double fmod (double numerator, double denominator)
‘math.h’ (ISO): Section 9.8.4 [Remainder Functions], page 262.

float fmodf (float numerator, float denominator)
‘math.h’ (ISO): Section 9.8.4 [Remainder Functions], page 262.

long double fmodl (long double numerator, long double denominator)
‘math.h’ (ISO): Section 9.8.4 [Remainder Functions], page 262.

int fmtmsg (long int classification, const char *label, int severity, const char
*text, const char *action, const char *tag)

‘fmtmsg.h’ (XPG): Section 17.22.1 [Printing Formatted Messages], page 515.

int fnmatch (const char *pattern, const char *string, int flags)
‘fnmatch.h’ (POSIX.2): Section 13.1 [Wildcard Matching], page 355.

FNM_CASEFOLD
‘fnmatch.h’ (GNU): Section 13.1 [Wildcard Matching], page 355.

FNM_EXTMATCH
‘fnmatch.h’ (GNU): Section 13.1 [Wildcard Matching], page 355.

FNM_FILE_NAME
‘fnmatch.h’ (GNU): Section 13.1 [Wildcard Matching], page 355.

FNM_LEADING_DIR
‘fnmatch.h’ (GNU): Section 13.1 [Wildcard Matching], page 355.

FNM_NOESCAPE
‘fnmatch.h’ (POSIX.2): Section 13.1 [Wildcard Matching], page 355.

FNM_PATHNAME
‘fnmatch.h’ (POSIX.2): Section 13.1 [Wildcard Matching], page 355.

FNM_PERIOD
‘fnmatch.h’ (POSIX.2): Section 13.1 [Wildcard Matching], page 355.

FILE * fopen (const char *filename, const char *opentype)
‘stdio.h’ (ISO): Section 17.3 [Opening Streams], page 440.

FILE * fopen64 (const char *filename, const char *opentype)
‘stdio.h’ (Unix98): Section 17.3 [Opening Streams], page 440.

FILE * fopencookie (void *cookie, const char *opentype,
cookie_io_functions_t io-functions)

‘stdio.h’ (GNU): Section 17.21.3.1 [Custom Streams and Cookies], page 512.

Appendix A: Summary of Library Facilities 547

int FOPEN_MAX
‘stdio.h’ (ISO): Section 17.3 [Opening Streams], page 440.

int fpclassify (float-type x)
‘math.h’ (ISO): Section 9.4 [Floating-Point Number Classification Functions],
page 247.

size_t __fpending (FILE *stream) The __fpending
‘stdio_ext.h’ (GNU): Section 17.20.3 [Controlling Which Kind of Buffering],
page 506.

int FP_ILOGB0
‘math.h’ (ISO): Section 8.4 [Exponentiation and Logarithms], page 207.

int FP_ILOGBNAN
‘math.h’ (ISO): Section 8.4 [Exponentiation and Logarithms], page 207.

fpos64_t

‘stdio.h’ (Unix98): Section 17.19 [Portable File-Position Functions], page 502.

fpos_t

‘stdio.h’ (ISO): Section 17.19 [Portable File-Position Functions], page 502.

int fprintf (FILE *stream, const char *template, ...)
‘stdio.h’ (ISO): Section 17.12.7 [Formatted Output Functions], page 470.

void __fpurge (FILE *stream)
‘stdio_ext.h’ (GNU): Section 17.20.2 [Flushing Buffers], page 505.

int fputc (int c, FILE *stream)
‘stdio.h’ (ISO): Section 17.7 [Simple Output by Characters or Lines], page 450.

int fputc_unlocked (int c, FILE *stream)
‘stdio.h’ (POSIX): Section 17.7 [Simple Output by Characters or Lines],
page 450.

int fputs (const char *s, FILE *stream)
‘stdio.h’ (ISO): Section 17.7 [Simple Output by Characters or Lines], page 450.

int fputs_unlocked (const char *s, FILE *stream)
‘stdio.h’ (GNU): Section 17.7 [Simple Output by Characters or Lines], page 450.

wint_t fputwc (wchar_t wc, FILE *stream)
‘wchar.h’ (ISO): Section 17.7 [Simple Output by Characters or Lines], page 450.

wint_t fputwc_unlocked (wint_t wc, FILE *stream)
‘wchar.h’ (POSIX): Section 17.7 [Simple Output by Characters or Lines],
page 450.

int fputws (const wchar_t *ws, FILE *stream)
‘wchar.h’ (ISO): Section 17.7 [Simple Output by Characters or Lines], page 450.

int fputws_unlocked (const wchar_t *ws, FILE *stream)
‘wchar.h’ (GNU): Section 17.7 [Simple Output by Characters or Lines], page 450.

size_t fread (void *data, size_t size, size_t count, FILE *stream)
‘stdio.h’ (ISO): Section 17.11 [Block Input/Output], page 459.

int __freadable (FILE *stream)
‘stdio_ext.h’ (GNU): Section 17.3 [Opening Streams], page 440.

548 The GNU C Library: Application Fundamentals

int __freading (FILE *stream)
‘stdio_ext.h’ (GNU): Section 17.3 [Opening Streams], page 440.

size_t fread_unlocked (void *data, size_t size, size_t count, FILE *stream)
‘stdio.h’ (GNU): Section 17.11 [Block Input/Output], page 459.

void free (void *ptr)
‘malloc.h’, ‘stdlib.h’ (ISO): Section 3.2.2.3 [Freeing Memory Allocated with
malloc], page 44.

__free_hook
‘malloc.h’ (GNU): Section 3.2.2.10 [Memory Allocation Hooks], page 50.

FILE * freopen (const char *filename, const char *opentype, FILE *stream)
‘stdio.h’ (ISO): Section 17.3 [Opening Streams], page 440.

FILE * freopen64 (const char *filename, const char *opentype, FILE *stream)
‘stdio.h’ (Unix98): Section 17.3 [Opening Streams], page 440.

double frexp (double value, int *exponent)
‘math.h’ (ISO): Section 9.8.2 [Normalization Functions], page 259.

float frexpf (float value, int *exponent)
‘math.h’ (ISO): Section 9.8.2 [Normalization Functions], page 259.

long double frexpl (long double value, int *exponent)
‘math.h’ (ISO): Section 9.8.2 [Normalization Functions], page 259.

int fscanf (FILE *stream, const char *template, ...)
‘stdio.h’ (ISO): Section 17.14.8 [Formatted Input Functions], page 495.

int fseek (FILE *stream, long int offset, int whence)
‘stdio.h’ (ISO): Section 17.18 [File Positioning], page 500.

int fseeko (FILE *stream, off_t offset, int whence)
‘stdio.h’ (Unix98): Section 17.18 [File Positioning], page 500.

int fseeko64 (FILE *stream, off64_t offset, int whence)
‘stdio.h’ (Unix98): Section 17.18 [File Positioning], page 500.

int __fsetlocking (FILE *stream, int type)
‘stdio_ext.h’ (GNU): Section 17.5 [Streams and Threads], page 445.

int fsetpos (FILE *stream, const fpos_t *position)
‘stdio.h’ (ISO): Section 17.19 [Portable File-Position Functions], page 502.

int fsetpos64 (FILE *stream, const fpos64_t *position)
‘stdio.h’ (Unix98): Section 17.19 [Portable File-Position Functions], page 502.

long int ftell (FILE *stream)
‘stdio.h’ (ISO): Section 17.18 [File Positioning], page 500.

off_t ftello (FILE *stream)
‘stdio.h’ (Unix98): Section 17.18 [File Positioning], page 500.

off64_t ftello64 (FILE *stream)
‘stdio.h’ (Unix98): Section 17.18 [File Positioning], page 500.

int ftrylockfile (FILE *stream)
‘stdio.h’ (POSIX): Section 17.5 [Streams and Threads], page 445.

Appendix A: Summary of Library Facilities 549

void funlockfile (FILE *stream)
‘stdio.h’ (POSIX): Section 17.5 [Streams and Threads], page 445.

int fwide (FILE *stream, int mode)
‘wchar.h’ (ISO): Section 17.6 [Streams in Internationalized Applications],
page 448.

int fwprintf (FILE *stream, const wchar_t *template, ...)
‘wchar.h’ (ISO): Section 17.12.7 [Formatted Output Functions], page 470.

int __fwritable (FILE *stream)
‘stdio_ext.h’ (GNU): Section 17.3 [Opening Streams], page 440.

size_t fwrite (const void *data, size_t size, size_t count, FILE *stream)
‘stdio.h’ (ISO): Section 17.11 [Block Input/Output], page 459.

size_t fwrite_unlocked (const void *data, size_t size, size_t count, FILE
*stream)

‘stdio.h’ (GNU): Section 17.11 [Block Input/Output], page 459.

int __fwriting (FILE *stream)
‘stdio_ext.h’ (GNU): Section 17.3 [Opening Streams], page 440.

int fwscanf (FILE *stream, const wchar_t *template, ...)
‘wchar.h’ (ISO): Section 17.14.8 [Formatted Input Functions], page 495.

double gamma (double x)
‘math.h’ (SVID): Section 8.6 [Special Functions], page 214.

float gammaf (float x)
‘math.h’ (SVID): Section 8.6 [Special Functions], page 214.

long double gammal (long double x)
‘math.h’ (SVID): Section 8.6 [Special Functions], page 214.

void (*__gconv_end_fct) (struct gconv_step *)
‘gconv.h’ (GNU): Section 6.5.4 [The iconv Implementation in the GNU C Li-
brary], page 165.

int (*__gconv_fct) (struct __gconv_step *, struct __gconv_step_data *,
const char **, const char *, size_t *, int)

‘gconv.h’ (GNU): Section 6.5.4 [The iconv Implementation in the GNU C Li-
brary], page 165.

int (*__gconv_init_fct) (struct __gconv_step *)
‘gconv.h’ (GNU): Section 6.5.4 [The iconv Implementation in the GNU C Li-
brary], page 165.

char * gcvt (double value, int ndigit, char *buf)
‘stdlib.h’ (SVID, Unix98): Section 9.12 [Old-fashioned System V Number-to-
String Functions], page 275.

int getc (FILE *stream)
‘stdio.h’ (ISO): Section 17.8 [Character Input], page 453.

int getchar (void)
‘stdio.h’ (ISO): Section 17.8 [Character Input], page 453.

int getchar_unlocked (void)
‘stdio.h’ (POSIX): Section 17.8 [Character Input], page 453.

550 The GNU C Library: Application Fundamentals

int getc_unlocked (FILE *stream)
‘stdio.h’ (POSIX): Section 17.8 [Character Input], page 453.

struct tm * getdate (const char *string)
‘time.h’ (Unix98): Section 10.4.6.2 [A More User-Friendly Way to Parse Times
and Dates], page 303.

getdate_err
‘time.h’ (Unix98): Section 10.4.6.2 [A More User-Friendly Way to Parse Times
and Dates], page 303.

int getdate_r (const char *string, struct tm *tp)
‘time.h’ (GNU): Section 10.4.6.2 [A More User-Friendly Way to Parse Times and
Dates], page 303.

ssize_t getdelim (char **lineptr, size_t *n, int delimiter, FILE *stream)
‘stdio.h’ (GNU): Section 17.9 [Line-Oriented Input], page 455.

char * getenv (const char *name)
‘stdlib.h’ (ISO): Section 14.4.1 [Environment Access], page 419.

int getitimer (int which, struct itimerval *old)
‘sys/time.h’ (BSD): Section 10.5 [Setting an Alarm], page 310.

ssize_t getline (char **lineptr, size_t *n, FILE *stream)
‘stdio.h’ (GNU): Section 17.9 [Line-Oriented Input], page 455.

int getopt (int argc, char **argv, const char *options)
‘unistd.h’ (POSIX.2): Section 14.2.1 [Using the getopt Function], page 381.

int getopt_long (int argc, char *const *argv, const char *shortopts, const
struct option *longopts, int *indexptr)

‘getopt.h’ (GNU): Section 14.2.3 [Parsing Long Options with getopt_long],
page 385.

int getopt_long_only (int argc, char *const *argv, const char *shortopts,
const struct option *longopts, int *indexptr)

‘getopt.h’ (GNU): Section 14.2.3 [Parsing Long Options with getopt_long],
page 385.

char * gets (char *s)
‘stdio.h’ (ISO): Section 17.9 [Line-Oriented Input], page 455.

int getsubopt (char **optionp, const char* const *tokens, char **valuep)
‘stdlib.h’ (stdlib.h): Section 14.3.12.1 [Parsing of Suboptions], page 416.

char * gettext (const char *msgid)
‘libintl.h’ (GNU): Section 11.2.1.1 [What Has to Be Done to Translate a Mes-
sage?], page 326.

int gettimeofday (struct timeval *tp, struct timezone *tzp)
‘sys/time.h’ (BSD): Section 10.4.2 [High-Resolution Calendar], page 283.

int getw (FILE *stream)
‘stdio.h’ (SVID): Section 17.8 [Character Input], page 453.

wint_t getwc (FILE *stream)
‘wchar.h’ (ISO): Section 17.8 [Character Input], page 453.

wint_t getwchar (void)
‘wchar.h’ (ISO): Section 17.8 [Character Input], page 453.

Appendix A: Summary of Library Facilities 551

wint_t getwchar_unlocked (void)
‘wchar.h’ (GNU): Section 17.8 [Character Input], page 453.

wint_t getwc_unlocked (FILE *stream)
‘wchar.h’ (GNU): Section 17.8 [Character Input], page 453.

int glob (const char *pattern, int flags, int (*errfunc) (const char *filename,
int error-code), glob_t *vector-ptr)

‘glob.h’ (POSIX.2): Section 13.2.1 [Calling glob], page 357.

int glob64 (const char *pattern, int flags, int (*errfunc) (const char *filename,
int error-code), glob64_t *vector-ptr)

‘glob.h’ (GNU): Section 13.2.1 [Calling glob], page 357.

glob64_t

‘glob.h’ (GNU): Section 13.2.1 [Calling glob], page 357.

GLOB_ABORTED
‘glob.h’ (POSIX.2): Section 13.2.1 [Calling glob], page 357.

GLOB_ALTDIRFUNC
‘glob.h’ (GNU): Section 13.2.3 [More Flags for Globbing], page 362.

GLOB_APPEND
‘glob.h’ (POSIX.2): Section 13.2.2 [Flags for Globbing], page 361.

GLOB_BRACE
‘glob.h’ (GNU): Section 13.2.3 [More Flags for Globbing], page 362.

GLOB_DOOFFS
‘glob.h’ (POSIX.2): Section 13.2.2 [Flags for Globbing], page 361.

GLOB_ERR

‘glob.h’ (POSIX.2): Section 13.2.2 [Flags for Globbing], page 361.

void globfree (glob_t *pglob)
‘glob.h’ (POSIX.2): Section 13.2.3 [More Flags for Globbing], page 362.

void globfree64 (glob64_t *pglob)
‘glob.h’ (GNU): Section 13.2.3 [More Flags for Globbing], page 362.

GLOB_MAGCHAR
‘glob.h’ (GNU): Section 13.2.3 [More Flags for Globbing], page 362.

GLOB_MARK

‘glob.h’ (POSIX.2): Section 13.2.2 [Flags for Globbing], page 361.

GLOB_NOCHECK
‘glob.h’ (POSIX.2): Section 13.2.2 [Flags for Globbing], page 361.

GLOB_NOESCAPE
‘glob.h’ (POSIX.2): Section 13.2.2 [Flags for Globbing], page 361.

GLOB_NOMAGIC
‘glob.h’ (GNU): Section 13.2.3 [More Flags for Globbing], page 362.

GLOB_NOMATCH
‘glob.h’ (POSIX.2): Section 13.2.1 [Calling glob], page 357.

GLOB_NOSORT
‘glob.h’ (POSIX.2): Section 13.2.2 [Flags for Globbing], page 361.

552 The GNU C Library: Application Fundamentals

GLOB_NOSPACE
‘glob.h’ (POSIX.2): Section 13.2.1 [Calling glob], page 357.

GLOB_ONLYDIR
‘glob.h’ (GNU): Section 13.2.3 [More Flags for Globbing], page 362.

GLOB_PERIOD
‘glob.h’ (GNU): Section 13.2.3 [More Flags for Globbing], page 362.

glob_t

‘glob.h’ (POSIX.2): Section 13.2.1 [Calling glob], page 357.

GLOB_TILDE
‘glob.h’ (GNU): Section 13.2.3 [More Flags for Globbing], page 362.

GLOB_TILDE_CHECK
‘glob.h’ (GNU): Section 13.2.3 [More Flags for Globbing], page 362.

struct tm * gmtime (const time_t *time)
‘time.h’ (ISO): Section 10.4.3 [Broken-Down Time], page 285.

struct tm * gmtime_r (const time_t *time, struct tm *resultp)
‘time.h’ (POSIX.1c): Section 10.4.3 [Broken-Down Time], page 285.

_GNU_SOURCE
(GNU): Section 1.3.4 [Feature-Test Macros], page 8.

int hcreate (size_t nel)
‘search.h’ (SVID): Section 12.5 [The hsearch Function], page 348.

int hcreate_r (size_t nel, struct hsearch_data *htab)
‘search.h’ (GNU): Section 12.5 [The hsearch Function], page 348.

void hdestroy (void)
‘search.h’ (SVID): Section 12.5 [The hsearch Function], page 348.

void hdestroy_r (struct hsearch_data *htab)
‘search.h’ (GNU): Section 12.5 [The hsearch Function], page 348.

ENTRY * hsearch (ENTRY item, ACTION action)
‘search.h’ (SVID): Section 12.5 [The hsearch Function], page 348.

int hsearch_r (ENTRY item, ACTION action, ENTRY **retval, struct hsearch_data
*htab)

‘search.h’ (GNU): Section 12.5 [The hsearch Function], page 348.

double HUGE_VAL
‘math.h’ (ISO): Section 9.5.4 [Error Reporting by Mathematical Functions],
page 253.

float HUGE_VALF
‘math.h’ (ISO): Section 9.5.4 [Error Reporting by Mathematical Functions],
page 253.

long double HUGE_VALL
‘math.h’ (ISO): Section 9.5.4 [Error Reporting by Mathematical Functions],
page 253.

double hypot (double x, double y)
‘math.h’ (ISO): Section 8.4 [Exponentiation and Logarithms], page 207.

Appendix A: Summary of Library Facilities 553

float hypotf (float x, float y)
‘math.h’ (ISO): Section 8.4 [Exponentiation and Logarithms], page 207.

long double hypotl (long double x, long double y)
‘math.h’ (ISO): Section 8.4 [Exponentiation and Logarithms], page 207.

size_t iconv (iconv_t cd, char **inbuf, size_t *inbytesleft, char **outbuf,
size_t *outbytesleft)

‘iconv.h’ (XPG2): Section 6.5.1 [Generic Character-Set Conversion Interface],
page 157.

int iconv_close (iconv_t cd)
‘iconv.h’ (XPG2): Section 6.5.1 [Generic Character-Set Conversion Interface],
page 157.

iconv_t iconv_open (const char *tocode, const char *fromcode)
‘iconv.h’ (XPG2): Section 6.5.1 [Generic Character-Set Conversion Interface],
page 157.

iconv_t

‘iconv.h’ (XPG2): Section 6.5.1 [Generic Character-Set Conversion Interface],
page 157.

int ilogb (double x)
‘math.h’ (ISO): Section 8.4 [Exponentiation and Logarithms], page 207.

int ilogbf (float x)
‘math.h’ (ISO): Section 8.4 [Exponentiation and Logarithms], page 207.

int ilogbl (long double x)
‘math.h’ (ISO): Section 8.4 [Exponentiation and Logarithms], page 207.

intmax_t imaxabs (intmax_t number)
‘inttypes.h’ (ISO): Section 9.8.1 [Absolute Value], page 258.

imaxdiv_t imaxdiv (intmax_t numerator, intmax_t denominator)
‘inttypes.h’ (ISO): Section 9.2 [Integer Division], page 244.

imaxdiv_t

‘inttypes.h’ (ISO): Section 9.2 [Integer Division], page 244.

char * index (const char *string, int c)
‘string.h’ (BSD): Section 5.7 [Search Functions], page 114.

float INFINITY
‘math.h’ (ISO): Section 9.5.2 [Infinity and NaN], page 250.

void * initstate (unsigned int seed, void *state, size_t size)
‘stdlib.h’ (BSD): Section 8.8.2 [BSD Random-Number Functions], page 235.

int initstate_r (unsigned int seed, char *restrict statebuf, size_t statelen,
struct random_data *restrict buf)

‘stdlib.h’ (GNU): Section 8.8.2 [BSD Random-Number Functions], page 235.

int _IOFBF
‘stdio.h’ (ISO): Section 17.20.3 [Controlling Which Kind of Buffering],
page 506.

int _IOLBF
‘stdio.h’ (ISO): Section 17.20.3 [Controlling Which Kind of Buffering],
page 506.

554 The GNU C Library: Application Fundamentals

int _IONBF
‘stdio.h’ (ISO): Section 17.20.3 [Controlling Which Kind of Buffering],
page 506.

int isalnum (int c)
‘ctype.h’ (ISO): Section 4.1 [Classification of Characters], page 79.

int isalpha (int c)
‘ctype.h’ (ISO): Section 4.1 [Classification of Characters], page 79.

int isascii (int c)
‘ctype.h’ (SVID, BSD): Section 4.1 [Classification of Characters], page 79.

int isblank (int c)
‘ctype.h’ (GNU): Section 4.1 [Classification of Characters], page 79.

int iscntrl (int c)
‘ctype.h’ (ISO): Section 4.1 [Classification of Characters], page 79.

int isdigit (int c)
‘ctype.h’ (ISO): Section 4.1 [Classification of Characters], page 79.

int isfinite (float-type x)
‘math.h’ (ISO): Section 9.4 [Floating-Point Number Classification Functions],
page 247.

int isgraph (int c)
‘ctype.h’ (ISO): Section 4.1 [Classification of Characters], page 79.

int isgreater (real-floating x, real-floating y)
‘math.h’ (ISO): Section 9.8.6 [Floating-Point Comparison Functions], page 264.

int isgreaterequal (real-floating x, real-floating y)
‘math.h’ (ISO): Section 9.8.6 [Floating-Point Comparison Functions], page 264.

int isinf (double x)
‘math.h’ (BSD): Section 9.4 [Floating-Point Number Classification Functions],
page 247.

int isinff (float x)
‘math.h’ (BSD): Section 9.4 [Floating-Point Number Classification Functions],
page 247.

int isinfl (long double x)
‘math.h’ (BSD): Section 9.4 [Floating-Point Number Classification Functions],
page 247.

int isless (real-floating x, real-floating y)
‘math.h’ (ISO): Section 9.8.6 [Floating-Point Comparison Functions], page 264.

int islessequal (real-floating x, real-floating y)
‘math.h’ (ISO): Section 9.8.6 [Floating-Point Comparison Functions], page 264.

int islessgreater (real-floating x, real-floating y)
‘math.h’ (ISO): Section 9.8.6 [Floating-Point Comparison Functions], page 264.

int islower (int c)
‘ctype.h’ (ISO): Section 4.1 [Classification of Characters], page 79.

int isnan (double x)
‘math.h’ (BSD): Section 9.4 [Floating-Point Number Classification Functions],
page 247.

Appendix A: Summary of Library Facilities 555

int isnan (float-type x)
‘math.h’ (ISO): Section 9.4 [Floating-Point Number Classification Functions],
page 247.

int isnanf (float x)
‘math.h’ (BSD): Section 9.4 [Floating-Point Number Classification Functions],
page 247.

int isnanl (long double x)
‘math.h’ (BSD): Section 9.4 [Floating-Point Number Classification Functions],
page 247.

int isnormal (float-type x)
‘math.h’ (ISO): Section 9.4 [Floating-Point Number Classification Functions],
page 247.

_ISOC99_SOURCE
(GNU): Section 1.3.4 [Feature-Test Macros], page 8.

int isprint (int c)
‘ctype.h’ (ISO): Section 4.1 [Classification of Characters], page 79.

int ispunct (int c)
‘ctype.h’ (ISO): Section 4.1 [Classification of Characters], page 79.

int isspace (int c)
‘ctype.h’ (ISO): Section 4.1 [Classification of Characters], page 79.

int isunordered (real-floating x, real-floating y)
‘math.h’ (ISO): Section 9.8.6 [Floating-Point Comparison Functions], page 264.

int isupper (int c)
‘ctype.h’ (ISO): Section 4.1 [Classification of Characters], page 79.

int iswalnum (wint_t wc)
‘wctype.h’ (ISO): Section 4.3 [Character Class Determination for Wide Charac-
ters], page 82.

int iswalpha (wint_t wc)
‘wctype.h’ (ISO): Section 4.3 [Character Class Determination for Wide Charac-
ters], page 82.

int iswblank (wint_t wc)
‘wctype.h’ (GNU): Section 4.3 [Character Class Determination for Wide Charac-
ters], page 82.

int iswcntrl (wint_t wc)
‘wctype.h’ (ISO): Section 4.3 [Character Class Determination for Wide Charac-
ters], page 82.

int iswctype (wint_t wc, wctype_t desc)
‘wctype.h’ (ISO): Section 4.3 [Character Class Determination for Wide Charac-
ters], page 82.

int iswdigit (wint_t wc)
‘wctype.h’ (ISO): Section 4.3 [Character Class Determination for Wide Charac-
ters], page 82.

int iswgraph (wint_t wc)
‘wctype.h’ (ISO): Section 4.3 [Character Class Determination for Wide Charac-
ters], page 82.

556 The GNU C Library: Application Fundamentals

int iswlower (wint_t wc)
‘ctype.h’ (ISO): Section 4.3 [Character Class Determination for Wide Characters],
page 82.

int iswprint (wint_t wc)
‘wctype.h’ (ISO): Section 4.3 [Character Class Determination for Wide Charac-
ters], page 82.

int iswpunct (wint_t wc)
‘wctype.h’ (ISO): Section 4.3 [Character Class Determination for Wide Charac-
ters], page 82.

int iswspace (wint_t wc)
‘wctype.h’ (ISO): Section 4.3 [Character Class Determination for Wide Charac-
ters], page 82.

int iswupper (wint_t wc)
‘wctype.h’ (ISO): Section 4.3 [Character Class Determination for Wide Charac-
ters], page 82.

int iswxdigit (wint_t wc)
‘wctype.h’ (ISO): Section 4.3 [Character Class Determination for Wide Charac-
ters], page 82.

int isxdigit (int c)
‘ctype.h’ (ISO): Section 4.1 [Classification of Characters], page 79.

ITIMER_PROF
‘sys/time.h’ (BSD): Section 10.5 [Setting an Alarm], page 310.

ITIMER_REAL
‘sys/time.h’ (BSD): Section 10.5 [Setting an Alarm], page 310.

ITIMER_VIRTUAL
‘sys/time.h’ (BSD): Section 10.5 [Setting an Alarm], page 310.

double j0 (double x)
‘math.h’ (SVID): Section 8.6 [Special Functions], page 214.

float j0f (float x)
‘math.h’ (SVID): Section 8.6 [Special Functions], page 214.

long double j0l (long double x)
‘math.h’ (SVID): Section 8.6 [Special Functions], page 214.

double j1 (double x)
‘math.h’ (SVID): Section 8.6 [Special Functions], page 214.

float j1f (float x)
‘math.h’ (SVID): Section 8.6 [Special Functions], page 214.

long double j1l (long double x)
‘math.h’ (SVID): Section 8.6 [Special Functions], page 214.

double jn (int n, double x)
‘math.h’ (SVID): Section 8.6 [Special Functions], page 214.

float jnf (int n, float x)
‘math.h’ (SVID): Section 8.6 [Special Functions], page 214.

Appendix A: Summary of Library Facilities 557

long double jnl (int n, long double x)
‘math.h’ (SVID): Section 8.6 [Special Functions], page 214.

long int jrand48 (unsigned short int xsubi[3])
‘stdlib.h’ (SVID): Section 8.8.3 [SVID Random-Number Functions], page 237.

int jrand48_r (unsigned short int xsubi[3], struct drand48_data *buffer,
long int *result)

‘stdlib.h’ (GNU): Section 8.8.3 [SVID Random-Number Functions], page 237.

char * l64a (long int n)
‘stdlib.h’ (XPG): Section 5.11 [Encode Binary Data], page 125.

long int labs (long int number)
‘stdlib.h’ (ISO): Section 9.8.1 [Absolute Value], page 258.

LANG

‘locale.h’ (ISO): Section 7.3 [Categories of Activities That Locales Affect],
page 182.

LC_ALL

‘locale.h’ (ISO): Section 7.3 [Categories of Activities That Locales Affect],
page 182.

LC_COLLATE
‘locale.h’ (ISO): Section 7.3 [Categories of Activities That Locales Affect],
page 182.

LC_CTYPE

‘locale.h’ (ISO): Section 7.3 [Categories of Activities That Locales Affect],
page 182.

LC_MESSAGES
‘locale.h’ (XOPEN): Section 7.3 [Categories of Activities That Locales Affect],
page 182.

LC_MONETARY
‘locale.h’ (ISO): Section 7.3 [Categories of Activities That Locales Affect],
page 182.

LC_NUMERIC
‘locale.h’ (ISO): Section 7.3 [Categories of Activities That Locales Affect],
page 182.

void lcong48 (unsigned short int param[7])
‘stdlib.h’ (SVID): Section 8.8.3 [SVID Random-Number Functions], page 237.

int lcong48_r (unsigned short int param[7], struct drand48_data *buffer)
‘stdlib.h’ (GNU): Section 8.8.3 [SVID Random-Number Functions], page 237.

LC_TIME

‘locale.h’ (ISO): Section 7.3 [Categories of Activities That Locales Affect],
page 182.

double ldexp (double value, int exponent)
‘math.h’ (ISO): Section 9.8.2 [Normalization Functions], page 259.

float ldexpf (float value, int exponent)
‘math.h’ (ISO): Section 9.8.2 [Normalization Functions], page 259.

558 The GNU C Library: Application Fundamentals

long double ldexpl (long double value, int exponent)
‘math.h’ (ISO): Section 9.8.2 [Normalization Functions], page 259.

ldiv_t ldiv (long int numerator, long int denominator)
‘stdlib.h’ (ISO): Section 9.2 [Integer Division], page 244.

ldiv_t

‘stdlib.h’ (ISO): Section 9.2 [Integer Division], page 244.

void * lfind (const void *key, void *base, size_t *nmemb, size_t size,
comparison_fn_t compar)

‘search.h’ (SVID): Section 12.2 [Array Search Function], page 343.

double lgamma (double x)
‘math.h’ (SVID): Section 8.6 [Special Functions], page 214.

float lgammaf (float x)
‘math.h’ (SVID): Section 8.6 [Special Functions], page 214.

float lgammaf_r (float x, int *signp)
‘math.h’ (XPG): Section 8.6 [Special Functions], page 214.

long double lgammal (long double x)
‘math.h’ (SVID): Section 8.6 [Special Functions], page 214.

long double lgammal_r (long double x, int *signp)
‘math.h’ (XPG): Section 8.6 [Special Functions], page 214.

double lgamma_r (double x, int *signp)
‘math.h’ (XPG): Section 8.6 [Special Functions], page 214.

L_INCR

‘sys/file.h’ (BSD): Section 17.18 [File Positioning], page 500.

long long int llabs (long long int number)
‘stdlib.h’ (ISO): Section 9.8.1 [Absolute Value], page 258.

lldiv_t lldiv (long long int numerator, long long int denominator)
‘stdlib.h’ (ISO): Section 9.2 [Integer Division], page 244.

lldiv_t

‘stdlib.h’ (ISO): Section 9.2 [Integer Division], page 244.

long long int llrint (double x)
‘math.h’ (ISO): Section 9.8.3 [Rounding Functions], page 260.

long long int llrintf (float x)
‘math.h’ (ISO): Section 9.8.3 [Rounding Functions], page 260.

long long int llrintl (long double x)
‘math.h’ (ISO): Section 9.8.3 [Rounding Functions], page 260.

long long int llround (double x)
‘math.h’ (ISO): Section 9.8.3 [Rounding Functions], page 260.

long long int llroundf (float x)
‘math.h’ (ISO): Section 9.8.3 [Rounding Functions], page 260.

long long int llroundl (long double x)
‘math.h’ (ISO): Section 9.8.3 [Rounding Functions], page 260.

Appendix A: Summary of Library Facilities 559

struct lconv * localeconv (void)
‘locale.h’ (ISO): Section 7.6.1 [localeconv: “It is portable, but . . . ´],
page 186.

struct tm * localtime (const time_t *time)
‘time.h’ (ISO): Section 10.4.3 [Broken-Down Time], page 285.

struct tm * localtime_r (const time_t *time, struct tm *resultp)
‘time.h’ (POSIX.1c): Section 10.4.3 [Broken-Down Time], page 285.

double log (double x)
‘math.h’ (ISO): Section 8.4 [Exponentiation and Logarithms], page 207.

double log10 (double x)
‘math.h’ (ISO): Section 8.4 [Exponentiation and Logarithms], page 207.

float log10f (float x)
‘math.h’ (ISO): Section 8.4 [Exponentiation and Logarithms], page 207.

long double log10l (long double x)
‘math.h’ (ISO): Section 8.4 [Exponentiation and Logarithms], page 207.

double log1p (double x)
‘math.h’ (ISO): Section 8.4 [Exponentiation and Logarithms], page 207.

float log1pf (float x)
‘math.h’ (ISO): Section 8.4 [Exponentiation and Logarithms], page 207.

long double log1pl (long double x)
‘math.h’ (ISO): Section 8.4 [Exponentiation and Logarithms], page 207.

double log2 (double x)
‘math.h’ (ISO): Section 8.4 [Exponentiation and Logarithms], page 207.

float log2f (float x)
‘math.h’ (ISO): Section 8.4 [Exponentiation and Logarithms], page 207.

long double log2l (long double x)
‘math.h’ (ISO): Section 8.4 [Exponentiation and Logarithms], page 207.

double logb (double x)
‘math.h’ (ISO): Section 8.4 [Exponentiation and Logarithms], page 207.

float logbf (float x)
‘math.h’ (ISO): Section 8.4 [Exponentiation and Logarithms], page 207.

long double logbl (long double x)
‘math.h’ (ISO): Section 8.4 [Exponentiation and Logarithms], page 207.

float logf (float x)
‘math.h’ (ISO): Section 8.4 [Exponentiation and Logarithms], page 207.

long double logl (long double x)
‘math.h’ (ISO): Section 8.4 [Exponentiation and Logarithms], page 207.

long int lrand48 (void)
‘stdlib.h’ (SVID): Section 8.8.3 [SVID Random-Number Functions], page 237.

int lrand48_r (struct drand48_data *buffer, double *result)
‘stdlib.h’ (GNU): Section 8.8.3 [SVID Random-Number Functions], page 237.

560 The GNU C Library: Application Fundamentals

long int lrint (double x)
‘math.h’ (ISO): Section 9.8.3 [Rounding Functions], page 260.

long int lrintf (float x)
‘math.h’ (ISO): Section 9.8.3 [Rounding Functions], page 260.

long int lrintl (long double x)
‘math.h’ (ISO): Section 9.8.3 [Rounding Functions], page 260.

long int lround (double x)
‘math.h’ (ISO): Section 9.8.3 [Rounding Functions], page 260.

long int lroundf (float x)
‘math.h’ (ISO): Section 9.8.3 [Rounding Functions], page 260.

long int lroundl (long double x)
‘math.h’ (ISO): Section 9.8.3 [Rounding Functions], page 260.

void * lsearch (const void *key, void *base, size_t *nmemb, size_t size,
comparison_fn_t compar)

‘search.h’ (SVID): Section 12.2 [Array Search Function], page 343.

L_SET

‘sys/file.h’ (BSD): Section 17.18 [File Positioning], page 500.

L_XTND

‘sys/file.h’ (BSD): Section 17.18 [File Positioning], page 500.

struct mallinfo mallinfo (void)
‘malloc.h’ (SVID): Section 3.2.2.11 [Statistics for Memory Allocation with
malloc], page 53.

void * malloc (size_t size)
‘malloc.h’, ‘stdlib.h’ (ISO): Section 3.2.2.1 [Basic Memory Allocation],
page 42.

__malloc_hook
‘malloc.h’ (GNU): Section 3.2.2.10 [Memory Allocation Hooks], page 50.

__malloc_initialize_hook
‘malloc.h’ (GNU): Section 3.2.2.10 [Memory Allocation Hooks], page 50.

int MB_CUR_MAX
‘stdlib.h’ (ISO): Section 6.3.1 [Selecting the Conversion and Its Properties],
page 138.

int mblen (const char *string, size_t size)
‘stdlib.h’ (ISO): Section 6.4.1 [Nonreentrant Conversion of Single Characters],
page 153.

int MB_LEN_MAX
‘limits.h’ (ISO): Section 6.3.1 [Selecting the Conversion and Its Properties],
page 138.

size_t mbrlen (const char *restrict s, size_t n, mbstate_t *ps)
‘wchar.h’ (ISO): Section 6.3.3 [Converting Single Characters], page 140.

size_t mbrtowc (wchar_t *restrict pwc, const char *restrict s, size_t n,
mbstate_t *restrict ps)

‘wchar.h’ (ISO): Section 6.3.3 [Converting Single Characters], page 140.

Appendix A: Summary of Library Facilities 561

int mbsinit (const mbstate_t *ps)
‘wchar.h’ (ISO): Section 6.3.2 [Representing the State of the Conversion],
page 139.

size_t mbsnrtowcs (wchar_t *restrict dst, const char **restrict src,
size_t nmc, size_t len, mbstate_t *restrict ps)

‘wchar.h’ (GNU): Section 6.3.4 [Converting Multibyte- and Wide-Character
Strings], page 147.

size_t mbsrtowcs (wchar_t *restrict dst, const char **restrict src, size_t
len, mbstate_t *restrict ps)

‘wchar.h’ (ISO): Section 6.3.4 [Converting Multibyte- and Wide-Character
Strings], page 147.

mbstate_t

‘wchar.h’ (ISO): Section 6.3.2 [Representing the State of the Conversion],
page 139.

size_t mbstowcs (wchar_t *wstring, const char *string, size_t size)
‘stdlib.h’ (ISO): Section 6.4.2 [Nonreentrant Conversion of Strings], page 154.

int mbtowc (wchar_t *restrict result, const char *restrict string, size_t
size)

‘stdlib.h’ (ISO): Section 6.4.1 [Nonreentrant Conversion of Single Characters],
page 153.

int mcheck (void (*abortfn) (enum mcheck_status status))
‘mcheck.h’ (GNU): Section 3.2.2.9 [Heap Consistency Checking], page 48.

void * memalign (size_t boundary, size_t size)
‘malloc.h’ (BSD): Section 3.2.2.7 [Allocating Aligned Memory Blocks], page 47.

__memalign_hook
‘malloc.h’ (GNU): Section 3.2.2.10 [Memory Allocation Hooks], page 50.

void * memccpy (void *restrict to, const void *restrict from, int c, size_t
size)

‘string.h’ (SVID): Section 5.4 [Copying and Concatenation], page 93.

void * memchr (const void *block, int c, size_t size)
‘string.h’ (ISO): Section 5.7 [Search Functions], page 114.

int memcmp (const void *a1, const void *a2, size_t size)
‘string.h’ (ISO): Section 5.5 [String/Array Comparison], page 105.

void * memcpy (void *restrict to, const void *restrict from, size_t size)
‘string.h’ (ISO): Section 5.4 [Copying and Concatenation], page 93.

void * memfrob (void *mem, size_t length)
‘string.h’ (GNU): Section 5.10 [Trivial Encryption], page 124.

void * memmem (const void *haystack, size_t haystack-len,
const void *needle, size_t needle-len)

‘string.h’ (GNU): Section 5.7 [Search Functions], page 114.

void * memmove (void *to, const void *from, size_t size)
‘string.h’ (ISO): Section 5.4 [Copying and Concatenation], page 93.

void * mempcpy (void *restrict to, const void *restrict from, size_t size)
‘string.h’ (GNU): Section 5.4 [Copying and Concatenation], page 93.

562 The GNU C Library: Application Fundamentals

void * memrchr (const void *block, int c, size_t size)
‘string.h’ (GNU): Section 5.7 [Search Functions], page 114.

void * memset (void *block, int c, size_t size)
‘string.h’ (ISO): Section 5.4 [Copying and Concatenation], page 93.

time_t mktime (struct tm *brokentime)
‘time.h’ (ISO): Section 10.4.3 [Broken-Down Time], page 285.

int mlock (const void *addr, size_t len)
‘sys/mman.h’ (POSIX.1b): Section 3.4.3 [Functions to Lock and Unlock Pages],
page 76.

int mlockall (int flags)
‘sys/mman.h’ (POSIX.1b): Section 3.4.3 [Functions to Lock and Unlock Pages],
page 76.

double modf (double value, double *integer-part)
‘math.h’ (ISO): Section 9.8.3 [Rounding Functions], page 260.

float modff (float value, float *integer-part)
‘math.h’ (ISO): Section 9.8.3 [Rounding Functions], page 260.

long double modfl (long double value, long double *integer-part)
‘math.h’ (ISO): Section 9.8.3 [Rounding Functions], page 260.

long int mrand48 (void)
‘stdlib.h’ (SVID): Section 8.8.3 [SVID Random-Number Functions], page 237.

int mrand48_r (struct drand48_data *buffer, double *result)
‘stdlib.h’ (GNU): Section 8.8.3 [SVID Random-Number Functions], page 237.

void mtrace (void)
‘mcheck.h’ (GNU): Section 3.2.3.1 [How to Install the Tracing Functionality],
page 56.

int munlock (const void *addr, size_t len)
‘sys/mman.h’ (POSIX.1b): Section 3.4.3 [Functions to Lock and Unlock Pages],
page 76.

int munlockall (void)
‘sys/mman.h’ (POSIX.1b): Section 3.4.3 [Functions to Lock and Unlock Pages],
page 76.

void muntrace (void)
‘mcheck.h’ (GNU): Section 3.2.3.1 [How to Install the Tracing Functionality],
page 56.

double nan (const char *tagp)
‘math.h’ (ISO): Section 9.8.5 [Setting and Modifying Single Bits of FP Values],
page 263.

float NAN

‘math.h’ (GNU): Section 9.5.2 [Infinity and NaN], page 250.

float nanf (const char *tagp)
‘math.h’ (ISO): Section 9.8.5 [Setting and Modifying Single Bits of FP Values],
page 263.

Appendix A: Summary of Library Facilities 563

long double nanl (const char *tagp)
‘math.h’ (ISO): Section 9.8.5 [Setting and Modifying Single Bits of FP Values],
page 263.

int nanosleep (const struct timespec *requested time, struct timespec
*remaining)

‘time.h’ (POSIX.1): Section 10.6 [Sleeping], page 312.

double nearbyint (double x)
‘math.h’ (ISO): Section 9.8.3 [Rounding Functions], page 260.

float nearbyintf (float x)
‘math.h’ (ISO): Section 9.8.3 [Rounding Functions], page 260.

long double nearbyintl (long double x)
‘math.h’ (ISO): Section 9.8.3 [Rounding Functions], page 260.

double nextafter (double x, double y)
‘math.h’ (ISO): Section 9.8.5 [Setting and Modifying Single Bits of FP Values],
page 263.

float nextafterf (float x, float y)
‘math.h’ (ISO): Section 9.8.5 [Setting and Modifying Single Bits of FP Values],
page 263.

long double nextafterl (long double x, long double y)
‘math.h’ (ISO): Section 9.8.5 [Setting and Modifying Single Bits of FP Values],
page 263.

double nexttoward (double x, long double y)
‘math.h’ (ISO): Section 9.8.5 [Setting and Modifying Single Bits of FP Values],
page 263.

float nexttowardf (float x, long double y)
‘math.h’ (ISO): Section 9.8.5 [Setting and Modifying Single Bits of FP Values],
page 263.

long double nexttowardl (long double x, long double y)
‘math.h’ (ISO): Section 9.8.5 [Setting and Modifying Single Bits of FP Values],
page 263.

char * ngettext (const char *msgid1, const char *msgid2, unsigned long int
n)

‘libintl.h’ (GNU): Section 11.2.1.3 [Additional Functions for More Compli-
cated Situations], page 330.

char * nl_langinfo (nl_item item)
‘langinfo.h’ (XOPEN): Section 7.6.2 [Pinpoint Access to Locale Data],
page 191.

long int nrand48 (unsigned short int xsubi[3])
‘stdlib.h’ (SVID): Section 8.8.3 [SVID Random-Number Functions], page 237.

int nrand48_r (unsigned short int xsubi[3], struct drand48_data *buffer,
long int *result)

‘stdlib.h’ (GNU): Section 8.8.3 [SVID Random-Number Functions], page 237.

int ntp_adjtime (struct timex *tptr)
‘sys/timex.h’ (GNU): Section 10.4.4 [High-Accuracy Clock], page 288.

564 The GNU C Library: Application Fundamentals

int ntp_gettime (struct ntptimeval *tptr)
‘sys/timex.h’ (GNU): Section 10.4.4 [High-Accuracy Clock], page 288.

void obstack_1grow (struct obstack *obstack-ptr, char c)
‘obstack.h’ (GNU): Section 3.2.4.6 [Growing Objects], page 64.

void obstack_1grow_fast (struct obstack *obstack-ptr, char c)
‘obstack.h’ (GNU): Section 3.2.4.7 [Extra-Fast Growing Objects], page 66.

int obstack_alignment_mask (struct obstack *obstack-ptr)
‘obstack.h’ (GNU): Section 3.2.4.9 [Alignment of Data in Obstacks], page 68.

void * obstack_alloc (struct obstack *obstack-ptr, int size)
‘obstack.h’ (GNU): Section 3.2.4.3 [Allocation in an Obstack], page 61.

obstack_alloc_failed_handler
‘obstack.h’ (GNU): Section 3.2.4.2 [Preparing for Using Obstacks], page 60.

void * obstack_base (struct obstack *obstack-ptr)
‘obstack.h’ (GNU): Section 3.2.4.8 [Status of an Obstack], page 67.

void obstack_blank (struct obstack *obstack-ptr, int size)
‘obstack.h’ (GNU): Section 3.2.4.6 [Growing Objects], page 64.

void obstack_blank_fast (struct obstack *obstack-ptr, int size)
‘obstack.h’ (GNU): Section 3.2.4.7 [Extra-Fast Growing Objects], page 66.

int obstack_chunk_size (struct obstack *obstack-ptr)
‘obstack.h’ (GNU): Section 3.2.4.10 [Obstack Chunks], page 69.

void * obstack_copy (struct obstack *obstack-ptr, void *address, int size)
‘obstack.h’ (GNU): Section 3.2.4.3 [Allocation in an Obstack], page 61.

void * obstack_copy0 (struct obstack *obstack-ptr, void *address, int size)
‘obstack.h’ (GNU): Section 3.2.4.3 [Allocation in an Obstack], page 61.

void * obstack_finish (struct obstack *obstack-ptr)
‘obstack.h’ (GNU): Section 3.2.4.6 [Growing Objects], page 64.

void obstack_free (struct obstack *obstack-ptr, void *object)
‘obstack.h’ (GNU): Section 3.2.4.4 [Freeing Objects in an Obstack], page 63.

void obstack_grow (struct obstack *obstack-ptr, void *data, int size)
‘obstack.h’ (GNU): Section 3.2.4.6 [Growing Objects], page 64.

void obstack_grow0 (struct obstack *obstack-ptr, void *data, int size)
‘obstack.h’ (GNU): Section 3.2.4.6 [Growing Objects], page 64.

int obstack_init (struct obstack *obstack-ptr)
‘obstack.h’ (GNU): Section 3.2.4.2 [Preparing for Using Obstacks], page 60.

void obstack_int_grow (struct obstack *obstack-ptr, int data)
‘obstack.h’ (GNU): Section 3.2.4.6 [Growing Objects], page 64.

void obstack_int_grow_fast (struct obstack *obstack-ptr, int data)
‘obstack.h’ (GNU): Section 3.2.4.7 [Extra-Fast Growing Objects], page 66.

void * obstack_next_free (struct obstack *obstack-ptr)
‘obstack.h’ (GNU): Section 3.2.4.8 [Status of an Obstack], page 67.

int obstack_object_size (struct obstack *obstack-ptr)
‘obstack.h’ (GNU): Section 3.2.4.6 [Growing Objects], page 64.

Appendix A: Summary of Library Facilities 565

int obstack_object_size (struct obstack *obstack-ptr)
‘obstack.h’ (GNU): Section 3.2.4.8 [Status of an Obstack], page 67.

int obstack_printf (struct obstack *obstack, const char *template, ...)
‘stdio.h’ (GNU): Section 17.12.8 [Dynamically Allocating Formatted Output],
page 473.

void obstack_ptr_grow (struct obstack *obstack-ptr, void *data)
‘obstack.h’ (GNU): Section 3.2.4.6 [Growing Objects], page 64.

void obstack_ptr_grow_fast (struct obstack *obstack-ptr, void *data)
‘obstack.h’ (GNU): Section 3.2.4.7 [Extra-Fast Growing Objects], page 66.

int obstack_room (struct obstack *obstack-ptr)
‘obstack.h’ (GNU): Section 3.2.4.7 [Extra-Fast Growing Objects], page 66.

int obstack_vprintf (struct obstack *obstack, const char *template, va_list
ap)

‘stdio.h’ (GNU): Section 17.12.9 [Variable Arguments Output Functions],
page 474.

int on_exit (void (*function)(int status, void *arg), void *arg)
‘stdlib.h’ (SunOS): Section 14.6.3 [Clean-Ups on Exit], page 426.

FILE * open_memstream (char **ptr, size_t *sizeloc)
‘stdio.h’ (GNU): Section 17.21.1 [String Streams], page 509.

FILE * open_obstack_stream (struct obstack *obstack)
‘stdio.h’ (GNU): Section 17.21.2 [Obstack Streams], page 511.

char * optarg
‘unistd.h’ (POSIX.2): Section 14.2.1 [Using the getopt Function], page 381.

int opterr
‘unistd.h’ (POSIX.2): Section 14.2.1 [Using the getopt Function], page 381.

int optind
‘unistd.h’ (POSIX.2): Section 14.2.1 [Using the getopt Function], page 381.

OPTION_ALIAS
‘argp.h’ (GNU): Section 14.3.4.1 [Flags for Argp Options], page 393.

OPTION_ARG_OPTIONAL
‘argp.h’ (GNU): Section 14.3.4.1 [Flags for Argp Options], page 393.

OPTION_DOC
‘argp.h’ (GNU): Section 14.3.4.1 [Flags for Argp Options], page 393.

OPTION_HIDDEN
‘argp.h’ (GNU): Section 14.3.4.1 [Flags for Argp Options], page 393.

OPTION_NO_USAGE
‘argp.h’ (GNU): Section 14.3.4.1 [Flags for Argp Options], page 393.

int optopt
‘unistd.h’ (POSIX.2): Section 14.2.1 [Using the getopt Function], page 381.

PA_CHAR

‘printf.h’ (GNU): Section 17.12.10 [Parsing a Template String], page 476.

566 The GNU C Library: Application Fundamentals

PA_DOUBLE

‘printf.h’ (GNU): Section 17.12.10 [Parsing a Template String], page 476.

PA_FLAG_LONG
‘printf.h’ (GNU): Section 17.12.10 [Parsing a Template String], page 476.

PA_FLAG_LONG_DOUBLE
‘printf.h’ (GNU): Section 17.12.10 [Parsing a Template String], page 476.

PA_FLAG_LONG_LONG
‘printf.h’ (GNU): Section 17.12.10 [Parsing a Template String], page 476.

int PA_FLAG_MASK
‘printf.h’ (GNU): Section 17.12.10 [Parsing a Template String], page 476.

PA_FLAG_PTR
‘printf.h’ (GNU): Section 17.12.10 [Parsing a Template String], page 476.

PA_FLAG_SHORT
‘printf.h’ (GNU): Section 17.12.10 [Parsing a Template String], page 476.

PA_FLOAT

‘printf.h’ (GNU): Section 17.12.10 [Parsing a Template String], page 476.

PA_INT

‘printf.h’ (GNU): Section 17.12.10 [Parsing a Template String], page 476.

PA_LAST

‘printf.h’ (GNU): Section 17.12.10 [Parsing a Template String], page 476.

PA_POINTER
‘printf.h’ (GNU): Section 17.12.10 [Parsing a Template String], page 476.

size_t parse_printf_format (const char *template, size_t n, int *argtypes)
‘printf.h’ (GNU): Section 17.12.10 [Parsing a Template String], page 476.

PA_STRING

‘printf.h’ (GNU): Section 17.12.10 [Parsing a Template String], page 476.

void perror (const char *message)
‘stdio.h’ (ISO): Section 2.3 [Error Messages], page 32.

_POSIX_C_SOURCE
(POSIX.2): Section 1.3.4 [Feature-Test Macros], page 8.

int posix_memalign (void **memptr, size_t alignment, size_t size)
‘stdlib.h’ (POSIX): Section 3.2.2.7 [Allocating Aligned Memory Blocks],
page 47.

_POSIX_SOURCE
(POSIX.1): Section 1.3.4 [Feature-Test Macros], page 8.

double pow (double base, double power)
‘math.h’ (ISO): Section 8.4 [Exponentiation and Logarithms], page 207.

double pow10 (double x)
‘math.h’ (GNU): Section 8.4 [Exponentiation and Logarithms], page 207.

float pow10f (float x)
‘math.h’ (GNU): Section 8.4 [Exponentiation and Logarithms], page 207.

Appendix A: Summary of Library Facilities 567

long double pow10l (long double x)
‘math.h’ (GNU): Section 8.4 [Exponentiation and Logarithms], page 207.

float powf (float base, float power)
‘math.h’ (ISO): Section 8.4 [Exponentiation and Logarithms], page 207.

long double powl (long double base, long double power)
‘math.h’ (ISO): Section 8.4 [Exponentiation and Logarithms], page 207.

int printf (const char *template, ...)
‘stdio.h’ (ISO): Section 17.12.7 [Formatted Output Functions], page 470.

printf_arginfo_function
‘printf.h’ (GNU): Section 17.13.3 [Defining the Output Handler], page 482.

printf_function
‘printf.h’ (GNU): Section 17.13.3 [Defining the Output Handler], page 482.

int printf_size (FILE *fp, const struct printf_info *info, const void
*const *args)

‘printf.h’ (GNU): Section 17.13.5 [Predefined printf Handlers], page 485.

int printf_size_info (const struct printf_info *info, size_t n, int
*argtypes)

‘printf.h’ (GNU): Section 17.13.5 [Predefined printf Handlers], page 485.

char * program_invocation_name
‘errno.h’ (GNU): Section 2.3 [Error Messages], page 32.

char * program_invocation_short_name
‘errno.h’ (GNU): Section 2.3 [Error Messages], page 32.

int putc (int c, FILE *stream)
‘stdio.h’ (ISO): Section 17.7 [Simple Output by Characters or Lines], page 450.

int putchar (int c)
‘stdio.h’ (ISO): Section 17.7 [Simple Output by Characters or Lines], page 450.

int putchar_unlocked (int c)
‘stdio.h’ (POSIX): Section 17.7 [Simple Output by Characters or Lines],
page 450.

int putc_unlocked (int c, FILE *stream)
‘stdio.h’ (POSIX): Section 17.7 [Simple Output by Characters or Lines],
page 450.

int putenv (char *string)
‘stdlib.h’ (SVID): Section 14.4.1 [Environment Access], page 419.

int puts (const char *s)
‘stdio.h’ (ISO): Section 17.7 [Simple Output by Characters or Lines], page 450.

int putw (int w, FILE *stream)
‘stdio.h’ (SVID): Section 17.7 [Simple Output by Characters or Lines], page 450.

wint_t putwc (wchar_t wc, FILE *stream)
‘wchar.h’ (ISO): Section 17.7 [Simple Output by Characters or Lines], page 450.

wint_t putwchar (wchar_t wc)
‘wchar.h’ (ISO): Section 17.7 [Simple Output by Characters or Lines], page 450.

568 The GNU C Library: Application Fundamentals

wint_t putwchar_unlocked (wchar_t wc)
‘wchar.h’ (GNU): Section 17.7 [Simple Output by Characters or Lines], page 450.

wint_t putwc_unlocked (wchar_t wc, FILE *stream)
‘wchar.h’ (GNU): Section 17.7 [Simple Output by Characters or Lines], page 450.

char * qecvt (long double value, int ndigit, int *decpt, int *neg)
‘stdlib.h’ (GNU): Section 9.12 [Old-fashioned System V Number-to-String
Functions], page 275.

char * qecvt_r (long double value, int ndigit, int *decpt, int *neg, char *buf,
size_t len)

‘stdlib.h’ (GNU): Section 9.12 [Old-fashioned System V Number-to-String
Functions], page 275.

char * qfcvt (long double value, int ndigit, int *decpt, int *neg)
‘stdlib.h’ (GNU): Section 9.12 [Old-fashioned System V Number-to-String
Functions], page 275.

char * qfcvt_r (long double value, int ndigit, int *decpt, int *neg, char *buf,
size_t len)

‘stdlib.h’ (GNU): Section 9.12 [Old-fashioned System V Number-to-String
Functions], page 275.

char * qgcvt (long double value, int ndigit, char *buf)
‘stdlib.h’ (GNU): Section 9.12 [Old-fashioned System V Number-to-String
Functions], page 275.

void qsort (void *array, size_t count, size_t size, comparison_fn_t compare)
‘stdlib.h’ (ISO): Section 12.3 [Array Sort Function], page 344.

int rand (void)
‘stdlib.h’ (ISO): Section 8.8.1 [ISO C Random-Number Functions], page 235.

int RAND_MAX
‘stdlib.h’ (ISO): Section 8.8.1 [ISO C Random-Number Functions], page 235.

long int random (void)
‘stdlib.h’ (BSD): Section 8.8.2 [BSD Random-Number Functions], page 235.

int random_r (struct random_data *restrict buf, int32_t *restrict result)
‘stdlib.h’ (GNU): Section 8.8.2 [BSD Random-Number Functions], page 235.

int rand_r (unsigned int *seed)
‘stdlib.h’ (POSIX.1): Section 8.8.1 [ISO C Random-Number Functions],
page 235.

void * rawmemchr (const void *block, int c)
‘string.h’ (GNU): Section 5.7 [Search Functions], page 114.

void * realloc (void *ptr, size_t newsize)
‘malloc.h’, ‘stdlib.h’ (ISO): Section 3.2.2.4 [Changing the Size of a Block],
page 45.

__realloc_hook
‘malloc.h’ (GNU): Section 3.2.2.10 [Memory Allocation Hooks], page 50.

_REENTRANT
(GNU): Section 1.3.4 [Feature-Test Macros], page 8.

Appendix A: Summary of Library Facilities 569

REG_BADBR

‘regex.h’ (POSIX.2): Section 13.3.1 [POSIX Regular Expression Compilation],
page 365.

REG_BADPAT
‘regex.h’ (POSIX.2): Section 13.3.1 [POSIX Regular Expression Compilation],
page 365.

REG_BADRPT
‘regex.h’ (POSIX.2): Section 13.3.1 [POSIX Regular Expression Compilation],
page 365.

int regcomp (regex_t *compiled, const char *pattern, int cflags)
‘regex.h’ (POSIX.2): Section 13.3.1 [POSIX Regular Expression Compilation],
page 365.

REG_EBRACE
‘regex.h’ (POSIX.2): Section 13.3.1 [POSIX Regular Expression Compilation],
page 365.

REG_EBRACK
‘regex.h’ (POSIX.2): Section 13.3.1 [POSIX Regular Expression Compilation],
page 365.

REG_ECOLLATE
‘regex.h’ (POSIX.2): Section 13.3.1 [POSIX Regular Expression Compilation],
page 365.

REG_ECTYPE
‘regex.h’ (POSIX.2): Section 13.3.1 [POSIX Regular Expression Compilation],
page 365.

REG_EESCAPE
‘regex.h’ (POSIX.2): Section 13.3.1 [POSIX Regular Expression Compilation],
page 365.

REG_EPAREN
‘regex.h’ (POSIX.2): Section 13.3.1 [POSIX Regular Expression Compilation],
page 365.

REG_ERANGE
‘regex.h’ (POSIX.2): Section 13.3.1 [POSIX Regular Expression Compilation],
page 365.

size_t regerror (int errcode, regex_t *compiled, char *buffer, size_t length)
‘regex.h’ (POSIX.2): Section 13.3.6 [POSIX Regexp Matching Clean-Up],
page 369.

REG_ESPACE
‘regex.h’ (POSIX.2): Section 13.3.3 [Matching a Compiled POSIX Regular Ex-
pression], page 367.

REG_ESPACE
‘regex.h’ (POSIX.2): Section 13.3.1 [POSIX Regular Expression Compilation],
page 365.

REG_ESUBREG
‘regex.h’ (POSIX.2): Section 13.3.1 [POSIX Regular Expression Compilation],
page 365.

570 The GNU C Library: Application Fundamentals

int regexec (regex_t *compiled, char *string, size_t nmatch, regmatch_t
matchptr [], int eflags)

‘regex.h’ (POSIX.2): Section 13.3.3 [Matching a Compiled POSIX Regular Ex-
pression], page 367.

regex_t

‘regex.h’ (POSIX.2): Section 13.3.1 [POSIX Regular Expression Compilation],
page 365.

REG_EXTENDED
‘regex.h’ (POSIX.2): Section 13.3.2 [Flags for POSIX Regular Expressions],
page 367.

void regfree (regex_t *compiled)
‘regex.h’ (POSIX.2): Section 13.3.6 [POSIX Regexp Matching Clean-Up],
page 369.

REG_ICASE

‘regex.h’ (POSIX.2): Section 13.3.2 [Flags for POSIX Regular Expressions],
page 367.

int register_printf_function (int spec, printf_function handler-function,
printf_arginfo_function arginfo-function)

‘printf.h’ (GNU): Section 17.13.1 [Registering New Conversions], page 480.

regmatch_t
‘regex.h’ (POSIX.2): Section 13.3.4 [Match Results with Subexpressions],
page 368.

REG_NEWLINE
‘regex.h’ (POSIX.2): Section 13.3.2 [Flags for POSIX Regular Expressions],
page 367.

REG_NOMATCH
‘regex.h’ (POSIX.2): Section 13.3.3 [Matching a Compiled POSIX Regular Ex-
pression], page 367.

REG_NOSUB

‘regex.h’ (POSIX.2): Section 13.3.2 [Flags for POSIX Regular Expressions],
page 367.

REG_NOTBOL
‘regex.h’ (POSIX.2): Section 13.3.3 [Matching a Compiled POSIX Regular Ex-
pression], page 367.

REG_NOTEOL
‘regex.h’ (POSIX.2): Section 13.3.3 [Matching a Compiled POSIX Regular Ex-
pression], page 367.

regoff_t

‘regex.h’ (POSIX.2): Section 13.3.4 [Match Results with Subexpressions],
page 368.

double remainder (double numerator, double denominator)
‘math.h’ (BSD): Section 9.8.4 [Remainder Functions], page 262.

float remainderf (float numerator, float denominator)
‘math.h’ (BSD): Section 9.8.4 [Remainder Functions], page 262.

Appendix A: Summary of Library Facilities 571

long double remainderl (long double numerator, long double denominator)
‘math.h’ (BSD): Section 9.8.4 [Remainder Functions], page 262.

void rewind (FILE *stream)
‘stdio.h’ (ISO): Section 17.18 [File Positioning], page 500.

char * rindex (const char *string, int c)
‘string.h’ (BSD): Section 5.7 [Search Functions], page 114.

double rint (double x)
‘math.h’ (ISO): Section 9.8.3 [Rounding Functions], page 260.

float rintf (float x)
‘math.h’ (ISO): Section 9.8.3 [Rounding Functions], page 260.

long double rintl (long double x)
‘math.h’ (ISO): Section 9.8.3 [Rounding Functions], page 260.

double round (double x)
‘math.h’ (ISO): Section 9.8.3 [Rounding Functions], page 260.

float roundf (float x)
‘math.h’ (ISO): Section 9.8.3 [Rounding Functions], page 260.

long double roundl (long double x)
‘math.h’ (ISO): Section 9.8.3 [Rounding Functions], page 260.

int rpmatch (const char *response)
‘stdlib.h’ (stdlib.h): Section 7.8 [Yes-or-No Questions], page 200.

int sbrk (ptrdiff_t delta)
‘unistd.h’ (BSD): Section 3.3 [Resizing the Data Segment], page 74.

double scalb (double value, int exponent)
‘math.h’ (BSD): Section 9.8.2 [Normalization Functions], page 259.

float scalbf (float value, int exponent)
‘math.h’ (BSD): Section 9.8.2 [Normalization Functions], page 259.

long double scalbl (long double value, int exponent)
‘math.h’ (BSD): Section 9.8.2 [Normalization Functions], page 259.

long long int scalbln (double x, long int n)
‘math.h’ (BSD): Section 9.8.2 [Normalization Functions], page 259.

long long int scalblnf (float x, long int n)
‘math.h’ (BSD): Section 9.8.2 [Normalization Functions], page 259.

long long int scalblnl (long double x, long int n)
‘math.h’ (BSD): Section 9.8.2 [Normalization Functions], page 259.

long long int scalbn (double x, int n)
‘math.h’ (BSD): Section 9.8.2 [Normalization Functions], page 259.

long long int scalbnf (float x, int n)
‘math.h’ (BSD): Section 9.8.2 [Normalization Functions], page 259.

long long int scalbnl (long double x, int n)
‘math.h’ (BSD): Section 9.8.2 [Normalization Functions], page 259.

int scanf (const char *template, ...)
‘stdio.h’ (ISO): Section 17.14.8 [Formatted Input Functions], page 495.

572 The GNU C Library: Application Fundamentals

unsigned short int * seed48 (unsigned short int seed16v[3])
‘stdlib.h’ (SVID): Section 8.8.3 [SVID Random-Number Functions], page 237.

int seed48_r (unsigned short int seed16v[3], struct drand48_data *buffer)
‘stdlib.h’ (GNU): Section 8.8.3 [SVID Random-Number Functions], page 237.

int SEEK_CUR
‘stdio.h’ (ISO): Section 17.18 [File Positioning], page 500.

int SEEK_END
‘stdio.h’ (ISO): Section 17.18 [File Positioning], page 500.

int SEEK_SET
‘stdio.h’ (ISO): Section 17.18 [File Positioning], page 500.

void setbuf (FILE *stream, char *buf)
‘stdio.h’ (ISO): Section 17.20.3 [Controlling Which Kind of Buffering],
page 506.

void setbuffer (FILE *stream, char *buf, size_t size)
‘stdio.h’ (BSD): Section 17.20.3 [Controlling Which Kind of Buffering],
page 506.

int setenv (const char *name, const char *value, int replace)
‘stdlib.h’ (BSD): Section 14.4.1 [Environment Access], page 419.

int setitimer (int which, struct itimerval *new, struct itimerval *old)
‘sys/time.h’ (BSD): Section 10.5 [Setting an Alarm], page 310.

void setlinebuf (FILE *stream)
‘stdio.h’ (BSD): Section 17.20.3 [Controlling Which Kind of Buffering],
page 506.

char * setlocale (int category, const char *locale)
‘locale.h’ (ISO): Section 7.4 [How Programs Set the Locale], page 183.

void * setstate (void *state)
‘stdlib.h’ (BSD): Section 8.8.2 [BSD Random-Number Functions], page 235.

int setstate_r (char *restrict statebuf, struct random_data *restrict buf)
‘stdlib.h’ (GNU): Section 8.8.2 [BSD Random-Number Functions], page 235.

int settimeofday (const struct timeval *tp, const struct timezone *tzp)
‘sys/time.h’ (BSD): Section 10.4.2 [High-Resolution Calendar], page 283.

int setvbuf (FILE *stream, char *buf, int mode, size_t size)
‘stdio.h’ (ISO): Section 17.20.3 [Controlling Which Kind of Buffering],
page 506.

int signbit (float-type x)
‘math.h’ (ISO): Section 9.8.5 [Setting and Modifying Single Bits of FP Values],
page 263.

long long int significand (double x)
‘math.h’ (BSD): Section 9.8.2 [Normalization Functions], page 259.

long long int significandf (float x)
‘math.h’ (BSD): Section 9.8.2 [Normalization Functions], page 259.

long long int significandl (long double x)
‘math.h’ (BSD): Section 9.8.2 [Normalization Functions], page 259.

Appendix A: Summary of Library Facilities 573

double sin (double x)
‘math.h’ (ISO): Section 8.2 [Trigonometric Functions], page 204.

void sincos (double x, double *sinx, double *cosx)
‘math.h’ (GNU): Section 8.2 [Trigonometric Functions], page 204.

void sincosf (float x, float *sinx, float *cosx)
‘math.h’ (GNU): Section 8.2 [Trigonometric Functions], page 204.

void sincosl (long double x, long double *sinx, long double *cosx)
‘math.h’ (GNU): Section 8.2 [Trigonometric Functions], page 204.

float sinf (float x)
‘math.h’ (ISO): Section 8.2 [Trigonometric Functions], page 204.

double sinh (double x)
‘math.h’ (ISO): Section 8.5 [Hyperbolic Functions], page 212.

float sinhf (float x)
‘math.h’ (ISO): Section 8.5 [Hyperbolic Functions], page 212.

long double sinhl (long double x)
‘math.h’ (ISO): Section 8.5 [Hyperbolic Functions], page 212.

long double sinl (long double x)
‘math.h’ (ISO): Section 8.2 [Trigonometric Functions], page 204.

unsigned int sleep (unsigned int seconds)
‘unistd.h’ (POSIX.1): Section 10.6 [Sleeping], page 312.

int snprintf (char *s, size_t size, const char *template, ...)
‘stdio.h’ (GNU): Section 17.12.7 [Formatted Output Functions], page 470.

int sprintf (char *s, const char *template, ...)
‘stdio.h’ (ISO): Section 17.12.7 [Formatted Output Functions], page 470.

double sqrt (double x)
‘math.h’ (ISO): Section 8.4 [Exponentiation and Logarithms], page 207.

float sqrtf (float x)
‘math.h’ (ISO): Section 8.4 [Exponentiation and Logarithms], page 207.

long double sqrtl (long double x)
‘math.h’ (ISO): Section 8.4 [Exponentiation and Logarithms], page 207.

void srand (unsigned int seed)
‘stdlib.h’ (ISO): Section 8.8.1 [ISO C Random-Number Functions], page 235.

void srand48 (long int seedval)
‘stdlib.h’ (SVID): Section 8.8.3 [SVID Random-Number Functions], page 237.

int srand48_r (long int seedval, struct drand48_data *buffer)
‘stdlib.h’ (GNU): Section 8.8.3 [SVID Random-Number Functions], page 237.

void srandom (unsigned int seed)
‘stdlib.h’ (BSD): Section 8.8.2 [BSD Random-Number Functions], page 235.

int srandom_r (unsigned int seed, struct random_data *buf)
‘stdlib.h’ (GNU): Section 8.8.2 [BSD Random-Number Functions], page 235.

int sscanf (const char *s, const char *template, ...)
‘stdio.h’ (ISO): Section 17.14.8 [Formatted Input Functions], page 495.

574 The GNU C Library: Application Fundamentals

FILE * stderr
‘stdio.h’ (ISO): Section 17.2 [Standard Streams], page 439.

FILE * stdin
‘stdio.h’ (ISO): Section 17.2 [Standard Streams], page 439.

FILE * stdout
‘stdio.h’ (ISO): Section 17.2 [Standard Streams], page 439.

int stime (time_t *newtime)
‘time.h’ (SVID, XPG): Section 10.4.1 [Simple Calendar Time], page 282.

char * stpcpy (char *restrict to, const char *restrict from)
‘string.h’ (Unknown origin): Section 5.4 [Copying and Concatenation], page 93.

char * stpncpy (char *restrict to, const char *restrict from, size_t size)
‘string.h’ (GNU): Section 5.4 [Copying and Concatenation], page 93.

int strcasecmp (const char *s1, const char *s2)
‘string.h’ (BSD): Section 5.5 [String/Array Comparison], page 105.

char * strcasestr (const char *haystack, const char *needle)
‘string.h’ (GNU): Section 5.7 [Search Functions], page 114.

char * strcat (char *restrict to, const char *restrict from)
‘string.h’ (ISO): Section 5.4 [Copying and Concatenation], page 93.

char * strchr (const char *string, int c)
‘string.h’ (ISO): Section 5.7 [Search Functions], page 114.

char * strchrnul (const char *string, int c)
‘string.h’ (GNU): Section 5.7 [Search Functions], page 114.

int strcmp (const char *s1, const char *s2)
‘string.h’ (ISO): Section 5.5 [String/Array Comparison], page 105.

int strcoll (const char *s1, const char *s2)
‘string.h’ (ISO): Section 5.6 [Collation Functions], page 109.

char * strcpy (char *restrict to, const char *restrict from)
‘string.h’ (ISO): Section 5.4 [Copying and Concatenation], page 93.

size_t strcspn (const char *string, const char *stopset)
‘string.h’ (ISO): Section 5.7 [Search Functions], page 114.

char * strdup (const char *s)
‘string.h’ (SVID): Section 5.4 [Copying and Concatenation], page 93.

char * strdupa (const char *s)
‘string.h’ (GNU): Section 5.4 [Copying and Concatenation], page 93.

char * strerror (int errnum)
‘string.h’ (ISO): Section 2.3 [Error Messages], page 32.

char * strerror_r (int errnum, char *buf, size_t n)
‘string.h’ (GNU): Section 2.3 [Error Messages], page 32.

char * strfry (char *string)
‘string.h’ (GNU): Section 5.9 [strfry], page 124.

size_t strftime (char *s, size_t size, const char *template, const struct tm
*brokentime)

‘time.h’ (ISO): Section 10.4.5 [Formatting Calendar Time], page 291.

Appendix A: Summary of Library Facilities 575

size_t strlen (const char *s)
‘string.h’ (ISO): Section 5.3 [String Length], page 91.

int strncasecmp (const char *s1, const char *s2, size_t n)
‘string.h’ (BSD): Section 5.5 [String/Array Comparison], page 105.

char * strncat (char *restrict to, const char *restrict from, size_t size)
‘string.h’ (ISO): Section 5.4 [Copying and Concatenation], page 93.

int strncmp (const char *s1, const char *s2, size_t size)
‘string.h’ (ISO): Section 5.5 [String/Array Comparison], page 105.

char * strncpy (char *restrict to, const char *restrict from, size_t size)
‘string.h’ (ISO): Section 5.4 [Copying and Concatenation], page 93.

char * strndup (const char *s, size_t size)
‘string.h’ (GNU): Section 5.4 [Copying and Concatenation], page 93.

char * strndupa (const char *s, size_t size)
‘string.h’ (GNU): Section 5.4 [Copying and Concatenation], page 93.

size_t strnlen (const char *s, size_t maxlen)
‘string.h’ (GNU): Section 5.3 [String Length], page 91.

char * strpbrk (const char *string, const char *stopset)
‘string.h’ (ISO): Section 5.7 [Search Functions], page 114.

char * strptime (const char *s, const char *fmt, struct tm *tp)
‘time.h’ (XPG4): Section 10.4.6.1 [Interpret String According to Given Format],
page 297.

char * strrchr (const char *string, int c)
‘string.h’ (ISO): Section 5.7 [Search Functions], page 114.

char * strsep (char **string ptr, const char *delimiter)
‘string.h’ (BSD): Section 5.8 [Finding Tokens in a String], page 119.

size_t strspn (const char *string, const char *skipset)
‘string.h’ (ISO): Section 5.7 [Search Functions], page 114.

char * strstr (const char *haystack, const char *needle)
‘string.h’ (ISO): Section 5.7 [Search Functions], page 114.

double strtod (const char *restrict string, char **restrict tailptr)
‘stdlib.h’ (ISO): Section 9.11.2 [Parsing of Floats], page 273.

float strtof (const char *string, char **tailptr)
‘stdlib.h’ (ISO): Section 9.11.2 [Parsing of Floats], page 273.

intmax_t strtoimax (const char *restrict string, char **restrict tailptr, int
base)

‘inttypes.h’ (ISO): Section 9.11.1 [Parsing of Integers], page 268.

char * strtok (char *restrict newstring, const char *restrict delimiters)
‘string.h’ (ISO): Section 5.8 [Finding Tokens in a String], page 119.

char * strtok_r (char *newstring, const char *delimiters, char **save ptr)
‘string.h’ (POSIX): Section 5.8 [Finding Tokens in a String], page 119.

long int strtol (const char *restrict string, char **restrict tailptr, int
base)

‘stdlib.h’ (ISO): Section 9.11.1 [Parsing of Integers], page 268.

576 The GNU C Library: Application Fundamentals

long double strtold (const char *string, char **tailptr)
‘stdlib.h’ (ISO): Section 9.11.2 [Parsing of Floats], page 273.

long long int strtoll (const char *restrict string, char **restrict tailptr,
int base)

‘stdlib.h’ (ISO): Section 9.11.1 [Parsing of Integers], page 268.

long long int strtoq (const char *restrict string, char **restrict tailptr,
int base)

‘stdlib.h’ (BSD): Section 9.11.1 [Parsing of Integers], page 268.

unsigned long int strtoul (const char *retrict string, char **restrict
tailptr, int base)

‘stdlib.h’ (ISO): Section 9.11.1 [Parsing of Integers], page 268.

unsigned long long int strtoull (const char *restrict string, char
**restrict tailptr, int base)

‘stdlib.h’ (ISO): Section 9.11.1 [Parsing of Integers], page 268.

uintmax_t strtoumax (const char *restrict string, char **restrict tailptr,
int base)

‘inttypes.h’ (ISO): Section 9.11.1 [Parsing of Integers], page 268.

unsigned long long int strtouq (const char *restrict string, char
**restrict tailptr, int base)

‘stdlib.h’ (BSD): Section 9.11.1 [Parsing of Integers], page 268.

struct argp
‘argp.h’ (GNU): Section 14.3.3 [Specifying Argp Parsers], page 391.

struct argp_child
‘argp.h’ (GNU): Section 14.3.6 [Combining Multiple Argp Parsers], page 400.

struct argp_option
‘argp.h’ (GNU): Section 14.3.4 [Specifying Options in an Argp Parser], page 392.

struct argp_state
‘argp.h’ (GNU): Section 14.3.5.3 [Argp Parsing State], page 399.

struct __gconv_step
‘gconv.h’ (GNU): Section 6.5.4 [The iconv Implementation in the GNU C Li-
brary], page 165.

struct __gconv_step_data
‘gconv.h’ (GNU): Section 6.5.4 [The iconv Implementation in the GNU C Li-
brary], page 165.

struct itimerval
‘sys/time.h’ (BSD): Section 10.5 [Setting an Alarm], page 310.

struct lconv
‘locale.h’ (ISO): Section 7.6.1 [localeconv: “It is portable, but . . . ´],
page 186.

struct mallinfo
‘malloc.h’ (GNU): Section 3.2.2.11 [Statistics for Memory Allocation with
malloc], page 53.

struct obstack
‘obstack.h’ (GNU): Section 3.2.4.1 [Creating Obstacks], page 60.

Appendix A: Summary of Library Facilities 577

struct option
‘getopt.h’ (GNU): Section 14.2.3 [Parsing Long Options with getopt_long],
page 385.

struct printf_info
‘printf.h’ (GNU): Section 17.13.2 [Conversion Specifier Options], page 481.

struct random_data
‘stdlib.h’ (GNU): Section 8.8.2 [BSD Random-Number Functions], page 235.

struct timespec
‘sys/time.h’ (POSIX.1): Section 10.2 [Elapsed Time], page 277.

struct timeval
‘sys/time.h’ (BSD): Section 10.2 [Elapsed Time], page 277.

struct timezone
‘sys/time.h’ (BSD): Section 10.4.2 [High-Resolution Calendar], page 283.

struct tm

‘time.h’ (ISO): Section 10.4.3 [Broken-Down Time], page 285.

struct tms
‘sys/times.h’ (POSIX.1): Section 10.3.2 [Processor Time Inquiry], page 281.

int strverscmp (const char *s1, const char *s2)
‘string.h’ (GNU): Section 5.5 [String/Array Comparison], page 105.

size_t strxfrm (char *restrict to, const char *restrict from, size_t size)
‘string.h’ (ISO): Section 5.6 [Collation Functions], page 109.

_SVID_SOURCE
(GNU): Section 1.3.4 [Feature-Test Macros], page 8.

int swprintf (wchar_t *s, size_t size, const wchar_t *template, ...)
‘wchar.h’ (GNU): Section 17.12.7 [Formatted Output Functions], page 470.

int swscanf (const wchar_t *ws, const char *template, ...)
‘wchar.h’ (ISO): Section 17.14.8 [Formatted Input Functions], page 495.

long int syscall (long int sysno, ...)
‘unistd.h’ (Undocumented): Section 14.5 [System Calls], page 423.

double tan (double x)
‘math.h’ (ISO): Section 8.2 [Trigonometric Functions], page 204.

float tanf (float x)
‘math.h’ (ISO): Section 8.2 [Trigonometric Functions], page 204.

double tanh (double x)
‘math.h’ (ISO): Section 8.5 [Hyperbolic Functions], page 212.

float tanhf (float x)
‘math.h’ (ISO): Section 8.5 [Hyperbolic Functions], page 212.

long double tanhl (long double x)
‘math.h’ (ISO): Section 8.5 [Hyperbolic Functions], page 212.

long double tanl (long double x)
‘math.h’ (ISO): Section 8.2 [Trigonometric Functions], page 204.

578 The GNU C Library: Application Fundamentals

void * tdelete (const void *key, void **rootp, comparison_fn_t compar)
‘search.h’ (SVID): Section 12.6 [The tsearch Function], page 351.

void tdestroy (void *vroot, __free_fn_t freefct)
‘search.h’ (GNU): Section 12.6 [The tsearch Function], page 351.

char * textdomain (const char *domainname)
‘libintl.h’ (GNU): Section 11.2.1.2 [How to Determine Which Catalog to Use],
page 328.

void * tfind (const void *key, void *const *rootp, comparison_fn_t compar)
‘search.h’ (SVID): Section 12.6 [The tsearch Function], page 351.

double tgamma (double x)
‘math.h’ (XPG, ISO): Section 8.6 [Special Functions], page 214.

float tgammaf (float x)
‘math.h’ (XPG, ISO): Section 8.6 [Special Functions], page 214.

long double tgammal (long double x)
‘math.h’ (XPG, ISO): Section 8.6 [Special Functions], page 214.

time_t time (time_t *result)
‘time.h’ (ISO): Section 10.4.1 [Simple Calendar Time], page 282.

time_t timegm (struct tm *brokentime)
‘time.h’ (Undocumented): Section 10.4.3 [Broken-Down Time], page 285.

time_t timelocal (struct tm *brokentime)
‘time.h’ (Undocumented): Section 10.4.3 [Broken-Down Time], page 285.

clock_t times (struct tms *buffer)
‘sys/times.h’ (POSIX.1): Section 10.3.2 [Processor Time Inquiry], page 281.

time_t

‘time.h’ (ISO): Section 10.4.1 [Simple Calendar Time], page 282.

long int timezone
‘time.h’ (SVID): Section 10.4.8 [Functions and Variables for Time Zones],
page 308.

int toascii (int c)
‘ctype.h’ (SVID, BSD): Section 4.2 [Case Conversion], page 81.

int tolower (int c)
‘ctype.h’ (ISO): Section 4.2 [Case Conversion], page 81.

int _tolower (int c)
‘ctype.h’ (SVID): Section 4.2 [Case Conversion], page 81.

int toupper (int c)
‘ctype.h’ (ISO): Section 4.2 [Case Conversion], page 81.

int _toupper (int c)
‘ctype.h’ (SVID): Section 4.2 [Case Conversion], page 81.

wint_t towctrans (wint_t wc, wctrans_t desc)
‘wctype.h’ (ISO): Section 4.5 [Mapping of Wide Characters], page 87.

wint_t towlower (wint_t wc)
‘wctype.h’ (ISO): Section 4.5 [Mapping of Wide Characters], page 87.

Appendix A: Summary of Library Facilities 579

wint_t towupper (wint_t wc)
‘wctype.h’ (ISO): Section 4.5 [Mapping of Wide Characters], page 87.

double trunc (double x)
‘math.h’ (ISO): Section 9.8.3 [Rounding Functions], page 260.

float truncf (float x)
‘math.h’ (ISO): Section 9.8.3 [Rounding Functions], page 260.

long double truncl (long double x)
‘math.h’ (ISO): Section 9.8.3 [Rounding Functions], page 260.

void * tsearch (const void *key, void **rootp, comparison_fn_t compar)
‘search.h’ (SVID): Section 12.6 [The tsearch Function], page 351.

void twalk (const void *root, __action_fn_t action)
‘search.h’ (SVID): Section 12.6 [The tsearch Function], page 351.

char * tzname [2]
‘time.h’ (POSIX.1): Section 10.4.8 [Functions and Variables for Time Zones],
page 308.

void tzset (void)
‘time.h’ (POSIX.1): Section 10.4.8 [Functions and Variables for Time Zones],
page 308.

int ungetc (int c, FILE *stream)
‘stdio.h’ (ISO): Section 17.10.2 [Using ungetc to Do Unreading], page 458.

wint_t ungetwc (wint_t wc, FILE *stream)
‘wchar.h’ (ISO): Section 17.10.2 [Using ungetc to Do Unreading], page 458.

int unsetenv (const char *name)
‘stdlib.h’ (BSD): Section 14.4.1 [Environment Access], page 419.

void * valloc (size_t size)
‘malloc.h’, ‘stdlib.h’ (BSD): Section 3.2.2.7 [Allocating Aligned Memory
Blocks], page 47.

int vasprintf (char **ptr, const char *template, va_list ap)
‘stdio.h’ (GNU): Section 17.12.9 [Variable Arguments Output Functions],
page 474.

void verr (int status, const char *format, va_list)
‘err.h’ (BSD): Section 2.3 [Error Messages], page 32.

void verrx (int status, const char *format, va_list)
‘err.h’ (BSD): Section 2.3 [Error Messages], page 32.

int vfprintf (FILE *stream, const char *template, va_list ap)
‘stdio.h’ (ISO): Section 17.12.9 [Variable Arguments Output Functions],
page 474.

int vfscanf (FILE *stream, const char *template, va_list ap)
‘stdio.h’ (ISO): Section 17.14.9 [Variable Arguments Input Functions], page 496.

int vfwprintf (FILE *stream, const wchar_t *template, va_list ap)
‘wchar.h’ (ISO): Section 17.12.9 [Variable Arguments Output Functions],
page 474.

580 The GNU C Library: Application Fundamentals

int vfwscanf (FILE *stream, const wchar_t *template, va_list ap)
‘wchar.h’ (ISO): Section 17.14.9 [Variable Arguments Input Functions], page 496.

int vprintf (const char *template, va_list ap)
‘stdio.h’ (ISO): Section 17.12.9 [Variable Arguments Output Functions],
page 474.

int vscanf (const char *template, va_list ap)
‘stdio.h’ (ISO): Section 17.14.9 [Variable Arguments Input Functions], page 496.

int vsnprintf (char *s, size_t size, const char *template, va_list ap)
‘stdio.h’ (GNU): Section 17.12.9 [Variable Arguments Output Functions],
page 474.

int vsprintf (char *s, const char *template, va_list ap)
‘stdio.h’ (ISO): Section 17.12.9 [Variable Arguments Output Functions],
page 474.

int vsscanf (const char *s, const char *template, va_list ap)
‘stdio.h’ (ISO): Section 17.14.9 [Variable Arguments Input Functions], page 496.

int vswprintf (wchar_t *s, size_t size, const wchar_t *template, va_list ap)
‘wchar.h’ (GNU): Section 17.12.9 [Variable Arguments Output Functions],
page 474.

int vswscanf (const wchar_t *s, const wchar_t *template, va_list ap)
‘wchar.h’ (ISO): Section 17.14.9 [Variable Arguments Input Functions], page 496.

void vwarn (const char *format, va_list)
‘err.h’ (BSD): Section 2.3 [Error Messages], page 32.

void vwarnx (const char *format, va_list)
‘err.h’ (BSD): Section 2.3 [Error Messages], page 32.

int vwprintf (const wchar_t *template, va_list ap)
‘wchar.h’ (ISO): Section 17.12.9 [Variable Arguments Output Functions],
page 474.

int vwscanf (const wchar_t *template, va_list ap)
‘wchar.h’ (ISO): Section 17.14.9 [Variable Arguments Input Functions], page 496.

void warn (const char *format, ...)
‘err.h’ (BSD): Section 2.3 [Error Messages], page 32.

void warnx (const char *format, ...)
‘err.h’ (BSD): Section 2.3 [Error Messages], page 32.

wint_t WCHAR_MAX
‘wchar.h’ (ISO): Section 6.1 [Introduction to Extended Characters], page 133.

wint_t WCHAR_MIN
‘wchar.h’ (ISO): Section 6.1 [Introduction to Extended Characters], page 133.

wchar_t

‘stddef.h’ (ISO): Section 6.1 [Introduction to Extended Characters], page 133.

wchar_t * wcpcpy (wchar_t *restrict wto, const wchar_t *restrict wfrom)
‘wchar.h’ (GNU): Section 5.4 [Copying and Concatenation], page 93.

Appendix A: Summary of Library Facilities 581

wchar_t * wcpncpy (wchar_t *restrict wto, const wchar_t *restrict wfrom,
size_t size)

‘wchar.h’ (GNU): Section 5.4 [Copying and Concatenation], page 93.

size_t wcrtomb (char *restrict s, wchar_t wc, mbstate_t *restrict ps)
‘wchar.h’ (ISO): Section 6.3.3 [Converting Single Characters], page 140.

int wcscasecmp (const wchar_t *ws1, const wchar_T *ws2)
‘wchar.h’ (GNU): Section 5.5 [String/Array Comparison], page 105.

wchar_t * wcscat (wchar_t *restrict wto, const wchar_t *restrict wfrom)
‘wchar.h’ (ISO): Section 5.4 [Copying and Concatenation], page 93.

wchar_t * wcschr (const wchar_t *wstring, int wc)
‘wchar.h’ (ISO): Section 5.7 [Search Functions], page 114.

wchar_t * wcschrnul (const wchar_t *wstring, wchar_t wc)
‘wchar.h’ (GNU): Section 5.7 [Search Functions], page 114.

int wcscmp (const wchar_t *ws1, const wchar_t *ws2)
‘wchar.h’ (ISO): Section 5.5 [String/Array Comparison], page 105.

int wcscoll (const wchar_t *ws1, const wchar_t *ws2)
‘wchar.h’ (ISO): Section 5.6 [Collation Functions], page 109.

wchar_t * wcscpy (wchar_t *restrict wto, const wchar_t *restrict wfrom)
‘wchar.h’ (ISO): Section 5.4 [Copying and Concatenation], page 93.

size_t wcscspn (const wchar_t *wstring, const wchar_t *stopset)
‘wchar.h’ (ISO): Section 5.7 [Search Functions], page 114.

wchar_t * wcsdup (const wchar_t *ws)
‘wchar.h’ (GNU): Section 5.4 [Copying and Concatenation], page 93.

size_t wcsftime (wchar_t *s, size_t size, const wchar_t *template, const
struct tm *brokentime)

‘time.h’ (ISO/Amend1): Section 10.4.5 [Formatting Calendar Time], page 291.

size_t wcslen (const wchar_t *ws)
‘wchar.h’ (ISO): Section 5.3 [String Length], page 91.

int wcsncasecmp (const wchar_t *ws1, const wchar_t *s2, size_t n)
‘wchar.h’ (GNU): Section 5.5 [String/Array Comparison], page 105.

wchar_t * wcsncat (wchar_t *restrict wto, const wchar_t *restrict wfrom,
size_t size)

‘wchar.h’ (ISO): Section 5.4 [Copying and Concatenation], page 93.

int wcsncmp (const wchar_t *ws1, const wchar_t *ws2, size_t size)
‘wchar.h’ (ISO): Section 5.5 [String/Array Comparison], page 105.

wchar_t * wcsncpy (wchar_t *restrict wto, const wchar_t *restrict wfrom,
size_t size)

‘wchar.h’ (ISO): Section 5.4 [Copying and Concatenation], page 93.

size_t wcsnlen (const wchar_t *ws, size_t maxlen)
‘wchar.h’ (GNU): Section 5.3 [String Length], page 91.

size_t wcsnrtombs (char *restrict dst, const wchar_t **restrict src,
size_t nwc, size_t len, mbstate_t *restrict ps)

‘wchar.h’ (GNU): Section 6.3.4 [Converting Multibyte- and Wide-Character
Strings], page 147.

582 The GNU C Library: Application Fundamentals

wchar_t * wcspbrk (const wchar_t *wstring, const wchar_t *stopset)
‘wchar.h’ (ISO): Section 5.7 [Search Functions], page 114.

wchar_t * wcsrchr (const wchar_t *wstring, wchar_t c)
‘wchar.h’ (ISO): Section 5.7 [Search Functions], page 114.

size_t wcsrtombs (char *restrict dst, const wchar_t **restrict src, size_t
len, mbstate_t *restrict ps)

‘wchar.h’ (ISO): Section 6.3.4 [Converting Multibyte- and Wide-Character
Strings], page 147.

size_t wcsspn (const wchar_t *wstring, const wchar_t *skipset)
‘wchar.h’ (ISO): Section 5.7 [Search Functions], page 114.

wchar_t * wcsstr (const wchar_t *haystack, const wchar_t *needle)
‘wchar.h’ (ISO): Section 5.7 [Search Functions], page 114.

double wcstod (const wchar_t *restrict string, wchar_t **restrict tailptr)
‘wchar.h’ (ISO): Section 9.11.2 [Parsing of Floats], page 273.

float wcstof (const wchar_t *string, wchar_t **tailptr)
‘stdlib.h’ (ISO): Section 9.11.2 [Parsing of Floats], page 273.

intmax_t wcstoimax (const wchar_t *restrict string, wchar_t **restrict
tailptr, int base)

‘wchar.h’ (ISO): Section 9.11.1 [Parsing of Integers], page 268.

wchar_t * wcstok (wchar_t *newstring, const char *delimiters)
‘wchar.h’ (ISO): Section 5.8 [Finding Tokens in a String], page 119.

long int wcstol (const wchar_t *restrict string, wchar_t **restrict tailptr,
int base)

‘wchar.h’ (ISO): Section 9.11.1 [Parsing of Integers], page 268.

long double wcstold (const wchar_t *string, wchar_t **tailptr)
‘stdlib.h’ (ISO): Section 9.11.2 [Parsing of Floats], page 273.

long long int wcstoll (const wchar_t *restrict string, wchar_t **restrict
tailptr, int base)

‘wchar.h’ (ISO): Section 9.11.1 [Parsing of Integers], page 268.

size_t wcstombs (char *string, const wchar_t *wstring, size_t size)
‘stdlib.h’ (ISO): Section 6.4.2 [Nonreentrant Conversion of Strings], page 154.

long long int wcstoq (const wchar_t *restrict string, wchar_t **restrict
tailptr, int base)

‘wchar.h’ (GNU): Section 9.11.1 [Parsing of Integers], page 268.

unsigned long int wcstoul (const wchar_t *restrict string, wchar_t
**restrict tailptr, int base)

‘wchar.h’ (ISO): Section 9.11.1 [Parsing of Integers], page 268.

unsigned long long int wcstoull (const wchar_t *restrict string, wchar_t
**restrict tailptr, int base)

‘wchar.h’ (ISO): Section 9.11.1 [Parsing of Integers], page 268.

uintmax_t wcstoumax (const wchar_t *restrict string, wchar_t **restrict
tailptr, int base)

‘wchar.h’ (ISO): Section 9.11.1 [Parsing of Integers], page 268.

Appendix A: Summary of Library Facilities 583

unsigned long long int wcstouq (const wchar_t *restrict string, wchar_t
**restrict tailptr, int base)

‘wchar.h’ (GNU): Section 9.11.1 [Parsing of Integers], page 268.

wchar_t * wcswcs (const wchar_t *haystack, const wchar_t *needle)
‘wchar.h’ (XPG): Section 5.7 [Search Functions], page 114.

size_t wcsxfrm (wchar_t *restrict wto, const wchar_t *wfrom, size_t size)
‘wchar.h’ (ISO): Section 5.6 [Collation Functions], page 109.

int wctob (wint_t c)
‘wchar.h’ (ISO): Section 6.3.3 [Converting Single Characters], page 140.

int wctomb (char *string, wchar_t wchar)
‘stdlib.h’ (ISO): Section 6.4.1 [Nonreentrant Conversion of Single Characters],
page 153.

wctrans_t wctrans (const char *property)
‘wctype.h’ (ISO): Section 4.5 [Mapping of Wide Characters], page 87.

wctrans_t

‘wctype.h’ (ISO): Section 4.5 [Mapping of Wide Characters], page 87.

wctype_t wctype (const char *property)
‘wctype.h’ (ISO): Section 4.3 [Character Class Determination for Wide Charac-
ters], page 82.

wctype_t

‘wctype.h’ (ISO): Section 4.3 [Character Class Determination for Wide Charac-
ters], page 82.

int WEOF

‘wchar.h’ (ISO): Section 17.15 [End-of-File and Errors], page 497.

wint_t WEOF
‘wchar.h’ (ISO): Section 6.1 [Introduction to Extended Characters], page 133.

wint_t

‘wchar.h’ (ISO): Section 6.1 [Introduction to Extended Characters], page 133.

wchar_t * wmemchr (const wchar_t *block, wchar_t wc, size_t size)
‘wchar.h’ (ISO): Section 5.7 [Search Functions], page 114.

int wmemcmp (const wchar_t *a1, const wchar_t *a2, size_t size)
‘wcjar.h’ (ISO): Section 5.5 [String/Array Comparison], page 105.

wchar_t * wmemcpy (wchar_t *restrict wto, const wchar_t *restruct wfrom,
size_t size)

‘wchar.h’ (ISO): Section 5.4 [Copying and Concatenation], page 93.

wchar_t * wmemmove (wchar *wto, const wchar_t *wfrom, size_t size)
‘wchar.h’ (ISO): Section 5.4 [Copying and Concatenation], page 93.

wchar_t * wmempcpy (wchar_t *restrict wto, const wchar_t *restrict wfrom,
size_t size)

‘wchar.h’ (GNU): Section 5.4 [Copying and Concatenation], page 93.

wchar_t * wmemset (wchar_t *block, wchar_t wc, size_t size)
‘wchar.h’ (ISO): Section 5.4 [Copying and Concatenation], page 93.

584 The GNU C Library: Application Fundamentals

int wordexp (const char *words, wordexp_t *word-vector-ptr, int flags)
‘wordexp.h’ (POSIX.2): Section 13.4.2 [Calling wordexp], page 371.

wordexp_t

‘wordexp.h’ (POSIX.2): Section 13.4.2 [Calling wordexp], page 371.

void wordfree (wordexp_t *word-vector-ptr)
‘wordexp.h’ (POSIX.2): Section 13.4.2 [Calling wordexp], page 371.

int wprintf (const wchar_t *template, ...)
‘wchar.h’ (ISO): Section 17.12.7 [Formatted Output Functions], page 470.

WRDE_APPEND
‘wordexp.h’ (POSIX.2): Section 13.4.3 [Flags for Word Expansion], page 373.

WRDE_BADCHAR
‘wordexp.h’ (POSIX.2): Section 13.4.2 [Calling wordexp], page 371.

WRDE_BADVAL
‘wordexp.h’ (POSIX.2): Section 13.4.2 [Calling wordexp], page 371.

WRDE_CMDSUB
‘wordexp.h’ (POSIX.2): Section 13.4.2 [Calling wordexp], page 371.

WRDE_DOOFFS
‘wordexp.h’ (POSIX.2): Section 13.4.3 [Flags for Word Expansion], page 373.

WRDE_NOCMD
‘wordexp.h’ (POSIX.2): Section 13.4.3 [Flags for Word Expansion], page 373.

WRDE_NOSPACE
‘wordexp.h’ (POSIX.2): Section 13.4.2 [Calling wordexp], page 371.

WRDE_REUSE
‘wordexp.h’ (POSIX.2): Section 13.4.3 [Flags for Word Expansion], page 373.

WRDE_SHOWERR
‘wordexp.h’ (POSIX.2): Section 13.4.3 [Flags for Word Expansion], page 373.

WRDE_SYNTAX
‘wordexp.h’ (POSIX.2): Section 13.4.2 [Calling wordexp], page 371.

WRDE_UNDEF
‘wordexp.h’ (POSIX.2): Section 13.4.3 [Flags for Word Expansion], page 373.

int wscanf (const wchar_t *template, ...)
‘wchar.h’ (ISO): Section 17.14.8 [Formatted Input Functions], page 495.

_XOPEN_SOURCE
(X/Open): Section 1.3.4 [Feature-Test Macros], page 8.

_XOPEN_SOURCE_EXTENDED
(X/Open): Section 1.3.4 [Feature-Test Macros], page 8.

double y0 (double x)
‘math.h’ (SVID): Section 8.6 [Special Functions], page 214.

float y0f (float x)
‘math.h’ (SVID): Section 8.6 [Special Functions], page 214.

long double y0l (long double x)
‘math.h’ (SVID): Section 8.6 [Special Functions], page 214.

Appendix A: Summary of Library Facilities 585

double y1 (double x)
‘math.h’ (SVID): Section 8.6 [Special Functions], page 214.

float y1f (float x)
‘math.h’ (SVID): Section 8.6 [Special Functions], page 214.

long double y1l (long double x)
‘math.h’ (SVID): Section 8.6 [Special Functions], page 214.

double yn (int n, double x)
‘math.h’ (SVID): Section 8.6 [Special Functions], page 214.

float ynf (int n, float x)
‘math.h’ (SVID): Section 8.6 [Special Functions], page 214.

long double ynl (int n, long double x)
‘math.h’ (SVID): Section 8.6 [Special Functions], page 214.

586 The GNU C Library: Application Fundamentals

Appendix B: Contributors to the GNU C Library 587

Appendix B Contributors to the GNU C
Library

The GNU C Library was written originally by Roland McGrath, and is cur-
rently maintained by Ulrich Drepper. Some parts of the library were contributed
or worked on by other people.

• The getopt function and related code were written by Richard Stallman,
David J. MacKenzie and Roland McGrath.

• The merge sort function qsort was written by Michael J. Haertel.
• The quick sort function used as a fallback by qsort was written by Douglas

C. Schmidt.
• The memory allocation functions malloc, realloc and free and related

code were written by Michael J. Haertel, Wolfram Gloger and Doug Lea.
• Fast implementations of many of the string functions (memcpy, strlen,

etc.) were written by Torbjörn Granlund.
• The ‘tar.h’ header file was written by David J. MacKenzie.
• The port to the MIPS DECStation running Ultrix 4 (mips-dec-ultrix4)

was contributed by Brendan Kehoe and Ian Lance Taylor.
• The DES encryption function crypt and related functions were contributed

by Michael Glad.
• The ftw and nftw functions were contributed by Ulrich Drepper.
• The start-up code to support SunOS shared libraries was contributed by Tom

Quinn.
• The mktime function was contributed by Paul Eggert.
• The port to the Sequent Symmetry running Dynix version 3 (i386-
sequent-bsd) was contributed by Jason Merrill.

• The time zone support code is derived from the public-domain time zone pack-
age by Arthur David Olson and his many contributors.

• The port to the DEC Alpha running OSF/1 (alpha-dec-osf1) was con-
tributed by Brendan Kehoe, using some code written by Roland McGrath.

• The port to SGI machines running Irix 4 (mips-sgi-irix4) was con-
tributed by Tom Quinn.

• The port of the Mach and Hurd code to the MIPS architecture (mips-
anything-gnu) was contributed by Kazumoto Kojima.

• The floating-point printing function used by printf and friends, and the
floating-point reading function used by scanf, strtod and friends were
written by Ulrich Drepper. The multiprecision integer functions used in
those functions are taken from GNU MP, which was contributed by Torbjörn
Granlund.

• The internationalization support in the library, and the support programs
locale and localedef, were written by Ulrich Drepper. Ulrich Drep-
per adapted the support code for message catalogs (‘libintl.h’, etc.) from

588 The GNU C Library: Application Fundamentals

the GNU gettext package, which he also wrote. He also contributed the
catgets support and the entire suite of multibyte- and wide-character sup-
port functions (‘wctype.h’, ‘wchar.h’, etc.).

• The implementations of the ‘nsswitch.conf’ mechanism and the files and
DNS backends for it were designed and written by Ulrich Drepper and Roland
McGrath, based on a backend interface defined by Peter Eriksson.

• The port to Linux i386/ELF (i386-anything-linux) was contributed by
Ulrich Drepper, based in large part on work done in Hongjiu Lu’s Linux ver-
sion of the GNU C Library.

• The port to Linux/m68k (m68k-anything-linux) was contributed by An-
dreas Schwab.

• The ports to Linux/ARM (arm-ANYTHING-linuxaout) and ARM stan-
dalone (arm-ANYTHING-none), as well as parts of the IPv6 support code,
were contributed by Philip Blundell.

• Richard Henderson contributed the ELF dynamic linking code and other sup-
port for the Alpha processor.

• David Mosberger-Tang contributed the port to Linux/Alpha (alpha-
anything-linux).

• The port to Linux on PowerPC (powerpc-anything-linux) was con-
tributed by Geoffrey Keating.

• Miles Bader wrote the argp argument-parsing package, and the argz/envz in-
terfaces.

• Stephen R. van den Berg contributed a highly-optimized strstr function.
• Ulrich Drepper contributed the hsearch and drand48 families of func-

tions; reentrant ‘..._r’ versions of the random family; System V shared
memory and IPC support code; and several highly-optimized string functions
for ix86 processors.

• The math functions are taken from fdlibm-5.1 by Sun Microsystems, as
modified by J.T. Conklin, Ian Lance Taylor, Ulrich Drepper, Andreas Schwab
and Roland McGrath.

• The libio library used to implement stdio functions on some platforms
was written by Per Bothner and modified by Ulrich Drepper.

• Eric Youngdale and Ulrich Drepper implemented versioning of objects on the
symbol level.

• Thorsten Kukuk provided an implementation for NIS (YP) and NIS+, se-
curelevel 0, 1 and 2.

• Andreas Jaeger provided a test suite for the math library.
• Mark Kettenis implemented the utmpx interface and an utmp daemon.
• Ulrich Drepper added character conversion functions (iconv).
• Thorsten Kukuk provided an implementation for a caching daemon for NSS

(nscd).

Appendix B: Contributors to the GNU C Library 589

• Tim Waugh provided an implementation of the POSIX.2 wordexp function
family.

• Mark Kettenis provided a Hesiod NSS module.
• The Internet-related code (most of the ‘inet’ subdirectory) and several other

miscellaneous functions and header files have been included from 4.4 BSD
with little or no modification. The copying permission notice for this code can
be found in the file ‘LICENSES’ in the source distribution.

• The random-number generation functions random, srandom, setstate
and initstate, which are also the basis for the rand and srand func-
tions, were written by Earl T. Cohen for the University of California at Berke-
ley and are copyrighted by the Regents of the University of California. They
have undergone minor changes to fit into the GNU C Library and to fit the
ISO C standard, but the functional code is Berkeley’s.

• The DNS resolver code is taken directly from BIND 4.9.5, which includes
copyrighted code from UC Berkeley and from Digital Equipment Corporation.
See the file ‘LICENSES’ for the text of the DEC license.

• The code to support Sun RPC is taken verbatim from Sun’s RPCSRC-4.0 dis-
tribution; see the file ‘LICENSES’ for the text of the license.

• Some of the support code for Mach is taken from Mach 3.0 by CMU; the file
if ppp.h is also copyright by CMU, but under a different license; see the file
‘LICENSES’ for the text of the licenses.

• Many of the IA64 math functions are taken from a collection of “Highly Op-
timized Mathematical Functions for Itanium” that Intel makes available under
a free license; see the file ‘LICENSES’ for details.

• The getaddrinfo and getnameinfo functions and supporting code were
written by Craig Metz; see the file ‘LICENSES’ for details on their licensing.

• Many of the IEEE 64-bit double precision math functions (in the
‘sysdeps/ieee754/dbl-64’ subdirectory) come from the IBM
Accurate Mathematical Library, contributed by IBM.

590 The GNU C Library: Application Fundamentals

Appendix C: Free Software Needs Free Documentation 591

Appendix C Free Software Needs Free
Documentation

The biggest deficiency in the free software community today is not in the
software—it is the lack of good free documentation that we can include with the
free software. Many of our most important programs do not come with free refer-
ence manuals and free introductory texts. Documentation is an essential part of any
software package; when an important free software package does not come with a
free manual and a free tutorial, that is a major gap. We have many such gaps today.

Consider Perl, for instance. The tutorial manuals that people normally use are
nonfree. How did this come about? Because the authors of those manuals pub-
lished them with restrictive terms—no copying, no modification, source files not
available—which exclude them from the free software world.

That wasn’t the first time this sort of thing happened, and it was far from the
last. Many times we have heard a GNU user eagerly describe a manual that he is
writing, his intended contribution to the community, only to learn that he had ruined
everything by signing a publication contract to make it nonfree.

Free documentation, like free software, is a matter of freedom, not price. The
problem with the nonfree manual is not that publishers charge a price for printed
copies—that in itself is fine. (The Free Software Foundation sells printed copies
of manuals, too.) The problem is the restrictions on the use of the manual. Free
manuals are available in source code form, and give you permission to copy and
modify. Nonfree manuals do not allow this.

The criteria of freedom for a free manual are roughly the same as for free soft-
ware. Redistribution (including the normal kinds of commercial redistribution)
must be permitted, so that the manual can accompany every copy of the program,
both on-line and on paper.

Permission for modification of the technical content is crucial too. When people
modify the software, adding or changing features, if they are conscientious they
will change the manual too—so they can provide accurate and clear documentation
for the modified program. A manual that leaves you no choice but to write a new
manual to document a changed version of the program is not really available to our
community.

Some kinds of limits on the way modification is handled are acceptable. For
example, requirements to preserve the original author’s copyright notice, the distri-
bution terms, or the list of authors, are ok. It is also no problem to require modified
versions to include notice that they were modified. Even entire sections that may
not be deleted or changed are acceptable, as long as they deal with nontechnical
topics (like this one). These kinds of restrictions are acceptable because they don’t
obstruct the community’s normal use of the manual.

However, it must be possible to modify all the technical content of the manual,
and then distribute the result in all the usual media, through all the usual channels.
Otherwise, the restrictions obstruct the use of the manual, it is not free, and we need
another manual to replace it.

592 The GNU C Library: Application Fundamentals

Please spread the word about this issue. Our community continues to lose man-
uals to proprietary publishing. If we spread the word that free software needs free
reference manuals and free tutorials, perhaps the next person who wants to con-
tribute by writing documentation will realize, before it is too late, that only free
manuals contribute to the free software community.

If you are writing documentation, please insist on publishing it under the GNU
Free Documentation License or another free documentation license. Remember
that this decision requires your approval—you don’t have to let the publisher de-
cide. Some commercial publishers will use a free license if you insist, but they
will not propose the option; it is up to you to raise the issue and say firmly that
this is what you want. If the publisher you are dealing with refuses, please try
other publishers. If you’re not sure whether a proposed license is free, write to
licensing@gnu.org.

You can encourage commercial publishers to sell more free, copylefted manuals
and tutorials by buying them, and particularly by buying copies from the publishers
that paid for their writing or for major improvements. Meanwhile, try to avoid
buying nonfree documentation at all. Check the distribution terms of a manual
before you buy it, and insist that whoever seeks your business must respect your
freedom. Check the history of the book, and try reward the publishers that have
paid or pay the authors to work on it.

The Free Software Foundation maintains a list of free documentation pub-
lished by other publishers, at http:// www.fsf.org/ doc/ other-free-
books.html.

mailto:licensing@gnu.org

Appendix D: GNU Lesser General Public License 593

Appendix D GNU Lesser General Public
License

Version 2.1, February 1999
Copyright © 1991, 1999 Free Software Foundation, Inc.
51 Franklin St – Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

[This is the first released version of the Lesser GPL. It also counts
as the successor of the GNU Library Public License, version 2, hence the
version number 2.1.]

D.0.1 Preamble

The licenses for most software are designed to take away your freedom to share
and change it. By contrast, the GNU General Public Licenses are intended to guar-
antee your freedom to share and change free software—to make sure the software
is free for all its users.

This license, the Lesser General Public License, applies to some specially des-
ignated software—typically libraries—of the Free Software Foundation and other
authors who decide to use it. You can use it too, but we suggest you first think
carefully about whether this license or the ordinary General Public License is the
better strategy to use in any particular case, based on the explanations below.

When we speak of free software, we are referring to freedom of use, not price.
Our General Public Licenses are designed to make sure that you have the freedom
to distribute copies of free software (and charge for this service if you wish); that
you receive source code or can get it if you want it; that you can change the software
and use pieces of it in new free programs; and that you are informed that you can
do these things.

To protect your rights, we need to make restrictions that forbid distributors to
deny you these rights or to ask you to surrender these rights. These restrictions
translate to certain responsibilities for you if you distribute copies of the library or
if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee,
you must give the recipients all the rights that we gave you. You must make sure
that they, too, receive or can get the source code. If you link other code with the
library, you must provide complete object files to the recipients, so that they can
relink them with the library after making changes to the library and recompiling it.
And you must show them these terms so they know their rights.

We protect your rights with a two-step method: (1) we copyright the library, and
(2) we offer you this license, which gives you legal permission to copy, distribute
and/or modify the library.

594 The GNU C Library: Application Fundamentals

To protect each distributor, we want to make it very clear that there is no warranty
for the free library. Also, if the library is modified by someone else and passed
on, the recipients should know that what they have is not the original version, so
that the original author’s reputation will not be affected by problems that might be
introduced by others.

Finally, software patents pose a constant threat to the existence of any free pro-
gram. We wish to make sure that a company cannot effectively restrict the users
of a free program by obtaining a restrictive license from a patent holder. There-
fore, we insist that any patent license obtained for a version of the library must be
consistent with the full freedom of use specified in this license.

Most GNU software, including some libraries, is covered by the ordinary GNU
General Public License. This license, the GNU Lesser General Public License, ap-
plies to certain designated libraries, and is quite different from the ordinary General
Public License. We use this license for certain libraries in order to permit linking
those libraries into nonfree programs.

When a program is linked with a library, whether statically or using a shared
library, the combination of the two is legally speaking a combined work, a deriva-
tive of the original library. The ordinary General Public License therefore permits
such linking only if the entire combination fits its criteria of freedom. The Lesser
General Public License permits more lax criteria for linking other code with the
library.

We call this license the Lesser General Public License because it does Less to
protect the user’s freedom than the ordinary General Public License. It also pro-
vides other free software developers Less of an advantage over competing nonfree
programs. These disadvantages are the reason we use the ordinary General Public
License for many libraries. However, the Lesser license provides advantages in
certain special circumstances.

For example, on rare occasions, there may be a special need to encourage the
widest possible use of a certain library, so that it becomes a de-facto standard. To
achieve this, nonfree programs must be allowed to use the library. A more frequent
case is that a free library does the same job as widely used nonfree libraries. In this
case, there is little to gain by limiting the free library to free software only, so we
use the Lesser General Public License.

In other cases, permission to use a particular library in nonfree programs enables
a greater number of people to use a large body of free software. For example,
permission to use the GNU C Library in nonfree programs enables many more peo-
ple to use the whole GNU operating system, as well as its variant, the GNU/Linux
operating system.

Although the Lesser General Public License is Less protective of the users’ free-
dom, it does ensure that the user of a program that is linked with the Library has
the freedom and the wherewithal to run that program using a modified version of
the Library.

The precise terms and conditions for copying, distribution and modification fol-
low. Pay close attention to the difference between a “work based on the library” and

Appendix D: GNU Lesser General Public License 595

a “work that uses the library”. The former contains code derived from the library,
whereas the latter must be combined with the library in order to run.

D.0.2 TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library or other program
which contains a notice placed by the copyright holder or other authorized
party saying it may be distributed under the terms of this Lesser General Pub-
lic License (also called “this License”). Each licensee is addressed as “you”.
A “library” means a collection of software functions and/or data prepared so
as to be conveniently linked with application programs (which use some of
those functions and data) to form executables.
The “Library”, below, refers to any such software library or work which has
been distributed under these terms. A “work based on the Library” means ei-
ther the Library or any derivative work under copyright law: that is to say, a
work containing the Library or a portion of it, either verbatim or with modifica-
tions and/or translated straightforwardly into another language. (Hereinafter,
translation is included without limitation in the term “modification”.)
“Source code” for a work means the preferred form of the work for making
modifications to it. For a library, complete source code means all the source
code for all modules it contains, plus any associated interface definition files,
plus the scripts used to control compilation and installation of the library.
Activities other than copying, distribution and modification are not covered by
this License; they are outside its scope. The act of running a program using
the Library is not restricted, and output from such a program is covered only
if its contents constitute a work based on the Library (independent of the use
of the Library in a tool for writing it). Whether that is true depends on what
the Library does and what the program that uses the Library does.

1. You may copy and distribute verbatim copies of the Library’s complete source
code as you receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice and dis-
claimer of warranty; keep intact all the notices that refer to this License and to
the absence of any warranty; and distribute a copy of this License along with
the Library.
You may charge a fee for the physical act of transferring a copy, and you may
at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it, thus
forming a work based on the Library, and copy and distribute such modifica-
tions or work under the terms of Section 1 above, provided that you also meet
all of these conditions:

a. The modified work must itself be a software library.
b. You must cause the files modified to carry prominent notices stating that

you changed the files and the date of any change.

596 The GNU C Library: Application Fundamentals

c. You must cause the whole of the work to be licensed at no charge to all
third parties under the terms of this License.

d. If a facility in the modified Library refers to a function or a table of data
to be supplied by an application program that uses the facility, other than
as an argument passed when the facility is invoked, then you must make a
good faith effort to ensure that, in the event an application does not supply
such function or table, the facility still operates, and performs whatever
part of its purpose remains meaningful.
(For example, a function in a library to compute square roots has a pur-
pose that is entirely well-defined independent of the application. There-
fore, Subsection 2d requires that any application-supplied function or ta-
ble used by this function must be optional: if the application does not
supply it, the square root function must still compute square roots.)

These requirements apply to the modified work as a whole. If identifiable
sections of that work are not derived from the Library, and can be reasonably
considered independent and separate works in themselves, then this License,
and its terms, do not apply to those sections when you distribute them as sep-
arate works. But when you distribute the same sections as part of a whole
which is a work based on the Library, the distribution of the whole must be on
the terms of this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.
Thus, it is not the intent of this section to claim rights or contest your rights
to work written entirely by you; rather, the intent is to exercise the right to
control the distribution of derivative or collective works based on the Library.
In addition, mere aggregation of another work not based on the Library with
the Library (or with a work based on the Library) on a volume of a storage
or distribution medium does not bring the other work under the scope of this
License.

3. You may opt to apply the terms of the ordinary GNU General Public License
instead of this License to a given copy of the Library. To do this, you must
alter all the notices that refer to this License, so that they refer to the ordinary
GNU General Public License, version 2, instead of to this License. (If a newer
version than version 2 of the ordinary GNU General Public License has ap-
peared, then you can specify that version instead if you wish.) Do not make
any other change in these notices.
Once this change is made in a given copy, it is irreversible for that copy, so
the ordinary GNU General Public License applies to all subsequent copies and
derivative works made from that copy.
This option is useful when you wish to copy part of the code of the Library
into a program that is not a library.

4. You may copy and distribute the Library (or a portion or derivative of it, un-
der Section 2) in object code or executable form under the terms of Sections
1 and 2 above provided that you accompany it with the complete correspond-
ing machine-readable source code, which must be distributed under the terms

Appendix D: GNU Lesser General Public License 597

of Sections 1 and 2 above on a medium customarily used for software inter-
change.
If distribution of object code is made by offering access to copy from a desig-
nated place, then offering equivalent access to copy the source code from the
same place satisfies the requirement to distribute the source code, even though
third parties are not compelled to copy the source along with the object code.

5. A program that contains no derivative of any portion of the Library, but is
designed to work with the Library by being compiled or linked with it, is called
a “work that uses the Library”. Such a work, in isolation, is not a derivative
work of the Library, and therefore falls outside the scope of this License.
However, linking a “work that uses the Library” with the Library creates an
executable that is a derivative of the Library (because it contains portions of
the Library), rather than a “work that uses the library”. The executable is
therefore covered by this License. Section 6 states terms for distribution of
such executables.
When a “work that uses the Library” uses material from a header file that is
part of the Library, the object code for the work may be a derivative work of the
Library even though the source code is not. Whether this is true is especially
significant if the work can be linked without the Library, or if the work is itself
a library. The threshold for this to be true is not precisely defined by law.
If such an object file uses only numerical parameters, data structure layouts
and accessors, and small macros and small in-line functions (ten lines or less
in length), then the use of the object file is unrestricted, regardless of whether
it is legally a derivative work. (Executables containing this object code plus
portions of the Library will still fall under Section 6.)
Otherwise, if the work is a derivative of the Library, you may distribute the
object code for the work under the terms of Section 6. Any executables con-
taining that work also fall under Section 6, whether or not they are linked
directly with the Library itself.

6. As an exception to the Sections above, you may also combine or link a “work
that uses the Library” with the Library to produce a work containing portions
of the Library, and distribute that work under terms of your choice, provided
that the terms permit modification of the work for the customer’s own use and
reverse engineering for debugging such modifications.
You must give prominent notice with each copy of the work that the Library is
used in it and that the Library and its use are covered by this License. You must
supply a copy of this License. If the work during execution displays copyright
notices, you must include the copyright notice for the Library among them, as
well as a reference directing the user to the copy of this License. Also, you
must do one of these things:

a. Accompany the work with the complete corresponding machine-readable
source code for the Library including whatever changes were used in the
work (which must be distributed under Sections 1 and 2 above); and,
if the work is an executable linked with the Library, with the complete

598 The GNU C Library: Application Fundamentals

machine-readable “work that uses the Library”, as object code and/or
source code, so that the user can modify the Library and then relink to
produce a modified executable containing the modified Library. (It is
understood that the user who changes the contents of definitions files in
the Library will not necessarily be able to recompile the application to
use the modified definitions.)

b. Use a suitable shared library mechanism for linking with the Library. A
suitable mechanism is one that (1) uses at run time a copy of the library
already present on the user’s computer system, rather than copying li-
brary functions into the executable, and (2) will operate properly with
a modified version of the library, if the user installs one, as long as the
modified version is interface-compatible with the version that the work
was made with.

c. Accompany the work with a written offer, valid for at least three years,
to give the same user the materials specified in Subsection 6a, above, for
a charge no more than the cost of performing this distribution.

d. If distribution of the work is made by offering access to copy from a
designated place, offer equivalent access to copy the above specified ma-
terials from the same place.

e. Verify that the user has already received a copy of these materials or that
you have already sent this user a copy.

For an executable, the required form of the “work that uses the Library” must
include any data and utility programs needed for reproducing the executable
from it. However, as a special exception, the materials to be distributed need
not include anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the operat-
ing system on which the executable runs, unless that component itself accom-
panies the executable.
It may happen that this requirement contradicts the license restrictions of other
proprietary libraries that do not normally accompany the operating system.
Such a contradiction means you cannot use both them and the Library together
in an executable that you distribute.

7. You may place library facilities that are a work based on the Library side-
by-side in a single library together with other library facilities not covered by
this License, and distribute such a combined library, provided that the separate
distribution of the work based on the Library and of the other library facilities
is otherwise permitted, and provided that you do these two things:

a. Accompany the combined library with a copy of the same work based on
the Library, uncombined with any other library facilities. This must be
distributed under the terms of the Sections above.

b. Give prominent notice with the combined library of the fact that part
of it is a work based on the Library, and explaining where to find the
accompanying uncombined form of the same work.

Appendix D: GNU Lesser General Public License 599

8. You may not copy, modify, sublicense, link with, or distribute the Library
except as expressly provided under this License. Any attempt otherwise to
copy, modify, sublicense, link with, or distribute the Library is void, and will
automatically terminate your rights under this License. However, parties who
have received copies, or rights, from you under this License will not have their
licenses terminated so long as such parties remain in full compliance.

9. You are not required to accept this License, since you have not signed it. How-
ever, nothing else grants you permission to modify or distribute the Library or
its derivative works. These actions are prohibited by law if you do not ac-
cept this License. Therefore, by modifying or distributing the Library (or any
work based on the Library), you indicate your acceptance of this License to
do so, and all its terms and conditions for copying, distributing or modifying
the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the Library), the
recipient automatically receives a license from the original licensor to copy,
distribute, link with or modify the Library subject to these terms and condi-
tions. You may not impose any further restrictions on the recipients’ exercise
of the rights granted herein. You are not responsible for enforcing compliance
by third parties with this License.

11. If, as a consequence of a court judgment or allegation of patent infringement
or for any other reason (not limited to patent issues), conditions are imposed
on you (whether by court order, agreement or otherwise) that contradict the
conditions of this License, they do not excuse you from the conditions of this
License. If you cannot distribute so as to satisfy simultaneously your obli-
gations under this License and any other pertinent obligations, then as a con-
sequence you may not distribute the Library at all. For example, if a patent
license would not permit royalty-free redistribution of the Library by all those
who receive copies directly or indirectly through you, then the only way you
could satisfy both it and this License would be to refrain entirely from distri-
bution of the Library.
If any portion of this section is held invalid or unenforceable under any par-
ticular circumstance, the balance of the section is intended to apply, and the
section as a whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any patents or
other property right claims or to contest validity of any such claims; this sec-
tion has the sole purpose of protecting the integrity of the free software distri-
bution system which is implemented by public license practices. Many people
have made generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that system; it is
up to the author/donor to decide if he or she is willing to distribute software
through any other system and a licensee cannot impose that choice.
This section is intended to make thoroughly clear what is believed to be a
consequence of the rest of this License.

12. If the distribution and/or use of the Library is restricted in certain countries
either by patents or by copyrighted interfaces, the original copyright holder

600 The GNU C Library: Application Fundamentals

who places the Library under this License may add an explicit geographical
distribution limitation excluding those countries, so that distribution is permit-
ted only in or among countries not thus excluded. In such case, this License
incorporates the limitation as if written in the body of this License.

13. The Free Software Foundation may publish revised and/or new versions of the
Lesser General Public License from time to time. Such new versions will be
similar in spirit to the present version, but may differ in detail to address new
problems or concerns.
Each version is given a distinguishing version number. If the Library specifies
a version number of this License which applies to it and “any later version”,
you have the option of following the terms and conditions either of that ver-
sion or of any later version published by the Free Software Foundation. If
the Library does not specify a license version number, you may choose any
version ever published by the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free programs whose
distribution conditions are incompatible with these, write to the author to ask
for permission. For software which is copyrighted by the Free Software Foun-
dation, write to the Free Software Foundation; we sometimes make exceptions
for this. Our decision will be guided by the two goals of preserving the free
status of all derivatives of our free software and of promoting the sharing and
reuse of software generally.

NO WARRANTY
15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE

IS NO WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMIT-
TED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED
IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE LIBRARY “AS IS” WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE LIBRARY IS WITH
YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORREC-
TION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR
AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR
ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE
THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU FOR
DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL
OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF

Appendix D: GNU Lesser General Public License 601

THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN
IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

602 The GNU C Library: Application Fundamentals

D.0.3 How to Apply These Terms to Your New Libraries

If you develop a new library, and you want it to be of the greatest possible use
to the public, we recommend making it free software that everyone can redistribute
and change. You can do so by permitting redistribution under these terms (or,
alternatively, under the terms of the ordinary General Public License).

To apply these terms, attach the following notices to the library. It is safest to
attach them to the start of each source file to most effectively convey the exclusion
of warranty; and each file should have at least the “copyright” line and a pointer to
where the full notice is found.

one line to give the library’s name and an idea of what it does.

Copyright (C) year name of author

This library is free software; you can redistribute it and/or modify it

under the terms of the GNU Lesser General Public License as published by

the Free Software Foundation; either version 2.1 of the License, or (at

your option) any later version.

This library is distributed in the hope that it will be useful, but

WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public

License along with this library; if not, write to the Free Software

Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301,

USA.

Also add information on how to contact you by electronic and paper mail.
You should also get your employer (if you work as a programmer) or your school,

if any, to sign a “copyright disclaimer” for the library, if necessary. Here is a sam-
ple; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the library

‘Frob’ (a library for tweaking knobs) written by James Random Hacker.

signature of Ty Coon, 1 April 1990

Ty Coon, President of Vice

That’s all there is to it!

Appendix E: GNU Free Documentation License 603

Appendix E GNU Free Documentation License
Version 1.1, March 2000

Copyright © 2000 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other written
document free in the sense of freedom: to assure everyone the effective free-
dom to copy and redistribute it, with or without modifying it, either commer-
cially or noncommercially. Secondarily, this License preserves for the author
and publisher a way to get credit for their work, while not being considered
responsible for modifications made by others.
This License is a kind of “copyleft”, which means that derivative works of the
document must themselves be free in the same sense. It complements the GNU
General Public License, which is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software,
because free software needs free documentation: a free program should come
with manuals providing the same freedoms that the software does. But this
License is not limited to software manuals; it can be used for any textual work,
regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction or
reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work that contains a notice placed
by the copyright holder saying it can be distributed under the terms of this
License. The “Document”, below, refers to any such manual or work. Any
member of the public is a licensee, and is addressed as “you”.
A “Modified Version” of the Document means any work containing the Doc-
ument or a portion of it, either copied verbatim, or with modifications and/or
translated into another language.
A “Secondary Section” is a named appendix or a front-matter section of the
Document that deals exclusively with the relationship of the publishers or au-
thors of the Document to the Document’s overall subject (or to related matters)
and contains nothing that could fall directly within that overall subject. (For
example, if the Document is in part a textbook of mathematics, a Secondary
Section may not explain any mathematics.) The relationship could be a matter
of historical connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding them.
The “Invariant Sections” are certain Secondary Sections whose titles are des-
ignated, as being those of Invariant Sections, in the notice that says that the
Document is released under this License.

604 The GNU C Library: Application Fundamentals

The “Cover Texts” are certain short passages of text that are listed, as Front-
Cover Texts or Back-Cover Texts, in the notice that says that the Document is
released under this License.
A “Transparent” copy of the Document means a machine-readable copy, rep-
resented in a format whose specification is available to the general public,
whose contents can be viewed and edited directly and straightforwardly with
generic text editors or (for images composed of pixels) generic paint programs
or (for drawings) some widely available drawing editor, and that is suitable for
input to text formatters or for automatic translation to a variety of formats suit-
able for input to text formatters. A copy made in an otherwise Transparent file
format whose markup has been designed to thwart or discourage subsequent
modification by readers is not Transparent. A copy that is not “Transparent”
is called “Opaque”.
Examples of suitable formats for Transparent copies include plain ASCII with-
out markup, Texinfo input format, LaTEX input format, SGML or XML using a
publicly available DTD, and standard-conforming simple HTML designed for
human modification. Opaque formats include PostScript, PDF, proprietary for-
mats that can be read and edited only by proprietary word processors, SGML
or XML for which the DTD and/or processing tools are not generally available,
and the machine-generated HTML produced by some word processors for out-
put purposes only.
The “Title Page” means, for a printed book, the title page itself, plus such fol-
lowing pages as are needed to hold, legibly, the material this License requires
to appear in the title page. For works in formats which do not have any title
page as such, “Title Page” means the text near the most prominent appearance
of the work’s title, preceding the beginning of the body of the text.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commer-
cially or noncommercially, provided that this License, the copyright notices,
and the license notice saying this License applies to the Document are repro-
duced in all copies, and that you add no other conditions whatsoever to those
of this License. You may not use technical measures to obstruct or control
the reading or further copying of the copies you make or distribute. However,
you may accept compensation in exchange for copies. If you distribute a large
enough number of copies you must also follow the conditions in section 3.
You may also lend copies, under the same conditions stated above, and you
may publicly display copies.

3. COPYING IN QUANTITY
If you publish printed copies of the Document numbering more than 100, and
the Document’s license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover Texts: Front-
Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both
covers must also clearly and legibly identify you as the publisher of these
copies. The front cover must present the full title with all words of the title

Appendix E: GNU Free Documentation License 605

equally prominent and visible. You may add other material on the covers in
addition. Copying with changes limited to the covers, as long as they pre-
serve the title of the Document and satisfy these conditions, can be treated as
verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you
should put the first ones listed (as many as fit reasonably) on the actual cover,
and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more
than 100, you must either include a machine-readable Transparent copy along
with each Opaque copy, or state in or with each Opaque copy a publicly-
accessible computer-network location containing a complete Transparent copy
of the Document, free of added material, which the general network-using
public has access to download anonymously at no charge using public-
standard network protocols. If you use the latter option, you must take reason-
ably prudent steps, when you begin distribution of Opaque copies in quantity,
to ensure that this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document
well before redistributing any large number of copies, to give them a chance
to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the
conditions of sections 2 and 3 above, provided that you release the Modified
Version under precisely this License, with the Modified Version filling the role
of the Document, thus licensing distribution and modification of the Modified
Version to whoever possesses a copy of it. In addition, you must do these
things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that
of the Document, and from those of previous versions (which should, if
there were any, be listed in the History section of the Document). You
may use the same title as a previous version if the original publisher of
that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities re-
sponsible for authorship of the modifications in the Modified Version,
together with at least five of the principal authors of the Document (all of
its principal authors, if it has less than five).

C. State on the Title page the name of the publisher of the Modified Version,
as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to
the other copyright notices.

606 The GNU C Library: Application Fundamentals

F. Include, immediately after the copyright notices, a license notice giving
the public permission to use the Modified Version under the terms of this
License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and re-
quired Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section entitled “History”, and its title, and add to it an item

stating at least the title, year, new authors, and publisher of the Modified
Version as given on the Title Page. If there is no section entitled “History”
in the Document, create one stating the title, year, authors, and publisher
of the Document as given on its Title Page, then add an item describing
the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public
access to a Transparent copy of the Document, and likewise the network
locations given in the Document for previous versions it was based on.
These may be placed in the “History” section. You may omit a network
location for a work that was published at least four years before the Doc-
ument itself, or if the original publisher of the version it refers to gives
permission.

K. In any section entitled “Acknowledgments” or “Dedications”, preserve
the section’s title, and preserve in the section all the substance and tone
of each of the contributor acknowledgments and/or dedications given
therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text
and in their titles. Section numbers or the equivalent are not considered
part of the section titles.

M. Delete any section entitled “Endorsements”. Such a section may not be
included in the Modified Version.

N. Do not retitle any existing section as “Endorsements” or to conflict in title
with any Invariant Section.

If the Modified Version includes new front-matter sections or appendices that
qualify as Secondary Sections and contain no material copied from the Docu-
ment, you may at your option designate some or all of these sections as invari-
ant. To do this, add their titles to the list of Invariant Sections in the Modified
Version’s license notice. These titles must be distinct from any other section
titles.
You may add a section entitled “Endorsements”, provided it contains nothing
but endorsements of your Modified Version by various parties—for example,
statements of peer review or that the text has been approved by an organization
as the authoritative definition of a standard.
You may add a passage of up to five words as a Front-Cover Text, and a pas-
sage of up to 25 words as a Back-Cover Text, to the end of the list of Cover
Texts in the Modified Version. Only one passage of Front-Cover Text and one

Appendix E: GNU Free Documentation License 607

of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover,
previously added by you or by arrangement made by the same entity you are
acting on behalf of, you may not add another; but you may replace the old one,
on explicit permission from the previous publisher that added the old one.
The author(s) and publisher(s) of the Document do not by this License give
permission to use their names for publicity for or to assert or imply endorse-
ment of any Modified Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified versions,
provided that you include in the combination all of the Invariant Sections of all
of the original documents, unmodified, and list them all as Invariant Sections
of your combined work in its license notice.
The combined work need only contain one copy of this License, and multiple
identical Invariant Sections may be replaced with a single copy. If there are
multiple Invariant Sections with the same name but different contents, make
the title of each such section unique by adding at the end of it, in parentheses,
the name of the original author or publisher of that section if known, or else
a unique number. Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.
In the combination, you must combine any sections entitled “History” in the
various original documents, forming one section entitled “History”; likewise
combine any sections entitled “Acknowledgments”, and any sections entitled
“Dedications”. You must delete all sections entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this License
in the various documents with a single copy that is included in the collection,
provided that you follow the rules of this License for verbatim copying of each
of the documents in all other respects.
You may extract a single document from such a collection, and distribute it
individually under this License, provided you insert a copy of this License into
the extracted document, and follow this License in all other respects regarding
verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and in-
dependent documents or works, in or on a volume of a storage or distribution
medium, does not as a whole count as a Modified Version of the Document,
provided no compilation copyright is claimed for the compilation. Such a
compilation is called an “aggregate”, and this License does not apply to the
other self-contained works thus compiled with the Document, on account of
their being thus compiled, if they are not themselves derivative works of the
Document.

608 The GNU C Library: Application Fundamentals

If the Cover Text requirement of section 3 is applicable to these copies of the
Document, then if the Document is less than one quarter of the entire aggre-
gate, the Document’s Cover Texts may be placed on covers that surround only
the Document within the aggregate. Otherwise they must appear on covers
around the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute trans-
lations of the Document under the terms of section 4. Replacing Invariant
Sections with translations requires special permission from their copyright
holders, but you may include translations of some or all Invariant Sections
in addition to the original versions of these Invariant Sections. You may in-
clude a translation of this License provided that you also include the original
English version of this License. In case of a disagreement between the trans-
lation and the original English version of this License, the original English
version will prevail.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as
expressly provided for under this License. Any other attempt to copy, modify,
sublicense or distribute the Document is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so
long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU
Free Documentation License from time to time. Such new versions will be
similar in spirit to the present version, but may differ in detail to address new
problems or concerns. See http:// www.gnu.org/ copyleft/.
Each version of the License is given a distinguishing version number. If the
Document specifies that a particular numbered version of this License “or any
later version” applies to it, you have the option of following the terms and
conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document
does not specify a version number of this License, you may choose any version
ever published (not as a draft) by the Free Software Foundation.

http:// www.gnu.org/ copyleft/

Appendix E: GNU Free Documentation License 609

E.0.1 ADDENDUM: How to Use This License for Your
Documents

To use this License in a document you have written, include a copy of the License
in the document and put the following copyright and license notices just after the
title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.1

or any later version published by the Free Software Foundation;

with the Invariant Sections being list their titles, with the

Front-Cover Texts being list, and with the Back-Cover Texts being list.

A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have no Invariant Sections, write “with no Invariant Sections” instead of
saying which ones are invariant. If you have no Front-Cover Texts, write “no Front-
Cover Texts” instead of “Front-Cover Texts being list”; likewise for Back-Cover
Texts.

If your document contains nontrivial examples of program code, we recommend
releasing these examples in parallel under your choice of free software license, such
as the GNU General Public License, to permit their use in free software.

610 The GNU C Library: Application Fundamentals

Concept Index 611

Concept Index

va copy . 101
_POSIX_OPTION_ORDER environment

variable. 423

4
4.n BSD Unix . 3

A
aborting a program . 427
absolute file-name . 432
absolute value functions 258
address space . 379
alarms, setting . 310
alignment (in obstacks) . 68
alignment (with malloc) 47
alloca disadvantages . 73
alloca function . 71
allocation (obstacks) . 61
allocation debugging . 55
allocation hooks, for malloc 50
allocation of memory with malloc 42
allocation size of string . 90
allocation statistics . 53
alphabetic character . 79, 83
alphanumeric character 80, 83
append-access files . 431
argc (program argument count) 379
argp (program argument parser) 389
argp parser functions . 394
ARGP HELP FMT environment variable

. 415
argument parsing with argp 389
argument vectors, null-character separated

. 127
arguments, to program . 379
argv (program argument vector) 379
argz vectors (string vectors) 127
arithmetic expansion . 371
array comparison functions 105
array copy functions . 93
array search function . 343
array sort function . 344
ASCII character . 81
automatic freeing . 71
automatic memory allocation 41

automatic storage class . 41
automatic storage with variable size 71

B
backtrace . 435
backtrace fd . 435
backtrace symbols . 435
Berkeley Unix . 3
Bessel functions . 214
binary I/O to a stream . 459
binary search function (for arrays) 343
binary stream . 499
blank character . 80, 85
block I/O to a stream . 459
breaking a string into tokens 119
broken-down time 282, 285
BSD compatibility library. 9
BSD Unix . 3
buffering of streams . 504
buffering, controlling . 506
butterfly . 266

C
C++ streams . 449
calendar time . 277
calendar time and broken-down time 285
calendar, Gregorian . 282
case conversion of characters 81
categories for locales . 182
changing the locale . 183
changing the size of a block (malloc) 45
changing the size of a block (obstacks) 64
character case conversion 81
character predicates . 79
character testing . 79
child process . 281
chunks . 69
classes, floating-point . 247
classification of characters 79
clock ticks . 279
clock, high-accuracy . 288
closing a stream . 444
collating strings . 109
combining locales . 182
command argument syntax 380
command arguments, parsing 381

612 The GNU C Library: Application Fundamentals

command substitution . 371
command-line arguments 379
comparing strings and arrays 105
Comparison Function . 343
complex exponentiation functions 210
complex logarithm functions 210
complex numbers . 266
complex trigonometric functions 205
concatenating strings . 93
conjugate complex numbers 267
consistency checking, of heap 48
constants . 40, 203
control character . 81, 83
conversion specifications (printf) 461
conversion specifications (scanf) 487
converting case of characters 81
converting floats to integers 260
converting string to collation order 110
converting strings to numbers 268
cookie, for custom stream 512
copy-on-write page fault 76
copying strings and arrays 93
CPU time . 277, 279, 281
cube root function . 210
currency symbols . 188
custom streams . 512
customizing printf . 480

D
date . 277
daylight saving time . 286
decimal digit character . 80
decimal-point separator 187
declaration (compared to definition) 4
decompose complex numbers 267
defining new printf conversions 480
definition (compared to declaration) 4
digit character . 80, 84
directory . 431
directory entry . 431
disadvantages of alloca 73
division by zero . 249
domain error . 253
dynamic memory allocation 41

E
EBCDIC . 135
efficiency and malloc . 46
efficiency and obstacks . 66
efficiency of chunks . 69

elapsed time . 277
encryption . 124
end of file, on a stream 497
environment . 419
environment access . 419
environment representation 419
environment variable . 418
environment vectors, null-character separated

. 127
envz vectors (environment vectors) 127
epoch . 282
errno . 424
error codes . 17
error messages, in argp 398
error reporting . 17
errors, mathematical . 253
EUC . 136
EUC-JP . 166
exception . 249
execing a program . 40
executable . 40
exit status . 425
exit status value . 425
exiting a program . 40
expansion of shell words 370
exponentiation functions 207
extending printf . 480

F
FDL, GNU Free Documentation License . . . 603
feature-test macros . 8
field splitting . 371
file name . 431
file pointer . 439
file position . 430
file positioning on a stream 500
file-name component . 431
file-name errors . 433
file-name resolution . 432
files, accessing . 40
flag character (printf) 462
flag character (scanf) 488
floating point . 246
floating-point classes . 247
flushing a stream . 505
format string, for printf 460
format string, for scanf 486
formatted input from a stream 486
formatted messages . 514
formatted output to a stream 460
FP arithmetic . 263

Concept Index 613

frame, real memory . 39
free documentation . 591
freeing (obstacks) . 63
freeing memory . 40
freeing memory allocated with malloc 44
fully buffered stream . 505

G
gamma function . 214
gcvt r . 276
gencat . 321
globbing . 357
graphic character . 80, 84
Gregorian calendar . 282
grouping of digits . 187
growing objects (in obstacks) 64

H
header files . 4
heap consistency checking 48
heap, dynamic allocation from 42
heap, freeing memory from 44
hexadecimal digit character 80, 85
high-resolution time . 282
home directory . 421
HOME environment variable 421
hook functions (of custom streams) 513
hyperbolic functions . 212

I
IEEE 754 . 246
IEEE floating point . 246
IEEE Std 1003.1 . 2
IEEE Std 1003.2 . 2
inexact exception . 249
infinity . 250
input conversions, for scanf 489
integer . 243
integer division functions 244
internal representation . 133
internationalization . 181
interval . 277
interval timer, setting . 310
invalid exception . 249
inverse complex hyperbolic functions 213
inverse complex trigonometric functions . . . 207
inverse hyperbolic functions 212
inverse trigonometric functions 206
invocation of program . 379

ISO 10646 . 133
ISO 2022 . 136
ISO 6937 . 136
ISO C . 2
ISO-2022-JP . 166
ISO/IEC 9945-1 . 2
ISO/IEC 9945-2 . 2

K
Kermit the frog . 347
kernel call . 423
Korn Shell . 356

L
LANG environment variable 317
LANG environment variable 422
LC ALL environment variable 317
LC_ALL environment variable 422
LC_COLLATE environment variable 422
LC_CTYPE environment variable 422
LC MESSAGES environment variable 317
LC_MESSAGES environment variable 422
LC_MONETARY environment variable 423
LC_NUMERIC environment variable 423
LC_TIME environment variable 423
leap second . 285
length of string . 90
LGPL, Lesser General Public License 593
library . 1
line buffered stream . 505
lines (in a text file) . 499
link . 431
literals . 40
local time . 282
locale categories . 182
locale, changing . 183
locales . 181
locking pages . 74
logarithm functions . 207
LOGNAME environment variable 421
long-named options . 380
longjmp . 72
lowercase character . 79, 84

614 The GNU C Library: Application Fundamentals

M
macros . 63
main function . 379
malloc debugger . 55
malloc function . 42
matching failure, in scanf 487
math errors . 216
mathematical constants 203
maximum . 265
maximum field width (scanf) 488
maximum possible integer 244
memory allocation . 39
memory lock . 74
memory-mapped file . 40
memory-mapped I/O . 40
minimum . 265
minimum field width (printf) 463
minimum possible integer 244
monetary value formatting 186
multibyte character . 135
multibyte string . 90
multibyte-character string 89
multiply-add . 265
multithreaded application 445

N
name of running program 33
name space . 6
NaN . 250, 264
NLSPATH environment variable 316
NLSPATH environment variable 423
normalization functions (floating-point) . . . 259
not a number . 250
null character . 89
null wide character . 89
number syntax, parsing 268
numeric value formatting 186

O
obstack status . 67
obstacks . 59
opening a file . 429
opening a stream . 440
optimization . 242
option parsing with argp 389
orientation, stream 441, 449
output conversions, for printf 463
overflow exception . 249

P
page boundary . 47
page fault . 39
page fault, copy-on-write 76
page frame . 39
page, virtual memory . 39
paging . 39, 74
parameter promotion . 91
parent directory . 432
parsing a template string 476
parsing numbers (in formatted input) 268
parsing program arguments 381
parsing tokens from a string 119
PATH environment variable 421
peeking at input . 458
period of time . 277
pi (trigonometric constant) 204
positioning a stream . 500
positive difference . 265
POSIX . 2
POSIX.1 . 2
POSIX.2 . 2
power functions . 207
precision (printf) . 463
predicates on arrays . 105
predicates on characters 79
predicates on strings . 105
printing character . 81, 84
process . 379
process termination . 425
processor time . 277, 281
profiling timer . 310
program . 379
program argument syntax 380
program arguments . 379
program arguments, parsing 381
program name . 33
program start-up . 379
program termination . 425
programming your own streams 512
project complex numbers 267
pseudorandom numbers 234
punctuation character 80, 84
pushing input back . 458

Q
quick sort function (for arrays) 344
quote removal . 371

Concept Index 615

R
random numbers . 234
random-access files . 431
range error . 253
reading from a stream, by blocks 459
reading from a stream, by characters 453
reading from a stream, formatted 486
real-time timer . 310
realtime processing . 75
relative file name . 432
removal of quotes . 371
removing macros that shadow functions 5
reporting errors . 17
reserved names . 6
root directory . 432
Rot13 . 124

S
search function (for arrays) 343
search functions (for strings) 114
seed (for random numbers) 234
seeking on a stream . 500
sequential-access files . 430
setting an alarm . 310
severity class . 516, 518
sgettext . 337
shadowing functions with macros 5
shift state . 139
Shift JIS . 136
shrinking objects . 66
signal . 249
signedness . 243
simple time . 282
single-byte string . 90
size of string . 90
SJIS . 136
sort function (for arrays) 344
special functions . 214
speed of execution . 75
square root function . 209
stable sorting . 345
standard environment variables 421
standard error stream . 440
standard input stream . 439
standard output stream 439
standard streams . 439
standards . 1
start-up of program . 379
stateful 139, 142, 148, 159, 163, 176
static memory allocation 41
static storage class . 41

status codes . 17
status of obstack . 67
storage allocation . 39
stream orientation 441, 449
stream, for I/O to a string 509
streams, C++ . 449
streams, standard . 439
string . 89
string allocation . 90
string collation functions 109
string comparison functions 105
string concatenation functions 93
string copy functions . 93
string length . 90
string literal . 89
string search functions . 114
string stream . 509
string vectors, null-character separated 127
string, representation of . 89
substitution of variables and commands . . . 371
summer time . 286
SunOS . 3
SVID . 3
swap space . 39
syntax error messages, in argp 398
syntax, for program arguments 380
syntax, for reading numbers 268
system call . 423
system call number . 423
System V Unix . 3

T
template, for printf . 460
template, for scanf . 486
TERM environment variable 422
text stream . 499
thread of control . 379
threads . 445
ticks, clock . 279
tilde expansion . 371
time . 277
time zone . 306
time zone database . 308
time, elapsed . 277
time, high-precision . 288
timer, profiling . 310
timer, real-time . 310
timer, virtual . 310
timers, setting . 310
timespec . 278
timeval . 278

616 The GNU C Library: Application Fundamentals

tokenizing strings . 119
triangulation . 166
trigonometric functions 204
type modifier character (printf) 463
type modifier character (scanf) 488
TZ environment variable 422

U
UCS-2 . 134
UCS-4 . 134
ulps . 216
unbuffered stream . 505
unconstrained memory allocation 42
undefining macros that shadow functions 5
underflow exception . 249
Unicode . 133
Unix, Berkeley . 3
Unix, System V . 3
unordered comparison . 264
unreading characters . 458
uppercase character . 79, 85
usage messages, in argp 398
usual file-name errors . 433
UTF-16 . 134

UTF-7 . 136
UTF-8 . 134, 136

V
va copy . 101
variable substitution . 371
variable-sized arrays . 73
virtual timer . 310

W
white-space character 80, 85
wide character . 133
wide-character string 89, 90
wildcard expansion . 371
wint t . 91
word expansion . 370
writing to a stream, by blocks 459
writing to a stream, by characters 450
writing to a stream, formatted 460

Z
zero divide . 249

Type Index 617

Type Index

C
clock_t . 280
comparison_fn_t . 343
cookie_close_function 514
cookie_io_functions_t 513
cookie_read_function 514
cookie_seek_function 514
cookie_write_function 514

D
div_t . 245

E
enum mcheck_status 49

F
FILE . 439
fpos_t . 503
fpos64_t . 503

G
glob_t . 357
glob64_t . 358

I
iconv_t . 158
imaxdiv_t . 246

L
ldiv_t . 245
lldiv_t . 245

M
mbstate_t . 139

P
printf_arginfo_function 483
printf_function . 483

R
regex_t . 365
regmatch_t . 368
regoff_t . 368

S
struct __gconv_step 168
struct __gconv_step_data 170
struct argp . 391
struct argp_child 400
struct argp_option 392
struct argp_state 399
struct ENTRY . 349
struct itimerval 311
struct lconv . 187
struct mallinfo . 53
struct ntptimeval 288
struct obstack . 60
struct option . 385
struct printf_info 481
struct random_data 236
struct timespec . 278
struct timeval . 278
struct timex . 289
struct timezone . 283
struct tm . 285
struct tms . 281

T
time_t . 282

V
VISIT . 353

W
wchar_t . 134
wctrans_t . 87
wctype_t . 82
wint_t . 134
wordexp_t . 371

618 The GNU C Library: Application Fundamentals

Function and Macro Index 619

Function and Macro Index

__fbufsize . 508
__flbf . 508
__fpending . 508
__fpurge . 506
__freadable . 443
__freading . 443
__fsetlocking . 447
__fwritable . 443
__fwriting . 444
_exit . 428
_Exit . 428
_flushlbf . 506
_tolower . 82
_toupper . 82

A
a64l . 126
abort . 427
abs . 258
acos . 206
acosf . 206
acosh . 213
acoshf . 213
acoshl . 213
acosl . 206
addseverity . 518
adjtime . 284
adjtimex . 285
alarm . 311
alloca . 71
argp_error . 398
argp_failure . 398
argp_help . 403
argp_parse . 389
argp_state_help . 398
argp_usage . 398
argz_add . 128
argz_add_sep . 128
argz_append . 128
argz_count . 128
argz_create . 127
argz_create_sep . 127
argz_delete . 129
argz_extract . 128
argz_insert . 129
argz_next . 129

argz_replace . 129
argz_stringify . 128
asctime . 291
asctime_r . 292
asin . 206
asinf . 206
asinh . 213
asinhf . 213
asinhl . 213
asinl . 206
asprintf . 473
atan . 206
atan2 . 206
atan2f . 206
atan2l . 206
atanf . 206
atanh . 213
atanhf . 213
atanhl . 213
atanl . 206
atexit . 427
atof . 274
atoi . 272
atol . 272
atoll . 272

B
backtrace . 435
backtrace_symbols 435
backtrace_symbols_fd 436
basename . 122, 123
bcmp . 109
bcopy . 105
bind_textdomain_codeset 336
bindtextdomain . 329
brk . 74
bsearch . 344
btowc . 140
bzero . 105

C
cabs . 258
cabsf . 258
cabsl . 258
cacos . 207
cacosf . 207
cacosh . 213

620 The GNU C Library: Application Fundamentals

cacoshf . 213
cacoshl . 213
cacosl . 207
calloc . 46
carg . 268
cargf . 268
cargl . 268
casin . 207
casinf . 207
casinh . 213
casinhf . 213
casinhl . 213
casinl . 207
catan . 207
catanf . 207
catanh . 213
catanhf . 213
catanhl . 213
catanl . 207
catclose . 318
catgets . 318
catopen . 316
cbrt . 210
cbrtf . 210
cbrtl . 210
ccos . 205
ccosf . 205
ccosh . 212
ccoshf . 212
ccoshl . 212
ccosl . 205
ceil . 260
ceilf . 260
ceill . 260
cexp . 210
cexpf . 210
cexpl . 210
cfree . 44
cimag . 267
cimagf . 267
cimagl . 267
clearenv . 420
clearerr . 498
clearerr_unlocked 498
clock . 281
clog . 211
clog10 . 211
clog10f . 211
clog10l . 211
clogf . 211
clogl . 211
conj . 267

conjf . 268
conjl . 268
copysign . 263
copysignf . 263
copysignl . 263
cos . 204
cosf . 204
cosh . 212
coshf . 212
coshl . 212
cosl . 204
cpow . 211
cpowf . 211
cpowl . 211
cproj . 268
cprojf . 268
cprojl . 268
creal . 267
crealf . 267
creall . 267
csin . 205
csinf . 205
csinh . 212
csinhf . 212
csinhl . 212
csinl . 205
csqrt . 211
csqrtf . 211
csqrtl . 211
ctan . 205
ctanf . 205
ctanh . 212
ctanhf . 212
ctanhl . 212
ctanl . 205
ctime . 292
ctime_r . 292

D
dcgettext . 327
dcngettext . 332
dgettext . 327
difftime . 277
dirname . 124
div . 245
dngettext . 331
drand48 . 238
drand48_r . 240
drem . 262
dremf . 263
dreml . 263

Function and Macro Index 621

E
ecvt . 275
ecvt_r . 276
envz_add . 130
envz_entry . 130
envz_get . 130
envz_merge . 130
envz_strip . 131
erand48 . 238
erand48_r . 240
erf . 214
erfc . 214
erfcf . 214
erfcl . 214
erff . 214
erfl . 214
err . 37
error . 34
error_at_line . 35
errx . 37
exit . 425
exp . 207
exp10 . 208
exp10f . 208
exp10l . 208
exp2 . 207
exp2f . 207
exp2l . 207
expf . 207
expl . 207
expm1 . 210
expm1f . 210
expm1l . 210

F
fabs . 258
fabsf . 258
fabsl . 258
fclose . 444
fcloseall . 444
fcvt . 275
fcvt_r . 276
fdim . 266
fdimf . 266
fdiml . 266
feclearexcept . 252
fedisableexcept . 257
feenableexcept . 257
fegetenv . 256
fegetexcept . 258
fegetexceptflag . 253

fegetround . 255
feholdexcept . 256
feof . 497
feof_unlocked . 498
feraiseexcept . 252
ferror . 498
ferror_unlocked . 498
fesetenv . 257
fesetexceptflag . 253
fesetround . 255
fetestexcept . 252
feupdateenv . 257
fflush . 506
fflush_unlocked . 506
fgetc . 453
fgetc_unlocked . 453
fgetpos . 504
fgetpos64 . 504
fgets . 456
fgets_unlocked . 457
fgetwc . 453
fgetwc_unlocked . 453
fgetws . 457
fgetws_unlocked . 457
finite . 248
finitef . 248
finitel . 248
flockfile . 445
floor . 260
floorf . 260
floorl . 260
fma . 266
fmaf . 266
fmal . 266
fmax . 266
fmaxf . 266
fmaxl . 266
fmemopen . 509
fmin . 265
fminf . 265
fminl . 265
fmod . 262
fmodf . 262
fmodl . 262
fmtmsg . 515
fnmatch . 355
fopen . 440
fopen64 . 442
fopencookie . 513
fpclassify . 247
fprintf . 471
fputc . 450

622 The GNU C Library: Application Fundamentals

fputc_unlocked . 451
fputs . 452
fputs_unlocked . 452
fputwc . 450
fputwc_unlocked . 451
fputws . 452
fputws_unlocked . 452
fread . 460
fread_unlocked . 460
free . 44
freopen . 442
freopen64 . 443
frexp . 259
frexpf . 259
frexpl . 259
fscanf . 495
fseek . 501
fseeko . 501
fseeko64 . 501
fsetpos . 504
fsetpos64 . 504
ftell . 500
ftello . 500
ftello64 . 500
ftrylockfile . 445
funlockfile . 445
fwide . 449
fwprintf . 471
fwrite . 460
fwrite_unlocked . 460
fwscanf . 495

G
gamma . 215
gammaf . 215
gammal . 215
gcvt . 275
getc . 453
getc_unlocked . 454
getchar . 454
getchar_unlocked 454
getdate . 304
getdate_r . 306
getdelim . 456
getenv . 419
getitimer . 311
getline . 455
getopt . 382
getopt_long . 385
getopt_long_only 386
gets . 457

getsubopt . 416
gettext . 326
gettimeofday . 283
getw . 455
getwc . 454
getwc_unlocked . 454
getwchar . 454
getwchar_unlocked 454
glob . 359
glob64 . 360
globfree . 364
globfree64 . 364
gmtime . 287
gmtime_r . 287

H
hcreate . 348
hcreate_r . 350
hdestroy . 349
hdestroy_r . 350
hsearch . 350
hsearch_r . 350
hypot . 210
hypotf . 210
hypotl . 210

I
iconv . 159
iconv_close . 159
iconv_open . 158
ilogb . 208
ilogbf . 208
ilogbl . 208
imaxabs . 258
imaxdiv . 246
index . 119
initstate . 236
initstate_r . 237
isalnum . 80
isalpha . 79
isascii . 81
isblank . 80
iscntrl . 81
isdigit . 80
isfinite . 247
isgraph . 81
isgreater . 264
isgreaterequal . 265
isinf . 248
isinff . 248

Function and Macro Index 623

isinfl . 248
isless . 265
islessequal . 265
islessgreater . 265
islower . 79
isnan . 248
isnanf . 248
isnanl . 248
isnormal . 248
isprint . 81
ispunct . 80
isspace . 80
isunordered . 265
isupper . 79
iswalnum . 83
iswalpha . 83
iswblank . 85
iswcntrl . 83
iswctype . 83
iswdigit . 84
iswgraph . 84
iswlower . 84
iswprint . 84
iswpunct . 84
iswspace . 85
iswupper . 85
iswxdigit . 85
isxdigit . 80

J
j0 . 215
j0f . 215
j0l . 215
j1 . 215
j1f . 215
j1l . 215
jn . 215
jnf . 215
jnl . 215
jrand48 . 238
jrand48_r . 241

L
l64a . 125
labs . 258
lcong48 . 239
lcong48_r . 242
ldexp . 259
ldexpf . 259
ldexpl . 259

ldiv . 245
lfind . 343
lgamma . 214
lgamma_r . 214
lgammaf . 214
lgammaf_r . 214
lgammal . 214
lgammal_r . 214
llabs . 258
lldiv . 246
llrint . 261
llrintf . 261
llrintl . 261
llround . 262
llroundf . 262
llroundl . 262
localeconv . 186
localtime . 286
localtime_r . 287
log . 208
log10 . 208
log10f . 208
log10l . 208
log1p . 210
log1pf . 210
log1pl . 210
log2 . 208
log2f . 208
log2l . 208
logb . 208
logbf . 208
logbl . 208
logf . 208
logl . 208
lrand48 . 238
lrand48_r . 240
lrint . 261
lrintf . 261
lrintl . 261
lround . 261
lroundf . 262
lroundl . 262
lsearch . 344

624 The GNU C Library: Application Fundamentals

M
main . 379
mallinfo . 54
malloc . 42
mallopt . 48
matherr . 249
mblen . 154
mbrlen . 143
mbrtowc . 142
mbsinit . 140
mbsnrtowcs . 149
mbsrtowcs . 147
mbstowcs . 154
mbtowc . 153
mcheck . 48
memalign . 47
memccpy . 96
memchr . 114
memcmp . 105
memcpy . 94
memfrob . 124
memmem . 117
memmove . 95
mempcpy . 94
memrchr . 115
memset . 96
mktime . 287
mlock . 76
mlockall . 77
modf . 262
modff . 262
modfl . 262
mprobe . 49
mrand48 . 238
mrand48_r . 241
mtrace . 56
munlock . 77
munlockall . 78
muntrace . 56

N
nan . 264
nanf . 264
nanl . 264
nanosleep . 313
nearbyint . 261
nearbyintf . 261
nearbyintl . 261
nextafter . 264
nextafterf . 264
nextafterl . 264

nexttoward . 264
nexttowardf . 264
nexttowardl . 264
ngettext . 331
nl_langinfo . 191
nrand48 . 238
nrand48_r . 240
ntp_adjtime . 291
ntp_gettime . 289

O
obstack_1grow . 65
obstack_1grow_fast 66
obstack_alignment_mask 68
obstack_alloc . 61
obstack_base . 67
obstack_blank . 64
obstack_blank_fast 67
obstack_chunk_alloc 60
obstack_chunk_free 60
obstack_chunk_size 69
obstack_copy . 62
obstack_copy0 . 62
obstack_finish . 65
obstack_free . 63
obstack_grow . 64
obstack_grow0 . 65
obstack_init . 61
obstack_int_grow 65
obstack_int_grow_fast 66
obstack_next_free 68
obstack_object_size 65, 68
obstack_printf . 473
obstack_ptr_grow 65
obstack_ptr_grow_fast 66
obstack_room . 66
obstack_vprintf . 475
on_exit . 427
open_memstream . 510
open_obstack_stream 511

Function and Macro Index 625

P
parse_printf_format 477
perror . 32
posix_memalign . 47
pow . 209
pow10 . 208
pow10f . 208
pow10l . 208
powf . 209
powl . 209
printf . 470
printf_size . 485
printf_size_info 486
putc . 451
putc_unlocked . 451
putchar . 451
putchar_unlocked 451
putenv . 419
puts . 452
putw . 453
putwc . 451
putwc_unlocked . 451
putwchar . 451
putwchar_unlocked 452

Q
qecvt . 276
qecvt_r . 276
qfcvt . 276
qfcvt_r . 276
qgcvt . 276
qsort . 344

R
rand . 235
rand_r . 235
random . 236
random_r . 237
rawmemchr . 114
realloc . 45
regcomp . 365
regerror . 370
regexec . 367
regfree . 369
register_printf_function 480
remainder . 263
remainderf . 263
remainderl . 263
rewind . 502

rindex . 119
rint . 261
rintf . 261
rintl . 261
round . 261
roundf . 261
roundl . 261
rpmatch . 200

S
sbrk . 74
scalb . 259
scalbf . 259
scalbl . 259
scalbln . 260
scalblnf . 260
scalblnl . 260
scalbn . 260
scalbnf . 260
scalbnl . 260
scanf . 495
seed48 . 239
seed48_r . 241
setbuf . 508
setbuffer . 508
setenv . 420
setitimer . 311
setlinebuf . 508
setlocale . 183
setstate . 236
setstate_r . 237
settimeofday . 284
setvbuf . 507
signbit . 263
significand . 260
significandf . 260
significandl . 260
sin . 204
sincos . 205
sincosf . 205
sincosl . 205
sinf . 204
sinh . 212
sinhf . 212
sinhl . 212
sinl . 204
sleep . 312
snprintf . 472
sprintf . 471
sqrt . 210
sqrtf . 210

626 The GNU C Library: Application Fundamentals

sqrtl . 210
srand . 235
srand48 . 239
srand48_r . 241
srandom . 236
srandom_r . 237
sscanf . 496
stime . 283
stpcpy . 98
stpncpy . 98
strcasecmp . 107
strcasestr . 117
strcat . 100
strchr . 115
strchrnul . 115
strcmp . 106
strcoll . 110
strcpy . 96
strcspn . 118
strdup . 97
strdupa . 99
strerror . 32
strerror_r . 32
strfmon . 197
strfry . 124
strftime . 292
strlen . 91
strncasecmp . 108
strncat . 104
strncmp . 107
strncpy . 96
strndup . 97
strndupa . 100
strnlen . 93
strpbrk . 118
strptime . 298
strrchr . 116
strsep . 121
strspn . 117
strstr . 116
strtod . 273
strtof . 274
strtoimax . 271
strtok . 119
strtok_r . 121
strtol . 268
strtold . 274
strtoll . 270
strtoq . 270
strtoul . 269
strtoull . 270
strtoumax . 271

strtouq . 271
strverscmp . 108
strxfrm . 110
swprintf . 471
swscanf . 496
syscall . 423

T
tan . 204
tanf . 204
tanh . 212
tanhf . 212
tanhl . 212
tanl . 204
tdelete . 352
tdestroy . 352
textdomain . 329
tfind . 352
tgamma . 215
tgammaf . 215
tgammal . 215
time . 283
timegm . 288
timelocal . 288
times . 281
toascii . 82
tolower . 81
toupper . 81
towctrans . 87
towlower . 87
towupper . 87
trunc . 260
truncf . 261
truncl . 261
tsearch . 351
twalk . 353
tzset . 308

U
ungetc . 458
ungetwc . 459
unsetenv . 420

Function and Macro Index 627

V
valloc . 47
vasprintf . 475
verr . 37
verrx . 37
vfprintf . 475
vfscanf . 496
vfwprintf . 475
vfwscanf . 496
vprintf . 475
vscanf . 496
vsnprintf . 475
vsprintf . 475
vsscanf . 497
vswprintf . 475
vswscanf . 497
vwarn . 36
vwarnx . 37
vwprintf . 475
vwscanf . 496

W
warn . 36
warnx . 37
wcpcpy . 98
wcpncpy . 99
wcrtomb . 144
wcscasecmp . 107
wcscat . 101
wcschr . 115
wcschrnul . 115
wcscmp . 107
wcscoll . 110
wcscpy . 96
wcscspn . 118
wcsdup . 97
wcsftime . 297
wcslen . 93
wcsncasecmp . 108
wcsncat . 104
wcsncmp . 107
wcsncpy . 97
wcsnlen . 93
wcsnrtombs . 150

wcspbrk . 118
wcsrchr . 116
wcsrtombs . 148
wcsspn . 117
wcsstr . 116
wcstod . 274
wcstof . 274
wcstoimax . 271
wcstok . 120
wcstol . 269
wcstold . 274
wcstoll . 270
wcstombs . 155
wcstoq . 270
wcstoul . 270
wcstoull . 271
wcstoumax . 271
wcstouq . 271
wcswcs . 116
wcsxfrm . 111
wctob . 141
wctomb . 153
wctrans . 87
wctype . 82
wmemchr . 114
wmemcmp . 106
wmemcpy . 94
wmemmove . 95
wmempcpy . 95
wmemset . 96
wordexp . 372
wordfree . 373
wprintf . 470
wscanf . 495

Y
y0 . 215
y0f . 215
y0l . 215
y1 . 215
y1f . 216
y1l . 216
yn . 216
ynf . 216
ynl . 216

628 The GNU C Library: Application Fundamentals

Variable and Constant Macro Index 629

Variable and Constant Macro Index

(
(*__gconv_end_fct) 175
(*__gconv_fct) . 175
(*__gconv_init_fct) 172

__free_hook . 51
__malloc_hook . 50
__malloc_initialize_hook 51
__memalign_hook . 51
__realloc_hook . 50
_BSD_SOURCE . 9
_Complex_I . 267
_FILE_OFFSET_BITS 10
_GNU_SOURCE . 11
_IOFBF . 507
_IOLBF . 507
_IONBF . 507
_ISOC99_SOURCE . 11
_LARGEFILE_SOURCE 10
_LARGEFILE64_SOURCE 10
_POSIX_C_SOURCE . 9
_POSIX_SOURCE . 9
_REENTRANT . 11
_SVID_SOURCE . 10
_THREAD_SAFE . 11
_XOPEN_SOURCE . 10
_XOPEN_SOURCE_EXTENDED 10

A
ABDAY_1 . 191
ABDAY_2 . 191
ABDAY_3 . 191
ABDAY_4 . 191
ABDAY_5 . 191
ABDAY_6 . 191
ABDAY_7 . 191
ABMON_1 . 191
ABMON_10 . 192
ABMON_11 . 192
ABMON_12 . 192
ABMON_2 . 192
ABMON_3 . 192
ABMON_4 . 192
ABMON_5 . 192
ABMON_6 . 192

ABMON_7 . 192
ABMON_8 . 192
ABMON_9 . 192
ALT_DIGITS . 193
AM_STR . 192
argp_err_exit_status 390
ARGP_ERR_UNKNOWN 395
ARGP_HELP_BUG_ADDR 404
ARGP_HELP_DOC . 404
ARGP_HELP_EXIT_ERR 404
ARGP_HELP_EXIT_OK 405
ARGP_HELP_LONG . 404
ARGP_HELP_LONG_ONLY 404
ARGP_HELP_POST_DOC 404
ARGP_HELP_PRE_DOC 404
ARGP_HELP_SEE . 404
ARGP_HELP_SHORT_USAGE 404
ARGP_HELP_STD_ERR 405
ARGP_HELP_STD_HELP 405
ARGP_HELP_STD_USAGE 405
ARGP_HELP_USAGE . 404
ARGP_IN_ORDER . 402
ARGP_KEY_ARG . 395
ARGP_KEY_ARGS . 396
ARGP_KEY_END . 396
ARGP_KEY_ERROR . 397
ARGP_KEY_FINI . 397
ARGP_KEY_HELP_ARGS_DOC 403
ARGP_KEY_HELP_DUP_ARGS_NOTE . . . 403
ARGP_KEY_HELP_EXTRA 403
ARGP_KEY_HELP_HEADER 403
ARGP_KEY_HELP_POST_DOC 403
ARGP_KEY_HELP_PRE_DOC 403
ARGP_KEY_INIT . 396
ARGP_KEY_NO_ARGS 396
ARGP_KEY_SUCCESS 397
ARGP_LONG_ONLY . 402
ARGP_NO_ARGS . 402
ARGP_NO_ERRS . 401
ARGP_NO_EXIT . 402
ARGP_NO_HELP . 402
ARGP_PARSE_ARGV0 401
argp_program_bug_address 390
argp_program_version 390
argp_program_version_hook 390
ARGP_SILENT . 402

630 The GNU C Library: Application Fundamentals

B
BUFSIZ . 507

C
CLK_TCK . 280
CLOCKS_PER_SEC . 280
CODESET . 191
CRNCYSTR . 193
CURRENCY_SYMBOL . 193

D
D_FMT . 192
D_T_FMT . 192
DAY_1 . 191
DAY_2 . 191
DAY_3 . 191
DAY_4 . 191
DAY_5 . 191
DAY_6 . 191
DAY_7 . 191
daylight . 309
DECIMAL_POINT . 195

E
E2BIG . 19
EACCES . 20
EADDRINUSE . 24
EADDRNOTAVAIL . 24
EADV . 30
EAFNOSUPPORT . 24
EAGAIN . 22
EALREADY . 23
EAUTH . 27
EBACKGROUND . 27
EBADE . 29
EBADF . 19
EBADFD . 30
EBADMSG . 28
EBADR . 30
EBADRPC . 26
EBADRQC . 30
EBADSLT . 30
EBFONT . 30
EBUSY . 20
ECANCELED . 29
ECHILD . 19
ECHRNG . 29
ECOMM . 30
ECONNABORTED . 24

ECONNREFUSED . 25
ECONNRESET . 24
ED . 28
EDEADLK . 19
EDEADLOCK . 30
EDESTADDRREQ . 25
EDIED . 28
EDOM . 22
EDOTDOT . 30
EDQUOT . 26
EEXIST . 20
EFAULT . 20
EFBIG . 21
EFTYPE . 27
EGRATUITOUS . 28
EGREGIOUS . 28
EHOSTDOWN . 25
EHOSTUNREACH . 25
EIDRM . 28
EIEIO . 28
EILSEQ . 27
EINPROGRESS . 23
EINTR . 19
EINVAL . 21
EIO . 19
EISCONN . 25
EISDIR . 20
EISNAM . 31
EL2HLT . 29
EL2NSYNC . 29
EL3HLT . 29
EL3RST . 29
ELIBACC . 31
ELIBBAD . 31
ELIBEXEC . 31
ELIBMAX . 31
ELIBSCN . 31
ELNRNG . 29
ELOOP . 25
EMEDIUMTYPE . 31
EMFILE . 21
EMLINK . 22
EMSGSIZE . 23
EMULTIHOP . 28
ENAMETOOLONG . 25
ENAVAIL . 31
ENEEDAUTH . 27
ENETDOWN . 24
ENETRESET . 24
ENETUNREACH . 24
ENFILE . 21
ENOANO . 30

Variable and Constant Macro Index 631

ENOBUFS . 24
ENOCSI . 29
ENODATA . 28
ENODEV . 20
ENOENT . 18
ENOEXEC . 19
ENOLCK . 27
ENOLINK . 28
ENOMEDIUM . 31
ENOMEM . 20
ENOMSG . 28
ENONET . 30
ENOPKG . 30
ENOPROTOOPT . 23
ENOSPC . 21
ENOSR . 28
ENOSTR . 28
ENOSYS . 27
ENOTBLK . 20
ENOTCONN . 25
ENOTDIR . 20
ENOTEMPTY . 26
ENOTNAM . 31
ENOTSOCK . 23
ENOTSUP . 27
ENOTTY . 21
ENOTUNIQ . 30
environ . 421
ENXIO . 19
EOF . 497
EOPNOTSUPP . 24
EOVERFLOW . 29
EPERM . 18
EPFNOSUPPORT . 24
EPIPE . 22
EPROCLIM . 26
EPROCUNAVAIL . 26
EPROGMISMATCH . 26
EPROGUNAVAIL . 26
EPROTO . 29
EPROTONOSUPPORT . 23
EPROTOTYPE . 23
ERA . 193
ERA_D_FMT . 193
ERA_D_T_FMT . 193
ERA_T_FMT . 193
ERA_YEAR . 193
ERANGE . 22
EREMCHG . 31
EREMOTE . 26
EREMOTEIO . 31
ERESTART . 29

EROFS . 21
ERPCMISMATCH . 26
errno . 17
error_message_count 35
error_one_per_line 35
error_print_progname 35
ESHUTDOWN . 25
ESOCKTNOSUPPORT . 23
ESPIPE . 21
ESRCH . 18
ESRMNT . 30
ESTALE . 26
ESTRPIPE . 31
ETIME . 29
ETIMEDOUT . 25
ETOOMANYREFS . 25
ETXTBSY . 21
EUCLEAN . 31
EUNATCH . 29
EUSERS . 26
EWOULDBLOCK . 23
EXDEV . 20
EXFULL . 30
EXIT_FAILURE . 426
EXIT_SUCCESS . 426

F
FE_DFL_ENV . 256
FE_DIVBYZERO . 252
FE_DOWNWARD . 255
FE_INEXACT . 252
FE_INVALID . 252
FE_NOMASK_ENV . 257
FE_OVERFLOW . 252
FE_TONEAREST . 255
FE_TOWARDZERO . 255
FE_UNDERFLOW . 252
FE_UPWARD . 255
FOPEN_MAX . 442
FP_FAST_FMA . 266
FP_ILOGB0 . 209
FP_ILOGBNAN . 209
FP_INFINITE . 247
FP_NAN . 247
FP_NORMAL . 247
FP_SUBNORMAL . 247
FP_ZERO . 247
FRAC_DIGITS . 194
FSETLOCKING_BYCALLER 448
FSETLOCKING_INTERNAL 448
FSETLOCKING_QUERY 448

632 The GNU C Library: Application Fundamentals

G
getdate_err . 303
GLOB_ABORTED . 360
GLOB_ALTDIRFUNC . 362
GLOB_APPEND . 361
GLOB_BRACE . 363
GLOB_DOOFFS . 361
GLOB_ERR . 361
GLOB_MAGCHAR . 362
GLOB_MARK . 361
GLOB_NOCHECK . 362
GLOB_NOESCAPE . 362
GLOB_NOMAGIC . 363
GLOB_NOMATCH . 360
GLOB_NOSORT . 362
GLOB_NOSPACE . 360
GLOB_ONLYDIR . 364
GLOB_PERIOD . 362
GLOB_TILDE . 363
GLOB_TILDE_CHECK 364
GROUPING . 195

H
HUGE_VAL . 254
HUGE_VALF . 254
HUGE_VALL . 254

I
I . 267
INFINITY . 251
INT_CURR_SYMBOL . 193
INT_FRAC_DIGITS . 194
INT_N_CS_PRECEDES 195
INT_N_SEP_BY_SPACE 195
INT_N_SIGN_POSN . 195
INT_P_CS_PRECEDES 195
INT_P_SEP_BY_SPACE 195
INT_P_SIGN_POSN . 195
ITIMER_PROF . 311
ITIMER_REAL . 311
ITIMER_VIRTUAL . 311

L
L_INCR . 502
L_SET . 502
L_XTND . 502
LANG . 183
LANGUAGE . 183
LC_ALL . 183

LC_COLLATE . 182
LC_CTYPE . 182
LC_MESSAGES . 183
LC_MONETARY . 182
LC_NUMERIC . 182
LC_TIME . 183

M
M_1_PI . 203
M_2_PI . 203
M_2_SQRTPI . 203
M_E . 203
M_LN10 . 203
M_LN2 . 203
M_LOG10E . 203
M_LOG2E . 203
M_PI . 203
M_PI_2 . 203
M_PI_4 . 203
M_SQRT1_2 . 204
M_SQRT2 . 203
MB_CUR_MAX . 138
MB_LEN_MAX . 138
MM_APPL . 515
MM_CONSOLE . 515
MM_ERROR . 516
MM_FIRM . 515
MM_HALT . 516
MM_HARD . 515
MM_INFO . 516
MM_NOSEV . 516
MM_NRECOV . 515
MM_NULLACT . 516
MM_NULLLBL . 516
MM_NULLMC . 516
MM_NULLSEV . 516
MM_NULLTAG . 516
MM_NULLTXT . 516
MM_OPSYS . 515
MM_PRINT . 515
MM_RECOVER . 515
MM_SOFT . 515
MM_UTIL . 515
MM_WARNING . 516
MON_1 . 192
MON_10 . 192
MON_11 . 192
MON_12 . 192
MON_2 . 192
MON_3 . 192
MON_4 . 192

Variable and Constant Macro Index 633

MON_5 . 192
MON_6 . 192
MON_7 . 192
MON_8 . 192
MON_9 . 192
MON_DECIMAL_POINT 194
MON_GROUPING . 194
MON_THOUSANDS_SEP 194

N
N_CS_PRECEDES . 194
N_SEP_BY_SPACE . 194
N_SIGN_POSN . 194
NAN . 251
NEGATIVE_SIGN . 194
NL_ARGMAX . 462
NOEXPR . 195
NOSTR . 196

O
obstack_alloc_failed_handler . . 61
optarg . 382
opterr . 381
optind . 381
OPTION_ALIAS . 393
OPTION_ARG_OPTIONAL 393
OPTION_DOC . 393
OPTION_HIDDEN . 393
OPTION_NO_USAGE . 394
optopt . 381

P
P_CS_PRECEDES . 194
P_SEP_BY_SPACE . 194
P_SIGN_POSN . 194
PA_CHAR . 477
PA_DOUBLE . 477
PA_FLAG_LONG . 478
PA_FLAG_LONG_DOUBLE 478
PA_FLAG_LONG_LONG 478
PA_FLAG_MASK . 477
PA_FLAG_PTR . 478
PA_FLAG_SHORT . 478

PA_FLOAT . 477
PA_INT . 477
PA_LAST . 477
PA_POINTER . 477
PA_STRING . 477
PI . 204
PM_STR . 192
POSITIVE_SIGN . 194
program_invocation_name 33
program_invocation_short_name

. 33

R
RADIXCHAR . 195
RAND_MAX . 235

S
SEEK_CUR . 502
SEEK_END . 502
SEEK_SET . 502
signgam . 214
stderr . 440
stdin . 439
stdout . 439

T
T_FMT . 192
T_FMT_AMPM . 192
THOUSANDS_SEP . 195
THOUSEP . 195
timezone . 309
tzname . 308

W
WCHAR_MAX . 135
WCHAR_MIN . 134
WEOF . 135, 497

Y
YESEXPR . 195
YESSTR . 196

634 The GNU C Library: Application Fundamentals

Program and File Index 635

Program and File Index

-
-lbsd-compat . 9

/
/etc/localtime . 307
/share/lib/zoneinfo 308

A
argp.h . 389
argz.h . 127

B
bsd-compat . 9

C
complex.h 203, 266, 267
ctype.h . 79, 81

D
dirent.h . 8

E
envz.h . 130
errno.h . 17, 18
execinfo.h . 435

F
fcntl.h . 8
fnmatch.h . 355

G
gcc . 2
gconv.h . 168
grp.h . 8

I
iconv.h . 159, 160

K
ksh . 356

L
langinfo.h . 191
limits.h . 8, 138
locale . 184
locale.h . 183, 186
localtime . 307

M
malloc.h . 47, 50, 53
math.h 203, 247, 258, 259, 260
mcheck.h . 48

O
obstack.h . 60

P
printf.h . 480, 481
pwd.h . 8

S
signal.h . 8
stdint.h . 243
stdio.h . . 439, 440, 450, 453, 460, 470, 474,

495, 500, 503, 506, 509, 512
stdlib.h . . . 42, 44, 45, 46, 47, 71, 138, 154,

235, 237, 244, 258, 268, 273, 344, 419,
426, 427

string.h 91, 93, 105, 109, 114, 119, 124
sys/stat.h . 8
sys/time.h . 283, 310
sys/times.h . 8, 281
sys/timex.h . 288

T
termios.h . 8
time.h 280, 282, 291, 306

636 The GNU C Library: Application Fundamentals

U
unistd.h . 310, 381, 428

W

wchar.h . . . 93, 109, 134, 135, 139, 140, 141,
142, 143, 145, 147, 149, 268, 450, 453

wctype.h 82, 83, 84, 85, 87, 88

Z
zoneinfo . 308

	Introduction
	Getting Started
	Standards and Portability
	iso C
	posix (The Portable Operating System Interface)
	Berkeley Unix
	svid (The System V Interface Description)
	xpg (The X/Open Portability Guide)

	Using the Library
	Header Files
	Macro Definitions of Functions
	Reserved Names
	Feature-Test Macros

	Road Map to the Manual

	Error Reporting
	Checking for Errors
	Error Codes
	Error Messages

	Virtual Memory Allocation and Paging
	Process Memory Concepts
	Allocating Storage for Program Data
	Memory Allocation in C Programs
	Dynamic Memory Allocation

	Unconstrained Allocation
	Basic Memory Allocation
	Examples of malloc
	Freeing Memory Allocated with malloc
	Changing the Size of a Block
	Allocating Cleared Space
	Efficiency Considerations for malloc
	Allocating Aligned Memory Blocks
	malloc Tunable Parameters
	Heap Consistency Checking
	Memory Allocation Hooks
	Statistics for Memory Allocation with malloc
	Summary of malloc-Related Functions

	Allocation Debugging
	How to Install the Tracing Functionality
	Example Program Excerpts
	Some More or Less Clever Ideas
	Interpreting the Traces

	Obstacks
	Creating Obstacks
	Preparing for Using Obstacks
	Allocation in an Obstack
	Freeing Objects in an Obstack
	Obstack Functions and Macros
	Growing Objects
	Extra-Fast Growing Objects
	Status of an Obstack
	Alignment of Data in Obstacks
	Obstack Chunks
	Summary of Obstack Functions

	Automatic Storage with Variable Size
	alloca Example
	Advantages of alloca
	Disadvantages of alloca
	gnu C Variable-Size Arrays

	Resizing the Data Segment
	Locking Pages
	Why Lock Pages?
	Locked-Memory Details
	Functions to Lock and Unlock Pages

	Character Handling
	Classification of Characters
	Case Conversion
	Character Class Determination for Wide Characters
	Notes on Using the Wide-Character Classes
	Mapping of Wide Characters

	String and Array Utilities
	Representation of Strings
	String and Array Conventions
	String Length
	Copying and Concatenation
	String/Array Comparison
	Collation Functions
	Search Functions
	Compatibility String Search Functions

	Finding Tokens in a String
	strfry
	Trivial Encryption
	Encode Binary Data
	Argz and Envz Vectors
	Argz Functions
	Envz Functions

	Character-Set Handling
	Introduction to Extended Characters
	Overview About Character-Handling Functions
	Restartable Multibyte Conversion Functions
	Selecting the Conversion and Its Properties
	Representing the State of the Conversion
	Converting Single Characters
	Converting Multibyte- and Wide-Character Strings
	A Complete Multibyte Conversion Example

	Nonreentrant Conversion Function
	Nonreentrant Conversion of Single Characters
	Nonreentrant Conversion of Strings
	States in Nonreentrant Functions

	Generic Charset Conversion
	Generic Character-Set Conversion Interface
	A Complete iconv Example
	Some Details About Other iconv Implementations
	The iconv Implementation in the gnu C Library
	Format of gconv-modules Files
	Finding the Conversion Path in iconv
	iconv Module Data Structures
	iconv Module Interfaces

	Locales and Internationalization
	What Effects a Locale Has
	Choosing a Locale
	Categories of Activities That Locales Affect
	How Programs Set the Locale
	Standard Locales
	Accessing Locale Information
	localeconv: ``It is portable, but ...{}''
	Generic Numeric Formatting Parameters
	Printing the Currency Symbol
	Printing the Sign of a Monetary Amount

	Pinpoint Access to Locale Data

	A Dedicated Function to Format Numbers
	Yes-or-No Questions

	Mathematics
	Predefined Mathematical Constants
	Trigonometric Functions
	Inverse Trigonometric Functions
	Exponentiation and Logarithms
	Hyperbolic Functions
	Special Functions
	Known Maximum Errors in Math Functions
	Pseudorandom Numbers
	ISO C Random-Number Functions
	BSD Random-Number Functions
	SVID Random-Number Functions

	Is Fast Code or Small Code Preferred?

	Arithmetic Functions
	Integers
	Integer Division
	Floating-Point Numbers
	Floating-Point Number Classification Functions
	Errors in Floating-Point Calculations
	FP Exceptions
	Infinity and NaN
	Examining the FPU Status Word
	Error Reporting by Mathematical Functions

	Rounding Modes
	Floating-Point Control Functions
	Arithmetic Functions
	Absolute Value
	Normalization Functions
	Rounding Functions
	Remainder Functions
	Setting and Modifying Single Bits of FP Values
	Floating-Point Comparison Functions
	Miscellaneous FP Arithmetic Functions

	Complex Numbers
	Projections, Conjugates and Decomposing of Complex Numbers
	Parsing of Numbers
	Parsing of Integers
	Parsing of Floats

	Old-fashioned System V Number-to-String Functions

	Date and Time
	Time Basics
	Elapsed Time
	Processor and cpu Time
	cpu Time Inquiry
	Processor Time Inquiry

	Calendar Time
	Simple Calendar Time
	High-Resolution Calendar
	Broken-Down Time
	High-Accuracy Clock
	Formatting Calendar Time
	Convert Textual Time and Date Information Back
	Interpret String According to Given Format
	A More User-Friendly Way to Parse Times and Dates

	Specifying the Time Zone with TZ
	Functions and Variables for Time Zones
	Time Functions Example

	Setting an Alarm
	Sleeping

	Message Translation
	X/Open Message Catalog Handling
	The catgets Function Family
	Format of the Message Catalog Files
	Generate Message Catalogs Files
	How to Use the catgets Interface
	Not Using Symbolic Names
	Using Symbolic Names
	Using Symbolic Version Numbers

	The Uniforum Approach to Message Translation
	The gettext Family of Functions
	What Has to Be Done to Translate a Message?
	How to Determine Which Catalog to Use
	Additional Functions for More Complicated Situations
	How to Specify the Output Character Set That gettext Uses
	How to Use gettext in gui Programs
	User Influence on gettext

	Programs to Handle Message Catalogs for gettext

	Searching and Sorting
	Defining the Comparison Function
	Array Search Function
	Array Sort Function
	Searching and Sorting Example
	The hsearch Function
	The tsearch Function

	Pattern Matching
	Wildcard Matching
	Globbing
	Calling glob
	Flags for Globbing
	More Flags for Globbing

	Regular Expression Matching
	posix Regular Expression Compilation
	Flags for posix Regular Expressions
	Matching a Compiled posix Regular Expression
	Match Results with Subexpressions
	Complications in Subexpression Matching
	posix Regexp Matching Clean-Up

	Shell-Style Word Expansion
	The Stages of Word Expansion
	Calling wordexp
	Flags for Word Expansion
	wordexp Example
	Details of Tilde Expansion
	Details of Variable Substitution

	The Basic Program/System Interface
	Program Arguments
	Program Argument Syntax Conventions
	Parsing Program Arguments

	Parsing Program Options Using getopt
	Using the getopt Function
	Example of Parsing Arguments with getopt
	Parsing Long Options with getopt_long
	Example of Parsing Long Options with getopt_long

	Parsing Program Options with Argp
	The argp_parse Function
	Argp Global Variables
	Specifying Argp Parsers
	Specifying Options in an Argp Parser
	Flags for Argp Options

	Argp Parser Functions
	Special Keys for Argp Parser Functions
	Functions for Use in Argp Parsers
	Argp Parsing State

	Combining Multiple Argp Parsers
	Flags for argp_parse
	Customizing Argp Help Output
	Special Keys for Argp Help Filter Functions

	The argp_help Function
	Flags for the argp_help Function
	Argp Examples
	A Minimal Program Using Argp
	A Program Using Argp with Only Default Options
	A Program Using Argp with User Options
	A Program Using Multiple Combined Argp Parsers

	Argp User Customization
	Parsing of Suboptions

	Parsing of Suboptions Example

	Environment Variables
	Environment Access
	Standard Environment Variables

	System Calls
	Program Termination
	Normal Termination
	Exit Status
	Clean-Ups on Exit
	Aborting a Program
	Termination Internals

	Input/Output Overview
	Input/Output Concepts
	Streams and File Descriptors
	File Position

	File Names
	Directories
	File-Name Resolution
	File-Name Errors
	Portability of File Names

	Debugging Support
	Backtraces

	Input/Output on Streams
	Streams
	Standard Streams
	Opening Streams
	Closing Streams
	Streams and Threads
	Streams in Internationalized Applications
	Simple Output by Characters or Lines
	Character Input
	Line-Oriented Input
	Unreading
	What Unreading Means
	Using ungetc to Do Unreading

	Block Input/Output
	Formatted Output
	Formatted Output Basics
	Output Conversion Syntax
	Table of Output Conversions
	Integer Conversions
	Floating-Point Conversions
	Other Output Conversions
	Formatted Output Functions
	Dynamically Allocating Formatted Output
	Variable Arguments Output Functions
	Parsing a Template String
	Example of Parsing a Template String

	Customizing printf
	Registering New Conversions
	Conversion Specifier Options
	Defining the Output Handler
	printf Extension Example
	Predefined printf Handlers

	Formatted Input
	Formatted Input Basics
	Input Conversion Syntax
	Table of Input Conversions
	Numeric Input Conversions
	String Input Conversions
	Dynamically Allocating String Conversions
	Other Input Conversions
	Formatted Input Functions
	Variable Arguments Input Functions

	End-of-File and Errors
	Recovering from Errors
	Text and Binary Streams
	File Positioning
	Portable File-Position Functions
	Stream Buffering
	Buffering Concepts
	Flushing Buffers
	Controlling Which Kind of Buffering

	Other Kinds of Streams
	String Streams
	Obstack Streams
	Programming Your Own Custom Streams
	Custom Streams and Cookies
	Custom Stream Hook Functions

	Formatted Messages
	Printing Formatted Messages
	Adding Severity Classes
	How to Use fmtmsg and addseverity

	Summary of Library Facilities
	Contributors to the GNU C Library
	Free Software Needs Free Documentation
	gnu Lesser General Public License
	Preamble
	TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
	How to Apply These Terms to Your New Libraries
	gnu Free Documentation License
	ADDENDUM: How to Use This License for Your Documents
	Concept Index
	Type Index
	Function and Macro Index
	Variable and Constant Macro Index
	Program and File Index

