
The GNU C Library:
System & Network Applications

For GNU C Libraries version 2.3.x

by Sandra Loosemore
with Richard M. Stallman, Roland McGrath,
Andrew Oram, and Ulrich Drepper

This manual documents the GNU C Libraries version 2.3.x.
ISBN 1-882114-24-8, First Printing, March 2004.

Published by:

GNU Press Website: www.gnupress.org
a division of the General: press@gnu.org
Free Software Foundation Orders: sales@gnu.org
51 Franklin St, Fifth Floor Tel: 617-542-5942
Boston, MA 02110-1301 USA Fax: 617-542-2652

Copyright © 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation

Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.2, or any later version
published by the Free Software Foundation; with the Invariant Sections being “Free
Software and Free Manuals”, the “GNU Free Documentation License”," and the
“GNU Lesser General Public License”, with the Front Cover Texts being “A GNU
Manual”, and with the Back Cover Texts as in (a) below. A copy of the license is
included in the section entitled “GNU Free Documentation License”.
(a) The Back Cover Text is: You are free to copy and modify this GNU Manual.
Buying copies from GNU Press supports the FSF in developing GNU and promoting
software freedom.

Cover art by Etienne Suvasa. Cover design by Jonathan Richard. Printed in USA.

i

Short Contents

1 Introduction . 1
2 Low-Level Input/Output . 17
3 File-System Interface . 71
4 Pipes and FIFOs . 119
5 Sockets . 125
6 Low-Level Terminal Interface . 179
7 Processes . 209
8 Job Control . 221
9 System Databases and Name-Service Switch 243
10 Users and Groups . 253
11 System Management . 285
12 System-Configuration Parameters . 303
13 DES Encryption and Password Handling 327
14 Resource Usage and Limitation . 335
15 Syslog . 359
16 Nonlocal Exits . 367
17 Signal Handling . 377
18 POSIX Threads . 429
A C Language Facilities in the Library . 455
B Summary of Library Facilities . 475
C Installing the GNU C Library . 533
D Library Maintenance . 543
E Contributors to the GNU C Library . 551
F Free Software Needs Free Documentation 555
G GNU Lesser General Public License . 557
H GNU Free Documentation License . 567
Concept Index . 575
Type Index . 583
Function and Macro Index . 585
Variable and Constant Macro Index . 591
Program and File Index . 599

ii The GNU C Library: System & Network Applications

iii

Table of Contents

1 Introduction . 1
1.1 Getting Started . 1
1.2 Standards and Portability . 1

1.2.1 ISO C . 2
1.2.2 POSIX (The Portable Operating System Interface) 2
1.2.3 Berkeley Unix . 3
1.2.4 SVID (The System V Interface Description) 3
1.2.5 XPG (The X/Open Portability Guide) 3

1.3 Using the Library . 4
1.3.1 Header Files . 4
1.3.2 Macro Definitions of Functions . 5
1.3.3 Reserved Names . 6
1.3.4 Feature-Test Macros . 8

1.4 Road Map to the Manual . 12

2 Low-Level Input/Output . 17
2.1 Opening and Closing Files . 17
2.2 Input and Output Primitives . 20
2.3 Setting the File Position of a Descriptor . 25
2.4 Descriptors and Streams . 28
2.5 Dangers of Mixing Streams and Descriptors . 29

2.5.1 Linked Channels . 29
2.5.2 Independent Channels . 30
2.5.3 Cleaning Streams . 30

2.6 Fast Scatter-Gather I/O . 31
2.7 Memory-Mapped I/O . 32
2.8 Waiting for Input or Output . 37
2.9 Synchronizing I/O Operations . 40
2.10 Perform I/O Operations in Parallel . 42

2.10.1 Asynchronous Read and Write Operations 45
2.10.2 Getting the Status of AIO Operations 49
2.10.3 Getting into a Consistent State . 50
2.10.4 Cancellation of AIO Operations . 52
2.10.5 How to Optimize the AIO Implementation 53

2.11 Control Operations on Files . 54
2.12 Duplicating Descriptors . 55
2.13 File-Descriptor Flags . 57
2.14 File Status Flags . 59

2.14.1 File-Access Modes . 59
2.14.2 Open-Time Flags . 60
2.14.3 I/O Operating Modes . 62
2.14.4 Getting and Setting File Status Flags 63

iv The GNU C Library: System & Network Applications

2.15 File Locks . 64
2.16 Interrupt-Driven Input . 68
2.17 Generic I/O Control Operations . 69

3 File-System Interface . 71
3.1 Working Directory . 71
3.2 Accessing Directories . 73

3.2.1 Format of a Directory Entry . 73
3.2.2 Opening a Directory Stream . 75
3.2.3 Reading and Closing a Directory Stream 76
3.2.4 Simple Program to List a Directory 77
3.2.5 Random Access in a Directory Stream 78
3.2.6 Scanning the Content of a Directory 79
3.2.7 Simple Program to List a Directory, Mark II 80

3.3 Working with Directory Trees . 81
3.4 Hard Links . 85
3.5 Symbolic Links . 87
3.6 Deleting Files . 90
3.7 Renaming Files . 91
3.8 Creating Directories . 92
3.9 File Attributes . 93

3.9.1 The Meaning of the File Attributes 93
3.9.2 Reading the Attributes of a File . 97
3.9.3 Testing the Type of a File . 99
3.9.4 File Owner . 101
3.9.5 The Mode Bits for Access Permission 102
3.9.6 How Your Access to a File is Decided 104
3.9.7 Assigning File Permissions . 104
3.9.8 Testing Permission to Access a File 106
3.9.9 File Times . 108
3.9.10 File Size . 110

3.10 Making Special Files . 113
3.11 Temporary Files . 114

4 Pipes and FIFOs . 119
4.1 Creating a Pipe . 119
4.2 Pipe to a Subprocess . 121
4.3 FIFO Special Files . 123
4.4 Atomicity of Pipe I/O . 124

v

5 Sockets . 125
5.1 Socket Concepts . 125
5.2 Communication Styles . 126
5.3 Socket Addresses . 127

5.3.1 Address Formats . 128
5.3.2 Setting the Address of a Socket . 129
5.3.3 Reading the Address of a Socket . 130

5.4 Interface Naming . 130
5.5 The Local Namespace . 132

5.5.1 Local-Namespace Concepts . 132
5.5.2 Details of Local Namespace . 132
5.5.3 Example of Local-Namespace Sockets 133

5.6 The Internet Namespace . 134
5.6.1 Internet Socket Address Formats . 135
5.6.2 Host Addresses . 136

5.6.2.1 Internet Host-Addresses 136
5.6.2.2 Host-Address Data Type 138
5.6.2.3 Host-Address Functions 139
5.6.2.4 Host Names . 141

5.6.3 Internet Ports . 144
5.6.4 The Services Database . 145
5.6.5 Byte-Order Conversion . 147
5.6.6 Protocols Database . 147
5.6.7 Internet Socket Example . 149

5.7 Other Namespaces . 150
5.8 Opening and Closing Sockets . 151

5.8.1 Creating a Socket . 151
5.8.2 Closing a Socket . 152
5.8.3 Socket Pairs . 152

5.9 Using Sockets with Connections . 153
5.9.1 Making a Connection . 153
5.9.2 Listening for Connections . 155
5.9.3 Accepting Connections . 155
5.9.4 Who Is Connected to Me? . 157
5.9.5 Transferring Data . 157

5.9.5.1 Sending Data . 157
5.9.5.2 Receiving Data . 158
5.9.5.3 Socket Data Options . 159

5.9.6 Byte-Stream Socket Example . 160
5.9.7 Byte-Stream Connection Server Example 161
5.9.8 Out-of-Band Data . 164

5.10 Datagram Socket Operations . 167
5.10.1 Sending Datagrams . 167
5.10.2 Receiving Datagrams . 168
5.10.3 Datagram Socket Example . 169
5.10.4 Example of Reading Datagrams . 170

vi The GNU C Library: System & Network Applications

5.11 The inetd Daemon . 172
5.11.1 inetd Servers . 172
5.11.2 Configuring inetd . 172

5.12 Socket Options . 173
5.12.1 Socket Option Functions . 173
5.12.2 Socket-Level Options . 174

5.13 Networks Database . 176

6 Low-Level Terminal Interface . 179
6.1 Identifying Terminals . 179
6.2 I/O Queues . 180
6.3 Two Styles of Input: Canonical or Not . 180
6.4 Terminal Modes . 181

6.4.1 Terminal Mode Data Types . 181
6.4.2 Terminal Mode Functions . 182
6.4.3 Setting Terminal Modes Properly . 183
6.4.4 Input Modes . 185
6.4.5 Output Modes . 187
6.4.6 Control Modes . 187
6.4.7 Local Modes . 189
6.4.8 Line Speed . 192
6.4.9 Special Characters . 194

6.4.9.1 Characters for Input Editing 194
6.4.9.2 Characters that Cause Signals 196
6.4.9.3 Special Characters for Flow Control 197
6.4.9.4 Other Special Characters 198

6.4.10 Noncanonical Input . 198
6.5 BSD Terminal Modes . 200
6.6 Line Control Functions . 201
6.7 Noncanonical-Mode Example . 203
6.8 Pseudoterminals . 205

6.8.1 Allocating Pseudoterminals . 205
6.8.2 Opening a Pseudoterminal Pair . 207

7 Processes . 209
7.1 Running a Command . 209
7.2 Process-Creation Concepts . 210
7.3 Process Identification . 210
7.4 Creating a Process . 211
7.5 Executing a File . 212
7.6 Process Completion . 215
7.7 Process-Completion Status . 218
7.8 BSD Process Wait Functions . 218
7.9 Process-Creation Example . 219

vii

8 Job Control . 221
8.1 Concepts of Job Control . 221
8.2 Job Control Is Optional . 222
8.3 Controlling Terminal of a Process . 222
8.4 Access to the Controlling Terminal . 223
8.5 Orphaned Process-Groups . 223
8.6 Implementing a Job-Control Shell . 224

8.6.1 Data Structures for the Shell . 224
8.6.2 Initializing the Shell . 226
8.6.3 Launching Jobs . 228
8.6.4 Foreground and Background . 232
8.6.5 Stopped and Terminated Jobs . 233
8.6.6 Continuing Stopped Jobs . 237
8.6.7 The Missing Pieces . 238

8.7 Functions for Job Control . 238
8.7.1 Identifying the Controlling Terminal 238
8.7.2 Process-Group Functions . 239
8.7.3 Functions for Controlling-Terminal Access 241

9 System Databases and Name-Service Switch 243
9.1 NSS Basics . 243
9.2 The NSS Configuration File . 244

9.2.1 Services in the NSS Configuration File 245
9.2.2 Actions in the NSS Configuration . 245
9.2.3 Notes on the NSS Configuration File 246

9.3 NSS Module Internals . 247
9.3.1 The Naming Scheme of the NSS Modules 247
9.3.2 The Interface of the Function in NSS Modules 248

9.4 Extending NSS . 250
9.4.1 Adding Another Service to NSS . 250
9.4.2 Internals of the NSS Module Functions 251

viii The GNU C Library: System & Network Applications

10 Users and Groups . 253
10.1 User- and Group-IDs . 253
10.2 The Persona of a Process . 253
10.3 Why Change the Persona of a Process? . 254
10.4 How an Application Can Change Persona . 254
10.5 Reading the Persona of a Process . 255
10.6 Setting the User ID . 256
10.7 Setting the Group IDs . 257
10.8 Enabling and Disabling Setuid Access . 260
10.9 Setuid Program Example . 260
10.10 Tips for Writing Setuid Programs . 263
10.11 Identifying Who Is Logged In . 264
10.12 The User-Accounting Database . 265

10.12.1 Manipulating the User-Accounting Database 265
10.12.2 XPG User-Accounting Database Functions 270
10.12.3 Logging In and Out . 273

10.13 User Database . 274
10.13.1 The Data Structure That Describes a User 274
10.13.2 Looking Up One User . 274
10.13.3 Scanning the List of All Users . 275
10.13.4 Writing a User Entry . 276

10.14 Group Database . 277
10.14.1 The Data Structure for a Group 277
10.14.2 Looking Up One Group . 277
10.14.3 Scanning the List of All Groups 278

10.15 User- and Group- Database Example . 279
10.16 Netgroup Database . 281

10.16.1 Netgroup Data . 281
10.16.2 Looking Up One Netgroup . 282
10.16.3 Testing for Netgroup Membership 283

11 System Management . 285
11.1 Host Identification . 285
11.2 Platform-Type Identification . 287
11.3 Controlling and Querying Mounts . 289

11.3.1 Mount Information . 289
11.3.1.1 The ‘fstab’ File . 290
11.3.1.2 The ‘mtab’ File . 292
11.3.1.3 Other (Non-libc) Sources of Mount

Information . 296
11.3.2 Mount, Unmount, Remount . 296

11.4 System Parameters . 300

ix

12 System-Configuration Parameters 303
12.1 General Capacity-Limits . 303
12.2 Overall System Options . 305
12.3 Which Version of POSIX is Supported . 306
12.4 Using sysconf . 306

12.4.1 Definition of sysconf . 307
12.4.2 Constants for sysconf Parameters 307
12.4.3 Examples of sysconf . 316

12.5 Minimum Values for General Capacity-Limits 317
12.6 Limits on File-System Capacity . 318
12.7 Optional Features in File Support . 319
12.8 Minimum Values for File-System Limits . 320
12.9 Using pathconf . 321
12.10 Utility Program Capacity-Limits . 323
12.11 Minimum Values for Utility Limits . 324
12.12 String-Valued Parameters . 324

13 DES Encryption and Password Handling 327
13.1 Legal Problems . 327
13.2 Reading Passwords . 328
13.3 Encrypting Passwords . 329
13.4 DES Encryption . 331

14 Resource Usage and Limitation 335
14.1 Resource Usage . 335
14.2 Limiting Resource Usage . 338
14.3 Process CPU Priority and Scheduling . 342

14.3.1 Absolute Priority . 343
14.3.1.1 Using Absolute Priority 344

14.3.2 Real-Time Scheduling . 345
14.3.3 Basic Scheduling Functions . 346
14.3.4 Traditional Scheduling . 349

14.3.4.1 Introduction to Traditional Scheduling 349
14.3.4.2 Functions for Traditional Scheduling 350

14.3.5 Limiting Execution to Certain CPUs 352
14.4 Querying Memory-Available Resources . 354

14.4.1 Overview of Traditional Unix Memory-Handling . . . 354
14.4.2 How to Get Information About the Memory Subsystem?

. 355
14.5 Learn About the Processors Available . 356

x The GNU C Library: System & Network Applications

15 Syslog . 359
15.1 Overview of Syslog . 359
15.2 Submitting Syslog Messages . 360

15.2.1 openlog . 360
15.2.2 syslog, vsyslog . 362
15.2.3 closelog . 365
15.2.4 setlogmask . 365
15.2.5 Syslog Example . 366

16 Nonlocal Exits . 367
16.1 Introduction to Nonlocal Exits . 367
16.2 Details of Nonlocal Exits . 369
16.3 Nonlocal Exits and Signals . 370
16.4 Complete Context Control . 370

17 Signal Handling . 377
17.1 Basic Concepts of Signals . 377

17.1.1 Some Kinds of Signals . 377
17.1.2 Concepts of Signal Generation . 378
17.1.3 How Signals Are Delivered . 378

17.2 Standard Signals . 379
17.2.1 Program-Error Signals . 379
17.2.2 Termination Signals . 382
17.2.3 Alarm Signals . 384
17.2.4 Asynchronous-I/O Signals . 384
17.2.5 Job Control Signals . 385
17.2.6 Operation-Error Signals . 387
17.2.7 Miscellaneous Signals . 387
17.2.8 Signal Messages . 388

17.3 Specifying Signal Actions . 389
17.3.1 Basic Signal-Handling . 389
17.3.2 Advanced Signal-Handling . 392
17.3.3 Interaction of signal and sigaction 393
17.3.4 sigaction Function Example 393
17.3.5 Flags for sigaction . 395
17.3.6 Initial Signal Actions . 396

17.4 Defining Signal-Handlers . 396
17.4.1 Signal Handlers That Return . 397
17.4.2 Handlers That Terminate the Process 398
17.4.3 Nonlocal Control-Transfer in Handlers 399
17.4.4 Signals Arriving While a Handler Runs 400
17.4.5 Signals Close Together Merge into One 401
17.4.6 Signal Handling and Nonreentrant Functions 404
17.4.7 Atomic Data-Access and Signal-Handling 406

17.4.7.1 Problems with Nonatomic Access 406

xi

17.4.7.2 Atomic Types . 407
17.4.7.3 Atomic Usage-Patterns 407

17.5 Primitives Interrupted by Signals . 408
17.6 Generating Signals . 409

17.6.1 Signaling Yourself . 409
17.6.2 Signaling Another Process . 410
17.6.3 Permission for Using kill . 411
17.6.4 Using kill for Communication 412

17.7 Blocking Signals . 414
17.7.1 Why Blocking Signals Is Useful 414
17.7.2 Signal Sets . 414
17.7.3 Process Signal-Mask . 416
17.7.4 Blocking to Test for Delivery of a Signal 417
17.7.5 Blocking Signals for a Handler . 418
17.7.6 Checking for Pending Signals . 419
17.7.7 Remembering a Signal to Act on Later 420

17.8 Waiting for a Signal . 421
17.8.1 Using pause . 421
17.8.2 Problems with pause . 422
17.8.3 Using sigsuspend . 423

17.9 Using a Separate Signal-Stack . 424
17.10 BSD Signal-Handling . 426

17.10.1 BSD Function to Establish a Handler 426
17.10.2 BSD Functions for Blocking Signals 427

18 POSIX Threads . 429
18.1 Basic Thread Operations . 429
18.2 Thread Attributessection Thread Attributes 430
18.3 Cancellation . 433
18.4 Clean-Up Handlers . 435
18.5 Mutexes . 437
18.6 Condition Variables . 441
18.7 POSIX Semaphores . 444
18.8 Thread-Specific Data . 445
18.9 Threads and Signal-Handling . 447
18.10 Threads and Fork . 448
18.11 Streams and Fork . 450
18.12 Miscellaneous Thread Functions . 451

xii The GNU C Library: System & Network Applications

Appendix A C Language Facilities in the Library 455
A.1 Explicitly Checking Internal Consistency . 455
A.2 Variadic Functions . 456

A.2.1 Why Variadic Functions Are Used 457
A.2.2 How Variadic Functions Are Defined and Used 457

A.2.2.1 Syntax for Variable Arguments 458
A.2.2.2 Receiving the Argument Values 458
A.2.2.3 How Many Arguments Were Supplied 459
A.2.2.4 Calling Variadic Functions 460
A.2.2.5 Argument-Access Macros 460

A.2.3 Example of a Variadic Function . 462
A.2.3.1 Old-Style Variadic Functions 462

A.3 Null-Pointer Constant . 463
A.4 Important Data-Types . 464
A.5 Data-Type Measurements . 464

A.5.1 Computing the Width of an Integer Data Type 465
A.5.2 Range of an Integer Type . 465
A.5.3 Floating-Type Macros . 467

A.5.3.1 Floating-Point Representation Concepts . . . 467
A.5.3.2 Floating-Point Parameters 468
A.5.3.3 IEEE Floating-Point . 472

A.5.4 Structure Field Offset Measurement 472

Appendix B Summary of Library Facilities 475

Appendix C Installing the GNU C Library 533
C.1 Configuring and Compiling GNU libc . 533
C.2 Installing the C Library . 536
C.3 Recommended Tools for Compilation . 538
C.4 Supported Configurations . 539
C.5 Specific Advice for GNU/Linux Systems . 540
C.6 Reporting Bugs . 541

Appendix D Library Maintenance 543
D.1 Adding New Functions . 543
D.2 Porting the GNU C Library . 544

D.2.1 Layout of the ‘sysdeps’ Directory Hierarchy 547
D.2.2 Porting the GNU C Library to Unix Systems 549

Appendix E Contributors to the GNU C Library 551

Appendix F Free Software Needs Free Documentation
. 555

xiii

Appendix G GNU Lesser General Public License 557
G.0.1 Preamble . 557
G.0.2 TERMS AND CONDITIONS FOR COPYING,

DISTRIBUTION AND MODIFICATION 559
G.0.3 How to Apply These Terms to Your New Libraries . . 566

Appendix H GNU Free Documentation License 567
H.0.1 ADDENDUM: How to Use This License for Your

Documents . 573

Concept Index . 575

Type Index . 583

Function and Macro Index . 585

Variable and Constant Macro Index 591

Program and File Index . 599

xiv The GNU C Library: System & Network Applications

The GNU C Library: System and Network Applications

Chapter 1: Introduction 1

1 Introduction
The C language provides no built-in facilities for performing such common op-

erations as input/output, memory management, string manipulation and the like.
Instead, these facilities are defined in a standard library, which you compile and
link with your programs.

The GNU C Library, described in this document, defines all of the library func-
tions that are specified by the ISO C standard, as well as additional features specific
to POSIX and other derivatives of the Unix operating system, and extensions spe-
cific to the GNU system.

The purpose of this manual is to tell you how to use the facilities of the GNU
library. We have mentioned which features belong to which standards to help you
identify things that are potentially nonportable. But the emphasis in this manual is
not on strict portability.

1.1 Getting Started
This manual is written with the assumption that you are at least somewhat fa-

miliar with the C programming language and basic programming concepts. Specif-
ically, familiarity with ISO standard C (see Section 1.2.1 [ISO C], page 2), rather
than “traditional” pre-ISO C dialects, is assumed.

The GNU C Library includes several header files, each of which provides def-
initions and declarations for a group of related facilities; this information is used
by the C compiler when processing your program. For example, the header file
‘stdio.h’ declares facilities for performing input and output, and the header file
‘string.h’ declares string-processing utilities. The organization of this manual
generally follows the same division as the header files.

If you are reading this manual for the first time, you should read all of the in-
troductory material and skim the remaining chapters. There are a lot of functions
in the GNU C Library and it is not realistic to expect that you will be able to re-
member exactly how to use each and every one of them. It is more important to
become generally familiar with the kinds of facilities that the library provides, so
that when you are writing your programs you can recognize when to make use of
library functions, and where in this manual you can find more specific information
about them.

1.2 Standards and Portability
This section discusses the various standards and other sources that the GNU C

Library is based upon. These sources include the ISO C and POSIX standards, and
the System V and Berkeley Unix implementations.

The primary focus of this manual is to tell you how to make effective use of
the GNU library facilities. But if you are concerned about making your programs
compatible with these standards, or portable to operating systems other than GNU,

2 The GNU C Library: System & Network Applications

this can affect how you use the library. This section gives you an overview of these
standards, so that you will know what they are when they are mentioned in other
parts of the manual.

See Appendix B [Summary of Library Facilities], page 475, for an alphabetical
list of the functions and other symbols provided by the library. This list also states
which standards each function or symbol comes from.

1.2.1 ISO C

The GNU C Library is compatible with the C standard adopted by the Amer-
ican National Standards Institute (ANSI)as American National Standard X3.159-
1989—"ANSI C" and later by the International Standardization Organization (ISO)
as ISO/IEC 9899:1990, "Programming languages—C". In this manual, we refer to
the standard as ISO C since this is the more general standard with respect to rati-
fication. The header files and library facilities that make up the GNU library are a
superset of those specified by the ISO C standard.

If you are concerned about strict adherence to the ISO C standard, you should use
the ‘-ansi’ option when you compile your programs with the GNU C Compiler.
This tells the compiler to define only ISO standard features from the library header
files, unless you explicitly ask for additional features. See Section 1.3.4 [Feature-
Test Macros], page 8, for information on how to do this.

Being able to restrict the library to include only ISO C features is important be-
cause ISO C puts limitations on what names can be defined by the library imple-
mentation, and the GNU extensions don’t fit these limitations. See Section 1.3.3
[Reserved Names], page 6, for more information about these restrictions.

This manual does not attempt to give you complete details on the differences
between ISO C and older dialects. It gives advice on how to write programs to
work portably under multiple C dialects, but does not aim for completeness.

1.2.2 POSIX (The Portable Operating System Interface)

The GNU library is also compatible with the ISO POSIX family of standards,
known more formally as the Portable Operating System Interface for Computer
Environments (ISO/IEC 9945). They were also published as ANSI/IEEE Std 1003.
POSIX is derived mostly from various versions of the Unix operating system.

The library facilities specified by the POSIX standards are a superset of those
required by ISO C; POSIX specifies additional features for ISO C functions, as well
as specifying new additional functions. In general, the additional requirements and
functionality defined by the POSIX standards are aimed at providing lower-level
support for a particular kind of operating system environment, rather than general
programming language support that can run in many diverse operating system en-
vironments.

The GNU C Library implements all of the functions specified in ISO/IEC 9945-
1:1996, the POSIX System Application Program Interface, commonly referred to
as POSIX.1. The primary extensions to the ISO C facilities specified by this stan-

Chapter 1: Introduction 3

dard include file-system interface primitives (see Chapter 3 [File-System Interface],
page 71), device-specific terminal control functions (see Chapter 6 [Low-Level
Terminal Interface], page 179) and process control functions (see Chapter 7 [Pro-
cesses], page 209).

Some facilities from ISO/IEC 9945-2:1993, the POSIX Shell and Utilities standard
(POSIX.2) are also implemented in the GNU library. These include utilities for
dealing with regular expressions and other pattern-matching facilities.1

1.2.3 Berkeley Unix

The GNU C Library defines facilities from some versions of Unix that are not
formally standardized, specifically from the 4.2 BSD, 4.3 BSD and 4.4 BSD Unix
systems (also known as Berkeley Unix) and from SunOS (a popular 4.2 BSD deriva-
tive that includes some Unix System V functionality). These systems support most
of the ISO C and POSIX facilities, and 4.4 BSD and newer releases of SunOS in fact
support them all.

The BSD facilities include symbolic links (see Section 3.5 [Symbolic Links],
page 87), the select function (see Section 2.8 [Waiting for Input or Output],
page 37), the BSD signal functions (see Section 17.10 [BSD Signal-Handling],
page 426) and sockets (see Chapter 5 [Sockets], page 125).

1.2.4 SVID (The System V Interface Description)

The System V Interface Description (SVID) is a document describing the AT&T
Unix System V operating system. It is to some extent a superset of the POSIX
standard.

The GNU C Library defines most of the facilities required by the SVID that are
not also required by the ISO C or POSIX standards, for compatibility with System
V Unix and other Unix systems (such as SunOS) that include these facilities. How-
ever, many of the more obscure and less generally useful facilities required by the
SVID are not included. (In fact, Unix System V itself does not provide them all.)

The supported facilities from System V include the methods for inter-process
communication and shared memory, the hsearch and drand48 families of func-
tions, fmtmsg and several of the mathematical functions.

1.2.5 XPG (The X/Open Portability Guide)

The X/Open Portability Guide2 is a more general standard than POSIX. X/Open
owns the Unix copyright and the XPG specifies the requirements for systems that
are intended to be Unix systems.

1 See Sandra Loosemore et al., “Pattern-Matching” in GNU C Library: Application Fundamen-
tals (Boston: GNU Press, 2004), available online at http:// www.gnu.org/ manual/
manual.html.

2 X/Open Company, X/Open Portability Guide, Issue 4 (Reading, UK: X/Open Company, Ltd.,
1992).

4 The GNU C Library: System & Network Applications

The GNU C Library complies with the X/Open Portability Guide, Issue 4.2, with
all extensions common to XSI (X/Open System Interface) compliant systems and
also all X/Open Unix extensions.

The additions on top of POSIX are mainly derived from functionality available in
System V and BSD systems, though some of the really bad mistakes in System V
systems were corrected. Since fulfilling the XPG standard with the Unix extensions
is a precondition for getting the Unix brand, chances are good that the functionality
is available on commercial systems.

1.3 Using the Library

This section describes some of the practical issues involved in using the GNU C
Library.

1.3.1 Header Files

Libraries for use by C programs really consist of two parts: header files that
define types and macros and declare variables and functions, and the actual library
or archive that contains the definitions of the variables and functions.

(Recall that in C, a declaration merely provides information that a function or
variable exists and gives its type. For a function declaration, information about the
types of its arguments might be provided as well. The purpose of declarations is
to allow the compiler to correctly process references to the declared variables and
functions. A definition, on the other hand, actually allocates storage for a variable
or says what a function does.)

In order to use the facilities in the GNU C Library, you should be sure that your
program source files include the appropriate header files. This is so that the com-
piler has declarations of these facilities available and can correctly process refer-
ences to them. Once your program has been compiled, the linker resolves these
references to the actual definitions provided in the archive file.

Header files are included into a program source file by the ‘#include’ prepro-
cessor directive. The C language supports two forms of this directive; the first,

#include "header"

is typically used to include a header file header that you write yourself; this would
contain definitions and declarations describing the interfaces between the different
parts of your particular application. By contrast,

#include <file.h>

is typically used to include a header file ‘file.h’ that contains definitions and
declarations for a standard library. This file would normally be installed in a stan-
dard place by your system administrator. You should use this second form for the
C library header files.

Chapter 1: Introduction 5

Typically, ‘#include’ directives are placed at the top of the C source file, be-
fore any other code.3 If you begin your source files with some comments explaining
what the code in the file does (a good idea), put the ‘#include’ directives im-
mediately afterward, following the feature-test macro definition (see Section 1.3.4
[Feature-Test Macros], page 8).

The GNU C Library provides several header files, each of which contains the type
and macro definitions and variable and function declarations for a group of related
facilities. This means that your programs may need to include several header files,
depending on exactly which facilities you are using.

Some library header files include other library header files automatically. How-
ever, as a matter of programming style, you should not rely on this; it is better to
explicitly include all the header files required for the library facilities you are using.
The GNU C Library header files have been written in such a way that it doesn’t mat-
ter if a header file is accidentally included more than once; including a header file
a second time has no effect. Likewise, if your program needs to include multiple
header files, the order in which they are included doesn’t matter.

Compatibility Note: Inclusion of standard header files in any order and any
number of times works in any ISO C implementation. However, this has tradition-
ally not been the case in many older C implementations.

Strictly speaking, you don’t have to include a header file to use a function it
declares; you could declare the function explicitly yourself, according to the spec-
ifications in this manual. But it is usually better to include the header file because
it may define types and macros that are not otherwise available and because it may
define more efficient macro replacements for some functions. It is also a sure way
to have the correct declaration.

1.3.2 Macro Definitions of Functions

If we describe something as a function in this manual, it may have a macro
definition as well. This normally has no effect on how your program runs—the
macro definition does the same thing as the function would. In particular, macro
equivalents for library functions evaluate arguments exactly once, in the same way
that a function call would. The main reason for these macro definitions is that
sometimes they can produce an in-line expansion that is considerably faster than an
actual function call.

Taking the address of a library function works even if it is also defined as a
macro. This is because, in this context, the name of the function isn’t followed by
the left parenthesis that is syntactically necessary to recognize a macro call.

You might occasionally want to avoid using the macro definition of a function—
perhaps to make your program easier to debug. There are two ways you can do
this:

3 For more information about the use of header files and ‘#include’ directives, see Richard M.
Stallman and the GCC Developer Community, “Header Files” in The GNU C Preprocesser Manual
(2003), http:// gcc.gnu.org/ onlinedocs/ gcc-3.3.2/ cpp/.

http:// gcc.gnu.org/ onlinedocs/ gcc-3.3.2/ cpp/

6 The GNU C Library: System & Network Applications

1. You can avoid a macro definition in a specific use by enclosing the name of
the function in parentheses. This works because the name of the function does
not appear in a syntactic context where it is recognizable as a macro call.

2. You can suppress any macro definition for a whole source file by using the
‘#undef’ preprocessor directive, unless otherwise stated explicitly in the de-
scription of that facility.

For example, suppose the header file ‘stdlib.h’ declares a function named
abs with:

extern int abs (int);

and also provides a macro definition for abs. Then, in:
#include <stdlib.h>

int f (int *i) { return abs (++*i); }

the reference to abs might refer to either a macro or a function. On the other hand,
in each of the following examples, the reference is to a function and not a macro:

#include <stdlib.h>

int g (int *i) { return (abs) (++*i); }

#undef abs

int h (int *i) { return abs (++*i); }

Since macro definitions that double for a function behave in exactly the same way
as the actual function version, there is usually no need for any of these methods. In
fact, removing macro definitions usually just makes your program slower.

1.3.3 Reserved Names

The names of all library types, macros, variables and functions that come from
the ISO C standard are reserved unconditionally; your program may not redefine
these names. All other library names are reserved if your program explicitly in-
cludes the header file that defines or declares them. There are several reasons for
these restrictions:

• Other people reading your code could get very confused if, for example, you
were using a function named exit to do something completely different from
what the standard exit function does. Preventing this situation helps to make
your programs easier to understand and contributes to modularity and main-
tainability.

• It avoids the possibility of a user accidentally redefining a library function that
is called by other library functions. If redefinition were allowed, those other
functions would not work properly.

• It allows the compiler to do whatever special optimizations it pleases on calls
to these functions, without the possibility that they may have been redefined
by the user. Some library facilities, such as those for dealing with variadic
arguments (see Section A.2 [Variadic Functions], page 456) and nonlocal exits
(see Chapter 16 [Nonlocal Exits], page 367), actually require a considerable

Chapter 1: Introduction 7

amount of cooperation on the part of the C compiler, and with respect to the
implementation, it might be easier for the compiler to treat these as built-in
parts of the language.

In addition to the names documented in this manual, reserved names include all
external identifiers (global functions and variables) that begin with an underscore
(‘_’) and all identifiers regardless of use that begin with either two underscores or
an underscore followed by a capital letter. This is so that the library and header
files can define functions, variables, and macros for internal purposes without risk
of conflict with names in user programs.

Some additional classes of identifier names are reserved for future extensions to
the C language or the POSIX.1 environment. While using these names for your own
purposes right now might not cause a problem, there is the possibility of conflict
with future versions of the C or POSIX standards, so you should avoid using them:

• Names beginning with a capital ‘E’ followed by a digit or uppercase letter may
be used for additional error-code names.4

• Names that begin with either ‘is’ or ‘to’ followed by a lowercase letter may
be used for additional character-testing and conversion functions.5

• Names that begin with ‘LC_’ followed by an uppercase letter may be used for
additional macros specifying locale attributes.6

• Names of all existing mathematics functions suffixed with ‘f’ or ‘l’ are
reserved for corresponding functions that operate on float and long
double arguments, respectively.7

• Names that begin with ‘SIG’ followed by an uppercase letter are reserved for
additional signal names (see Section 17.2 [Standard Signals], page 379).

• Names that begin with ‘SIG_’ followed by an uppercase letter are reserved
for additional signal actions (see Section 17.3.1 [Basic Signal-Handling],
page 389).

• Names beginning with ‘str’, ‘mem’, or ‘wcs’ followed by a lowercase letter
are reserved for additional string and array functions.8

• Names that end with ‘_t’ are reserved for additional type names.

In addition, some individual header files reserve names beyond those that they
actually define. You only need to worry about these restrictions if your program
includes that particular header file.

• The header file ‘dirent.h’ reserves names prefixed with ‘d_’.
• The header file ‘fcntl.h’ reserves names prefixed with ‘l_’, ‘F_’, ‘O_’,

and ‘S_’.
• The header file ‘grp.h’ reserves names prefixed with ‘gr_’.

4 Loosemore et al., “Error-Reporting” (see chap. 1, n.1).
5 Ibid., “Character Handling”.
6 Ibid., “Locales and Internationalization”.
7 Ibid., “Mathematics”.
8 Ibid., “String and Array Utilities”.

8 The GNU C Library: System & Network Applications

• The header file ‘limits.h’ reserves names suffixed with ‘_MAX’.
• The header file ‘pwd.h’ reserves names prefixed with ‘pw_’.
• The header file ‘signal.h’ reserves names prefixed with ‘sa_’ and ‘SA_’.
• The header file ‘sys/stat.h’ reserves names prefixed with ‘st_’ and ‘S_’.

• The header file ‘sys/times.h’ reserves names prefixed with ‘tms_’.
• The header file ‘termios.h’ reserves names prefixed with ‘c_’, ‘V’, ‘I’,

‘O’, and ‘TC’; and names prefixed with ‘B’ followed by a digit.

1.3.4 Feature-Test Macros

The exact set of features available when you compile a source file is controlled
by which feature-test macros you define.

If you compile your programs using ‘gcc -ansi’, you get only the ISO C li-
brary features, unless you explicitly request additional features by defining one or
more of the feature macros.9

You should define these macros by using ‘#define’ preprocessor directives
at the top of your source code files. These directives must come before any
#include of a system header file. It is best to make them the very first thing
in the file, preceded only by comments. You could also use the ‘-D’ option to
GCC, but it is better if you make the source files indicate their own meaning in a
self-contained way.

This system exists to allow the library to conform to multiple standards. Al-
though the different standards are often described as supersets of each other, they
are usually incompatible because larger standards require functions with names that
smaller ones reserve to the user program. This is not mere pedantry—it has been a
problem in practice. For instance, some non-GNU programs define functions named
getline that have nothing to do with this library’s getline. They would not
be compilable if all features were enabled indiscriminately.

This should not be used to verify that a program conforms to a limited standard.
It is insufficient for this purpose, as it will not protect you from including header
files outside the standard, or relying on semantics undefined within the standard.

MacroPOSIX SOURCE
If you define this macro, then the functionality from the POSIX.1 standard (IEEE
Standard 1003.1) is available, as well as all of the ISO C facilities.
The state of _POSIX_SOURCE is irrelevant if you define the macro _POSIX_
C_SOURCE to a positive integer.

9 See Richard M. Stallman and the GCC Developer Community, “Invoking GCC” in Using GCC:
The GNU Compiler Collection Reference Manual (Boston, MA: GNU Press, October 2003),
http:// gcc.gnu.org/ onlinedocs/ gcc-3.3.2/ gcc/, for more information about
GCC options.

http:// gcc.gnu.org/ onlinedocs/ gcc-3.3.2/ gcc/

Chapter 1: Introduction 9

MacroPOSIX C SOURCE
Define this macro to a positive integer to control which POSIX functionality is
made available. The greater the value of this macro, the more functionality is
made available.
If you define this macro to a value greater than or equal to 1, then the functional-
ity from the 1990 edition of the POSIX.1 standard (IEEE Standard 1003.1-1990)
is made available.
If you define this macro to a value greater than or equal to 2, then the functional-
ity from the 1992 edition of the POSIX.2 standard (IEEE Standard 1003.2-1992)
is made available.
If you define this macro to a value greater than or equal to 199309L, then the
functionality from the 1993 edition of the POSIX.1b standard (IEEE Standard
1003.1b-1993) is made available.
Greater values for _POSIX_C_SOURCE will enable future extensions. The
POSIX standards process will define these values as necessary, and the GNU C
Library should support them some time after they become standardized. The
1996 edition of POSIX.1 (ISO/IEC 9945-1: 1996) states that if you define _
POSIX_C_SOURCE to a value greater than or equal to 199506L, then the
functionality from the 1996 edition is made available.

MacroBSD SOURCE
If you define this macro, functionality derived from 4.3 BSD Unix is included as
well as the ISO C, POSIX.1, and POSIX.2 material.
Some of the features derived from 4.3 BSD Unix conflict with the corresponding
features specified by the POSIX.1 standard. If this macro is defined, the 4.3 BSD
definitions take precedence over the POSIX definitions.
Due to the nature of some of the conflicts between 4.3 BSD and POSIX.1, you
need to use a special BSD compatibility library when linking programs com-
piled for BSD compatibility. This is because some functions must be defined
in two different ways, one in the normal C library, and one in the compatibil-
ity library. If your program defines _BSD_SOURCE, you must give the option
‘-lbsd-compat’ to the compiler or linker when linking the program, to tell
it to find functions in this special compatibility library before looking for them
in the normal C library.

MacroSVID SOURCE
If you define this macro, functionality derived from SVID is included as well as
the ISO C, POSIX.1, POSIX.2 and X/Open material.

MacroXOPEN SOURCE
MacroXOPEN SOURCE EXTENDED

If you define this macro, functionality described in the X/Open Portability
Guide10 is included. This is a superset of the POSIX.1 and POSIX.2 functional-

10 X/Open Company, X/Open Portability Guide, Issue 4, Version 2 (Reading, UK: X/Open Company,
Ltd., 1994).

10 The GNU C Library: System & Network Applications

ity and in fact _POSIX_SOURCE and _POSIX_C_SOURCE are automatically
defined.
As the unification of all Unices, functionality only available in BSD and SVID is
also included.
If the macro _XOPEN_SOURCE_EXTENDED is also defined, even more func-
tionality is available. The extra functions will make all functions available that
are necessary for the X/Open Unix brand.
If the macro _XOPEN_SOURCE has the value 500, this includes all functionality
described so far plus some new definitions from the Single Unix Specification,
version 2.

MacroLARGEFILE SOURCE
If this macro is defined, some extra functions are available that rectify a few
shortcomings in all previous standards. Specifically, the functions fseeko
and ftello are available. Without these functions, the difference between the
ISO C interface (fseek, ftell) and the low-level POSIX interface (lseek)
would lead to problems.
This macro was introduced as part of the Large File Support extension (LFS).

MacroLARGEFILE64 SOURCE
If you define this macro, an additional set of functions is made available that
enables 32-bit systems to use files of sizes beyond the usual limit of 2GB. This
interface is not available if the system does not support files that large. On
systems where the natural file size limit is greater than 2GB (i.e., on 64-bit
systems), the new functions are identical to the replaced functions.
The new functionality is made available by a new set of types and functions that
replace the existing ones. The names of these new objects contain 64 to indicate
the intention, e.g., off_t vs. off64_t and fseeko vs. fseeko64.
This macro was introduced as part of the Large File Support extension (LFS). It
is a transition interface for the period when 64-bit offsets are not generally used
(see _FILE_OFFSET_BITS).

MacroFILE OFFSET BITS
This macro determines which file-system interface will be used, one replac-
ing the other. Whereas _LARGEFILE64_SOURCE makes the 64-bit interface
available as an additional interface, _FILE_OFFSET_BITS allows the 64-bit
interface to replace the old interface.
If _FILE_OFFSET_BITS is undefined, or if it is defined to the value 32,
nothing changes. The 32-bit interface is used and types like off_t have a size
of 32 bits on 32-bit systems.
If the macro is defined to the value 64, the large file interface replaces the old
interface. The functions are not made available under different names (as they
are with _LARGEFILE64_SOURCE); instead, the old function names now ref-
erence the new functions, e.g., a call to fseeko now indeed calls fseeko64.

Chapter 1: Introduction 11

This macro should only be selected if the system provides mechanisms for han-
dling large files. On 64-bit systems this macro has no effect since the *64
functions are identical to the normal functions.
This macro was introduced as part of the Large File Support extension (LFS).

MacroISOC99 SOURCE
Until the revised ISO C standard is widely adopted the new features are not au-
tomatically enabled. The GNU libc nevertheless has a complete implementation
of the new standard. To enable the new features the macro _ISOC99_SOURCE
should be defined.

MacroGNU SOURCE
If you define this macro, everything is included: ISO C89, ISO C99, POSIX.1,
POSIX.2, BSD, SVID, X/Open, LFS, and GNU extensions. In the cases where
POSIX.1 conflicts with BSD, the POSIX definitions take precedence.
If you want to get the full effect of _GNU_SOURCE but make the BSD definitions
take precedence over the POSIX definitions, use this sequence of definitions:

#define _GNU_SOURCE

#define _BSD_SOURCE

#define _SVID_SOURCE

If you do this, you must link your program with the BSD compatibility library by
passing the ‘-lbsd-compat’ option to the compiler or linker. If you forget,
you may get very strange errors at run time.

MacroREENTRANT
MacroTHREAD SAFE

If you define one of these macros, reentrant versions of several functions get
declared. Some of the functions are specified in POSIX.1c, but many others are
only available on a few other systems or are unique to GNU libc. The problem
is the delay in the standardization of the thread safe C library interface.
Unlike on some other systems, no special version of the C library must be used
for linking. There is only one version—but while compiling this, it must have
been specified to compile as thread safe.

We recommend you use _GNU_SOURCE in new programs. If you don’t specify
the ‘-ansi’ option to GCC and do not define any of these macros explicitly, the
effect is the same as defining _POSIX_C_SOURCE to 2 and _POSIX_SOURCE,
_SVID_SOURCE and _BSD_SOURCE to 1.

When you define a feature-test macro to request a larger class of features, it
is harmless to define, in addition, a feature-test macro for a subset of those fea-
tures. For example, if you define _POSIX_C_SOURCE, then defining _POSIX_
SOURCE as well has no effect. Likewise, if you define _GNU_SOURCE, defining
either _POSIX_SOURCE, _POSIX_C_SOURCE, or _SVID_SOURCE as well has
no effect.

12 The GNU C Library: System & Network Applications

Note, however, that the features of _BSD_SOURCE are not a subset of any of
the other feature-test macros supported. This is because it defines BSD features that
take precedence over the POSIX features that are requested by the other macros. For
this reason, defining _BSD_SOURCE in addition to the other feature-test macros
does have an effect—it causes the BSD features to take priority over the conflicting
POSIX features.

1.4 Road Map to the Manual
Here is an overview of the contents of the remaining chapters of this manual.
The following chapters are found in the first volume, Sandra Loosemore et al.,

GNU C Library: Application Fundamentals (Boston: GNU Press, 2004), available
online at http:// www.gnu.org/ manual/ manual.html.

• “Error Reporting” describes how errors detected by the library are reported.
• “Virtual Memory Allocation and Paging” describes the GNU library’s facilities

for managing and using virtual and real memory, including dynamic allocation
of virtual memory. If you do not know in advance how much memory your
program needs, you can allocate it dynamically instead, and manipulate it via
pointers.

• “Character Handling” contains information about character-classification
functions (such as isspace) and functions for performing case conversion.

• “String and Array Utilities” has descriptions of functions for manipulating
strings (null-terminated character arrays) and general byte arrays, including
operations such as copying and comparison.

• “Character-Set Handling” contains information about manipulating characters
and strings using character sets larger than will fit in the usual char data type.

• “Locales and Internationalization” describes how selecting a particular coun-
try or language affects the behavior of the library. For example, the locale
affects collation sequences for strings and how monetary values are formatted.

• “Mathematics” contains information about the math library functions. These
include things like random-number generators and remainder functions on in-
tegers as well as the usual trigonometric and exponential functions on floating-
point numbers.

• “Arithmetic Functions” describes functions for simple arithmetic, analysis of
floating-point values, and reading numbers from strings.

• “Date and Time” describes functions for measuring both calendar time and
CPU time, as well as functions for setting alarms and timers.

• “Message Translation” describes how to write programs that are capable of
delivering messages in whatever language the user selects without filling the
source code with sets of translations.

• “Searching and Sorting” contains information about functions for searching
and sorting arrays. You can use these functions on any kind of array by pro-
viding an appropriate comparison function.

Chapter 1: Introduction 13

• “Pattern Matching” presents functions for matching regular expressions and
shell file-name patterns, and for expanding words as the shell does.

• “The Basic Program/System Interface” tells how your programs can access
their command-line arguments and environment variables.

• “Input/Output Overview” gives an overall look at the input and output facili-
ties in the library, and contains information about basic concepts such as file
names.

• “Debugging Support” describes functions provided by the library to make the
debugging process easier, whether or not a dedicated debugger program is
being used.

• “Input/Output on Streams” describes I/O operations involving streams (or
FILE * objects). These are the normal C library functions from ‘stdio.h’.

• “Summary of Library Facilities” gives a summary of all the functions, vari-
ables, and macros in the library, with complete data types and function proto-
types, and says what standard or system each is derived from. This section is
also found in the second volume, for convenient reference.

The following chapters are found in the second volume, Sandra Loosemore et
al., GNU C Library: System & Network Applications (Boston: GNU Press, 2004),
available online at http:// www.gnu.org/ manual/ manual.html.

• “Low-Level Input/Output” contains information about I/O operations on file
descriptors. File descriptors are a lower-level mechanism specific to the Unix
family of operating systems.

• “File-System Interface” has descriptions of operations on entire files, such
as functions for deleting and renaming them and for creating new directories.
This chapter also contains information about how you can access the attributes
of a file, such as its owner and file-protection modes.

• “Pipes and FIFOs” contains information about simple interprocess-
communication mechanisms. Pipes allow communication between two
related processes (such as between a parent and child), while FIFOs allow
communication between processes sharing a common file-system on the same
machine.

• “Sockets” describes a more complicated interprocess-communication mech-
anism that allows processes running on different machines to communicate
over a network. This chapter also contains information about Internet host-
addressing and how to use the system network databases.

• “Low-Level Terminal Interface” describes how you can change the attributes
of a terminal device. If you want to disable echo of characters typed by the
user, for example, read this chapter.

• “Processes” contains information about how to start new processes and run
programs.

• “Job Control” describes functions for manipulating process groups and the
controlling terminal. This material is probably only of interest if you are writ-
ing a shell or other program that handles job control specially.

14 The GNU C Library: System & Network Applications

• “System Databases and Name-Service Switch” describes the services that are
available for looking up names in the system databases, how to determine
which service is used for which database, and how these services are imple-
mented so that contributors can design their own services.

• “Users and Groups” tells you how to access the system user- and group-
databases.

• “System Management” describes functions for controlling and getting infor-
mation about the hardware and software configuration your program is exe-
cuting under.

• “System-Configuration Parameters” tells you how you can get information
about various operating system limits. Most of these parameters are provided
for compatibility with POSIX.

• “DES Encryption and Password Handling” discusses the legal and technical
issues related to password encryption and security, as well as the functions
necessary to implement effective encryption.

• “Resource Usage and Limitation” tells you how to monitor the memory and
other resource usage totals of processes, and how to regulate this usage. It also
covers prioritization and scheduling.

• “Syslog” describes facilities for issuing and logging messages of system ad-
ministration interest.

• “Nonlocal Exits” contains descriptions of the setjmp and longjmp func-
tions. These functions provide a facility for goto-like jumps that can jump
from one function to another.

• “Signal Handling” tells you all about signals—what they are, how to establish
a handler that is called when a particular kind of signal is delivered, and how
to prevent signals from arriving during critical sections of your program.

• “POSIX Threads” describes the pthreads (POSIX threads) library. This library
provides support functions for multithreaded programs: thread primitives, syn-
chronization objects, etc. It also implements POSIX 1003.1b semaphores.

• “C Language Facilities in the Library” contains information about library sup-
port for standard parts of the C language, including things like the sizeof
operator and the symbolic constant NULL, how to write functions accepting
variable numbers of arguments, and constants describing the ranges and other
properties of the numerical types. There is also a simple debugging mecha-
nism that allows you to put assertions in your code and have diagnostic mes-
sages printed if the tests fail.

• “Installing the GNU C Library” provides a detailed reference for installing,
compiling and configuring the GNU C Library. Configuration and optimization
command-line options are covered here.

• “Library Maintenance” explains how to port and enhance the GNU C Library
and how to report any bugs you might find.

If you already know the name of the facility you are interested in, you can look
it up in Appendix B [Summary of Library Facilities], page 475. This gives you a

Chapter 1: Introduction 15

summary of its syntax and a pointer to where you can find a more detailed descrip-
tion. This appendix is particularly useful if you just want to verify the order and
type of arguments to a function, for example. It also tells you what standard or
system each function, variable, or macro is derived from.

16 The GNU C Library: System & Network Applications

Chapter 2: Low-Level Input/Output 17

2 Low-Level Input/Output
This chapter describes functions for performing low-level input/output opera-

tions on file descriptors. These functions include the primitives for the higher-level
I/O functions,1 as well as functions for performing low-level control operations for
which there are no equivalents on streams.

Stream-level I/O is more flexible and usually more convenient; therefore, pro-
grammers generally use the descriptor-level functions only when necessary. These
are some of the usual reasons:

• For reading binary files in large chunks
• For reading an entire file into core before parsing it
• To perform operations other than data transfer, which can only be done with

a descriptor; you can use fileno to get the descriptor corresponding to a
stream.

• To pass descriptors to a child process; the child can create its own stream to
use a descriptor that it inherits, but it cannot inherit a stream directly.

2.1 Opening and Closing Files
This section describes the primitives for opening and closing files using file

descriptors. The open and creat functions are declared in the header file
‘fcntl.h’, while close is declared in ‘unistd.h’.

Functionint open (const char *filename, int flags[, mode_t
mode])

The open function creates and returns a new file-descriptor for the file named
by filename. Initially, the file position indicator for the file is at the beginning of
the file. The argument mode is used only when a file is created, but it doesn’t
hurt to supply the argument in any case.
The flags argument controls how the file is to be opened. This is a bit mask; you
create the value by the bit-wise OR of the appropriate parameters, using the ‘|’
operator in C (for the parameters available, see Section 2.14 [File Status Flags],
page 59).
The normal return value from open is a nonnegative integer file descriptor.
In the case of an error, a value of −1 is returned instead. In addition to the
usual file-name errors, the following errno error conditions are defined for
this function:2

EACCES The file exists but is not readable or writable as requested by the
flags argument; the file does not exist and the directory is un-
writable, so it cannot be created.

1 See Sandra Loosemore et al., “Input/Output on Streams” (see chap. 1, n. 1).
2 Ibid., “File-Name Errors”.

18 The GNU C Library: System & Network Applications

EEXIST Both O_CREAT and O_EXCL are set, and the named file already
exists.

EINTR The open operation was interrupted by a signal (see Section 17.5
[Primitives Interrupted by Signals], page 408).

EISDIR The flags argument specified write access, and the file is a direc-
tory.

EMFILE The process has too many files open. The maximum number of file
descriptors is controlled by the RLIMIT_NOFILE resource limit
(see Section 14.2 [Limiting Resource Usage], page 338).

ENFILE The entire system, or perhaps the file system that contains the di-
rectory, cannot support any additional open files at the moment.
This problem cannot happen on the GNU system.

ENOENT The named file does not exist, and O_CREAT is not specified.

ENOSPC The directory or file system that would contain the new file cannot
be extended, because there is no disk space left.

ENXIO O_NONBLOCK and O_WRONLY are both set in the flags argument,
the file named by filename is a FIFO (see Chapter 4 [Pipes and
FIFOs], page 119), and no process has the file open for reading.

EROFS The file resides on a read-only file system and any of O_WRONLY,
O_RDWR or O_TRUNC are set in the flags argument; or O_CREAT
is set and the file does not already exist.

If on a 32-bit machine the sources are translated with _FILE_OFFSET_BITS
== 64, the function open returns a file descriptor opened in the large file mode
that enables the file-handling functions to use files up to 263 bytes in size and
offset from−263 to 263. This happens transparently for the user, since all of the
low-level file-handling functions are equally replaced.
This function is a cancellation point in multithreaded programs. This is a
problem if the thread allocates some resources (like memory, file descriptors,
semaphores, etc.) at the time open is called. If the thread gets canceled, these
resources stay allocated until the program ends. To avoid this, calls to open
should be protected using cancellation handlers.
The open function is the underlying primitive for the fopen and freopen
functions, which create streams.

Functionint open64 (const char *filename, int flags[, mode_t
mode])

This function is similar to open. It returns a file descriptor that can be used to
access the file named by filename. The only difference is that on 32-bit systems,
the file is opened in the large file mode, so file length and file offsets can exceed
31 bits.

Chapter 2: Low-Level Input/Output 19

When the sources are translated with _FILE_OFFSET_BITS == 64, this
function is actually available under the name open—the new, extended API
using 64-bit file sizes and offsets transparently replaces the old API.

Obsolete functionint creat (const char *filename, mode_t mode)
This function is obsolete. The call:

creat (filename, mode)

is equivalent to:
open (filename, O_WRONLY | O_CREAT | O_TRUNC, mode)

If on a 32-bit machine the sources are translated with _FILE_OFFSET_BITS
== 64, the function creat returns a file descriptor opened in the large file
mode that enables the file-handling functions to use files up to 263 in size and
offset from−263 to 263. This happens transparently for the user, since all of the
low-level file-handling functions are equally replaced.

Obsolete functionint creat64 (const char *filename, mode_t mode)
This function is similar to creat. It returns a file descriptor that can be used to
access the file named by filename. The only difference is that on 32-bit systems
the file is opened in the large file mode, so file length and file offsets can exceed
31 bits.
To use this file descriptor, you must not use the normal operations but instead
the counterparts named *64, such as read64.
When the sources are translated with _FILE_OFFSET_BITS == 64, this
function is actually available under the name open—the new, extended API
using 64-bit file sizes and offsets transparently replaces the old API.

Functionint close (int filedes)
The function close closes the file descriptor filedes. Closing a file has the
following consequences:

• The file descriptor is deallocated.
• Any record locks owned by the process on the file are unlocked.
• When all file descriptors associated with a pipe or FIFO have been closed,

any unread data is discarded.

This function is a cancellation point in multithreaded programs. This is a
problem if the thread allocates some resources (like memory, file descriptors,
semaphores, etc.) at the time close is called. If the thread gets canceled, these
resources stay allocated until the program ends. To avoid this, calls to close
should be protected using cancellation handlers.
The normal return value from close is 0; a value of −1 is returned in case of
failure. The following errno error conditions are defined for this function:

EBADF The filedes argument is not a valid file-descriptor.

20 The GNU C Library: System & Network Applications

EINTR The close call was interrupted by a signal (see Section 17.5
[Primitives Interrupted by Signals], page 408). Here is an example
of how to handle EINTR properly:

TEMP_FAILURE_RETRY (close (desc));

ENOSPC
EIO
EDQUOT When the file is accessed by NFS, these errors from write can

sometimes go undetected until close (see Section 2.2 [Input and
Output Primitives], page 20 for details on their meaning).

There is no separate close64 function. This is not necessary, since this func-
tion does not determine nor depend on the mode of the file. The kernel that
performs the close operation knows which mode the descriptor is used for
and can handle this situation.

To close a stream, call fclose instead of trying to close its underlying file-
descriptor with close.3 This flushes any buffered output and updates the stream
object to indicate that it is closed.

2.2 Input and Output Primitives
This section describes the functions for performing primitive input and output

operations on file descriptors: read, write and lseek. These functions are
declared in the header file ‘unistd.h’.

Data Typessize t
This data type is used to represent the sizes of blocks that can be read or written
in a single operation. It is similar to size_t, but must be a signed type.

Functionssize_t read (int filedes, void *buffer, size_t size)
The read function reads up to size bytes from the file with descriptor filedes,
storing the results in the buffer. This is not necessarily a character string, and
no terminating-null character is added.
The return value is the number of bytes actually read. This might be less than
size; for example, if there aren’t that many bytes left in the file or if there aren’t
that many bytes immediately available. The exact behavior depends on what
kind of file it is. Reading less than size bytes is not an error.
A value of 0 indicates end of file (except if the value of the size argument is also
0). This is not considered an error. If you keep calling read while at end of
file, it will keep returning 0 and doing nothing else.
If read returns at least one character, there is no way you can tell whether end
of file was reached. But if you did reach the end, the next read will return 0.

3 Ibid., “Closing Streams”.

Chapter 2: Low-Level Input/Output 21

In case of an error, read returns −1. The following errno error conditions
are defined for this function:

EAGAIN Normally, when no input is immediately available, read waits for
some input. But if the O_NONBLOCK flag is set for the file (see
Section 2.14 [File Status Flags], page 59), read returns immedi-
ately without reading any data, and reports this error.
Compatibility Note: Most versions of BSD Unix use a differ-
ent error code for this, EWOULDBLOCK. In the GNU library,
EWOULDBLOCK is an alias for EAGAIN, so it doesn’t matter which
name you use.
On some systems, reading a large amount of data from a character-
special file can also fail with EAGAIN if the kernel cannot find
enough physical memory to lock down the user’s pages. This is
limited to devices that transfer with direct memory access into the
user’s memory, which means it does not include terminals, since
they always use separate buffers inside the kernel. This problem
never happens in the GNU system.
Any condition that could result in EAGAIN can instead result in a
successful read that returns fewer bytes than requested. Calling
read again immediately would result in EAGAIN.

EBADF The filedes argument is not a valid file-descriptor, or is not open
for reading.

EINTR read was interrupted by a signal while it was waiting for input
(see Section 17.5 [Primitives Interrupted by Signals], page 408).
A signal will not necessarily cause read to return EINTR; it may
instead result in a successful read that returns fewer bytes than
requested.

EIO For many devices and for disk files, this error code indicates a
hardware error.
EIO also occurs when a background process tries to read from the
controlling terminal, and the normal action of stopping the process
by sending it a SIGTTIN signal isn’t working. This might happen
if the signal is being blocked or ignored, or because the process
group is orphaned. (See Chapter 8 [Job Control], page 221 for
more information about job control, and Chapter 17 [Signal Han-
dling], page 377 for information about signals.)

There is no function named read64. This is not necessary, since this function
does not directly modify or handle the possibly wide file offset. Since the kernel
handles this state internally, the read function can be used for all cases.
This function is a cancellation point in multithreaded programs. This is a
problem if the thread allocates some resources (like memory, file descriptors,
semaphores, etc.) at the time read is called. If the thread gets canceled, these

22 The GNU C Library: System & Network Applications

resources stay allocated until the program ends. To avoid this, calls to read
should be protected using cancellation handlers.
The read function is the underlying primitive for all of the functions that read
from streams, such as fgetc.

Functionssize_t pread (int filedes, void *buffer, size_t size,
off_t offset)

The pread function is similar to the read function. The first three arguments
are identical, and the return values and error codes also correspond.
The difference is the fourth argument and its handling. The data block is not
read from the current position of the file descriptor filedes. Instead the data
is read from the file starting at position offset. The position of the file descriptor
itself is not affected by the operation. The value is the same as before the call.
When the source file is compiled with _FILE_OFFSET_BITS == 64, the
pread function is in fact pread64, and the type off_t has 64 bits, which
makes it possible to handle files up to 263 bytes in length.
The return value of pread describes the number of bytes read. In the case of
an error, it returns −1 like read does. The error codes are also the same, with
these additions:

EINVAL The value given for offset is negative and therefore illegal.

ESPIPE The file descriptor filedes is associate with a pipe or a FIFO and
this device does not allow positioning of the file pointer.

The function is an extension defined in the Unix Single Specification, version 2.

Functionssize_t pread64 (int filedes, void *buffer, size_t size,
off64_t offset)

This function is similar to the pread function. The difference is that the offset
parameter is of type off64_t instead of off_t, which makes it possible on
32-bit machines to address files larger than 231 bytes and up to 263 bytes. The
file descriptor filedes must be opened using open64 since otherwise the
large offsets possible with off64_t will lead to errors with a descriptor in
small file mode.
When the source file is compiled with _FILE_OFFSET_BITS == 64 on a 32-
bit machine, this function is actually available under the name pread and so
transparently replaces the 32-bit interface.

Functionssize_t write (int filedes, const void *buffer, size_t
size)

The write function writes up to size bytes from buffer to the file with descrip-
tor filedes. The data in buffer is not necessarily a character string, and a null
character is output like any other character.

Chapter 2: Low-Level Input/Output 23

The return value is the number of bytes actually written. This may be size,
but can always be smaller. Your program should always call write in a loop,
iterating until all the data is written.
Once write returns, the data is enqueued to be written and can be read back
right away, but it is not necessarily written out to permanent storage immedi-
ately. You can use fsync when you need to be sure your data has been per-
manently stored before continuing. It is more efficient for the system to batch
up consecutive writes and do them all at once when convenient. Normally they
will always be written to disk within a minute or less. Modern systems provide
another function, fdatasync, which guarantees integrity only for the file data
and is therefore faster. You can use the O_FSYNC open mode to make write
always store the data to disk before returning (see Section 2.14.3 [I/O Operating
Modes], page 62).
In the case of an error, write returns −1. The following errno error condi-
tions are defined for this function:

EAGAIN Normally, write blocks until the write operation is complete. But
if the O_NONBLOCK flag is set for the file (see Section 2.11 [Con-
trol Operations on Files], page 54), it returns immediately without
writing any data and reports this error. An example of a situa-
tion that might cause the process to block on output is writing to a
terminal device that supports flow control, where output has been
suspended by receipt of a STOP character.
Compatibility Note: Most versions of BSD Unix use a differ-
ent error code for this: EWOULDBLOCK. In the GNU library,
EWOULDBLOCK is an alias for EAGAIN, so it doesn’t matter which
name you use.
On some systems, writing a large amount of data from a character-
special file can also fail with EAGAIN if the kernel cannot find
enough physical memory to lock down the user’s pages. This is
limited to devices that transfer with direct memory access into the
user’s memory, which means it does not include terminals, since
they always use separate buffers inside the kernel. This problem
does not arise in the GNU system.

EBADF The filedes argument is not a valid file-descriptor, or is not open
for writing.

EFBIG The size of the file would become larger than the implementation
can support.

EINTR The write operation was interrupted by a signal while it was
blocked waiting for completion. A signal will not necessarily
cause write to return EINTR; it may instead result in a success-
ful write that writes fewer bytes than requested (see Section 17.5
[Primitives Interrupted by Signals], page 408).

24 The GNU C Library: System & Network Applications

EIO For many devices and for disk files, this error code indicates a
hardware error.

ENOSPC The device containing the file is full.

EPIPE This error is returned when you try to write to a pipe or FIFO
that isn’t open for reading by any process. When this happens,
a SIGPIPE signal is also sent to the process (see Chapter 17 [Sig-
nal Handling], page 377).

Unless you have arranged to prevent EINTR failures, you should check errno
after each failing call to write, and if the error was EINTR, you should simply
repeat the call (see Section 17.5 [Primitives Interrupted by Signals], page 408).
The easy way to do this is with the macro TEMP_FAILURE_RETRY, as fol-
lows:

nbytes = TEMP_FAILURE_RETRY (write (desc, buffer, count));

There is no function named write64. This is not necessary, since this function
does not directly modify or handle the possibly wide file offset. Since the kernel
handles this state internally the write function can be used for all cases.
This function is a cancellation point in multithreaded programs. This is a
problem if the thread allocates some resources (like memory, file descriptors,
semaphores or whatever) at the time write is called. If the thread gets can-
celed, these resources stay allocated until the program ends. To avoid this, calls
to write should be protected using cancellation handlers.
The write function is the underlying primitive for all of the functions that
write to streams, such as fputc.

Functionssize_t pwrite (int filedes, const void *buffer, size_t
size, off_t offset)

The pwrite function is similar to the write function. The first three argu-
ments are identical, and the return values and error codes also correspond.
The difference is the fourth argument and its handling. The data block is not
written to the current position of the file descriptor filedes. Instead the data
is written to the file starting at position offset. The position of the file descriptor
itself is not affected by the operation. The value is the same as before the call.
When the source file is compiled with _FILE_OFFSET_BITS == 64, the
pwrite function is in fact pwrite64 and the type off_t has 64 bits, which
makes it possible to handle files up to 263 bytes in length.
The return value of pwrite describes the number of written bytes. In the case
of an error, it returns −1 like write does. The error codes are also the same,
with these additions:

EINVAL The value given for offset is negative and therefore illegal.

ESPIPE The file descriptor filedes is associated with a pipe or a FIFO, and
this device does not allow positioning of the file pointer.

The function is an extension defined in the Unix Single Specification, version 2.

Chapter 2: Low-Level Input/Output 25

Functionssize_t pwrite64 (int filedes, const void *buffer,
size_t size, off64_t offset)

This function is similar to the pwrite function. The difference is that the offset
parameter is of type off64_t instead of off_t, which makes it possible on
32-bit machines to address files larger than 231 bytes and up to 263 bytes. The
file descriptor filedes must be opened using open64, since otherwise the
large offsets possible with off64_t will lead to errors with a descriptor in
small file mode.
When the source file is compiled using _FILE_OFFSET_BITS == 64 on a
32-bit machine, this function is actually available under the name pwrite and
so transparently replaces the 32-bit interface.

2.3 Setting the File Position of a Descriptor
Just as you can set the file position of a stream with fseek, you can set the file

position of a descriptor with lseek. This specifies the position in the file for the
next read or write operation.4

To read the current file-position value from a descriptor, use lseek (desc, 0,
SEEK_CUR).

Functionoff_t lseek (int filedes, off_t offset, int whence)
The lseek function is used to change the file position of the file with descriptor
filedes.
The whence argument specifies how the offset should be interpreted, in the same
way as for the fseek function, and it must be one of the symbolic constants
SEEK_SET, SEEK_CUR or SEEK_END.

SEEK_SET
This specifies that whence is a count of characters from the begin-
ning of the file.

SEEK_CUR
This specifies that whence is a count of characters from the current
file position. This count may be positive or negative.

SEEK_END
This specifies that whence is a count of characters from the end
of the file. A negative count specifies a position within the current
extent of the file; a positive count specifies a position past the cur-
rent end. If you set the position past the current end, and actually
write data, you will extend the file with zeros up to that position.

The return value from lseek is normally the resulting file position, measured
in bytes from the beginning of the file. You can use this feature together with
SEEK_CUR to read the current file position.

4 Ibid., “File Positioning”.

26 The GNU C Library: System & Network Applications

If you want to append to the file, setting the file position to the current end of
file with SEEK_END is not sufficient. Another process may write more data
after you seek but before you write, extending the file so the position you write
onto clobbers their data. Instead, use the O_APPEND operating mode (see Sec-
tion 2.14.3 [I/O Operating Modes], page 62).
You can set the file position past the current end of the file. This does not by
itself make the file longer; lseek never changes the file. But subsequent output
at that position will extend the file. Characters between the previous end of file
and the new position are filled with zeros. Extending the file in this way can
create a hole: the blocks of zeros are not actually allocated on disk, so the file
takes up less space than it appears to—it is then called a sparse file.
If the file position cannot be changed, or the operation is in some way invalid,
lseek returns a value of −1. The following errno error conditions are de-
fined for this function:
EBADF The filedes is not a valid file-descriptor.
EINVAL The whence argument value is not valid, or the resulting file offset

is not valid. A file offset is invalid.
ESPIPE The filedes corresponds to an object that cannot be positioned,

such as a pipe, FIFO or terminal device. POSIX.1 specifies this
error only for pipes and FIFOs, but in the GNU system, you always
get ESPIPE if the object is not seekable.

When the source file is compiled with _FILE_OFFSET_BITS == 64, the
lseek function is in fact lseek64, and the type off_t has 64 bits, which
makes it possible to handle files up to 263 bytes in length.
This function is a cancellation point in multithreaded programs. This is a
problem if the thread allocates some resources (like memory, file descriptors,
semaphores, etc.) at the time lseek is called. If the thread gets canceled, these
resources stay allocated until the program ends. To avoid this, calls to lseek
should be protected using cancellation handlers.
The lseek function is the underlying primitive for the fseek, fseeko,
ftell, ftello and rewind functions, which operate on streams instead
of file descriptors.

Functionoff64_t lseek64 (int filedes, off64_t offset, int whence)

This function is similar to the lseek function. The difference is that the offset
parameter is of type off64_t instead of off_t, which makes it possible on
32-bit machines to address files larger than 231 bytes and up to 263 bytes. The
file descriptor filedes must be opened using open64, since otherwise the
large offsets possible with off64_t will lead to errors with a descriptor in
small file mode.
When the source file is compiled with _FILE_OFFSET_BITS == 64 on a 32-
bit machine, this function is actually available under the name lseek and so
transparently replaces the 32-bit interface.

Chapter 2: Low-Level Input/Output 27

You can have multiple descriptors for the same file if you open the file more than
once, or if you duplicate a descriptor with dup. Descriptors that come from sepa-
rate calls to open have independent file positions; using lseek on one descriptor
has no effect on the other. For example,

{

int d1, d2;

char buf[4];

d1 = open ("foo", O_RDONLY);

d2 = open ("foo", O_RDONLY);

lseek (d1, 1024, SEEK_SET);

read (d2, buf, 4);

}

will read the first four characters of the file ‘foo’. (The error-checking code nec-
essary for a real program has been omitted here for brevity.)

By contrast, descriptors made by duplication share a common file position with
the original descriptor that was duplicated. Anything that alters the file position of
one of the duplicates, including reading or writing data, affects all of them alike.
Thus, for example:

{

int d1, d2, d3;

char buf1[4], buf2[4];

d1 = open ("foo", O_RDONLY);

d2 = dup (d1);

d3 = dup (d2);

lseek (d3, 1024, SEEK_SET);

read (d1, buf1, 4);

read (d2, buf2, 4);

}

will read four characters starting with the 1024th character of ‘foo’, and then four
more characters starting with the 1028th character.

Data Typeoff t
This is an arithmetic data type used to represent file sizes. In the GNU system,
this is equivalent to fpos_t or long int.
If the source is compiled with _FILE_OFFSET_BITS == 64, this type is
transparently replaced by off64_t.

Data Typeoff64 t
This type is used similar to off_t. The difference is that even on 32-bit ma-
chines, where the off_t type would have 32 bits, off64_t has 64 bits and so
is able to address files up to 263 bytes in length.

28 The GNU C Library: System & Network Applications

When compiling with _FILE_OFFSET_BITS == 64, this type is available
under the name off_t.

These aliases for the ‘SEEK_...’ constants exist for the sake of compatibility
with older BSD systems. They are defined in two different header files: ‘fcntl.h’
and ‘sys/file.h’.
L_SET An alias for SEEK_SET
L_INCR An alias for SEEK_CUR
L_XTND An alias for SEEK_END

2.4 Descriptors and Streams
Given an open file-descriptor, you can create a stream for it with the fdopen

function. You can get the underlying file-descriptor for an existing stream with the
fileno function. These functions are declared in the header file ‘stdio.h’.

FunctionFILE * fdopen (int filedes, const char *opentype)
The fdopen function returns a new stream for the file descriptor filedes.
The opentype argument is interpreted in the same way as for the fopen func-
tion,5 except that the ‘b’ option is not permitted; this is because GNU makes
no distinction between text and binary files. Also, ‘w’ and ‘w+’ do not cause
truncation of the file; these have an effect only when opening a file, and in this
case the file has already been opened. You must make sure that the opentype
argument matches the actual mode of the open file descriptor.
The return value is the new stream. If the stream cannot be created (for example,
if the modes for the file indicated by the file descriptor do not permit the access
specified by the opentype argument), a null pointer is returned instead.
In some other systems, fdopen may fail to detect that the modes for file de-
scriptor do not permit the access specified by opentype. The GNU C Library
always checks for this.

For an example showing the use of the fdopen function, see Section 4.1 [Cre-
ating a Pipe], page 119.

Functionint fileno (FILE *stream)
This function returns the file descriptor associated with the stream stream. If an
error is detected (for example, if the stream is not valid) or if stream does not
do I/O to a file, fileno returns −1.

Functionint fileno unlocked (FILE *stream)
The fileno_unlocked function is equivalent to the fileno function, ex-
cept that it does not implicitly lock the stream if the state is FSETLOCKING_
INTERNAL.
This function is a GNU extension.

5 Ibid., “Opening Streams”.

Chapter 2: Low-Level Input/Output 29

There are also symbolic constants defined in ‘unistd.h’ for the file descriptors
belonging to the standard streams stdin, stdout and stderr.6

STDIN_FILENO
This macro has value 0, which is the file descriptor for standard input.

STDOUT_FILENO
This macro has value 1, which is the file descriptor for standard out-
put.

STDERR_FILENO
This macro has value 2, which is the file descriptor for standard error
output.

2.5 Dangers of Mixing Streams and Descriptors
You can have multiple file-descriptors and streams (let’s call both streams and

descriptors channels for short) connected to the same file, but you must take care
to avoid confusion between channels. There are two cases to consider: linked
channels that share a single file position value, and independent channels that have
their own file positions.

It’s best to use just one channel in your program for actual data transfer to any
given file, except when all the access is for input. For example, if you open a pipe
(something you can only do at the file descriptor level), either do all I/O with the
descriptor, or construct a stream from the descriptor with fdopen, and then do all
I/O with the stream.

2.5.1 Linked Channels

Channels that come from a single opening share the same file position; we call
them linked channels. Linked channels result when you make a stream from a
descriptor using fdopen, when you get a descriptor from a stream with fileno,
when you copy a descriptor with dup or dup2, and when descriptors are inherited
during fork. For files that don’t support random access, such as terminals and
pipes, all channels are effectively linked. On random-access files, all append-type
output streams are effectively linked to each other.

If you have been using a stream for I/O (or have just opened the stream), and you
want to do I/O using another channel (either a stream or a descriptor) that is linked
to it, you must first clean up the stream that you have been using (see Section 2.5.3
[Cleaning Streams], page 30).

Terminating a process, or executing a new program in the process, destroys all
the streams in the process. If descriptors linked to these streams persist in other
processes, their file positions become undefined as a result. To prevent this, you
must clean up the streams before destroying them.

6 Ibid., “Standard Streams”.

30 The GNU C Library: System & Network Applications

2.5.2 Independent Channels

When you open channels (streams or descriptors) separately on a seekable file,
each channel has its own file position. These are called independent channels.

The system handles each channel independently. Most of the time, this is quite
predictable and natural (especially for input)—each channel can read or write se-
quentially at its own place in the file. However, if some of the channels are streams,
you must take these precautions:

• You should clean an output stream after use, before doing anything else that
might read or write from the same part of the file.

• You should clean an input stream before reading data that may have been
modified using an independent channel. Otherwise, you might read obsolete
data that had been in the stream’s buffer.

If you do output to one channel at the end of the file, this will certainly leave
the other independent channels positioned somewhere before the new end. You
cannot reliably set their file positions to the new end of file before writing, because
the file can always be extended by another process between when you set the file
position and when you write the data. Instead, use an append-type descriptor or
stream—they always output at the current end of the file. In order to make the end-
of-file position accurate, you must clean the output channel you were using, if it is
a stream.

It’s impossible for two channels to have separate file pointers for a file that
doesn’t support random access. Thus, channels for reading or writing such files are
always linked, never independent. Append-type channels are also always linked.
For these channels, follow the rules for linked channels (see Section 2.5.1 [Linked
Channels], page 29).

2.5.3 Cleaning Streams

On the GNU system, you can clean up any stream with fclean:

Functionint fclean (FILE *stream)
Clean up the stream stream so that its buffer is empty. If stream is doing output,
force it out. If stream is doing input, give the data in the buffer back to the
system, arranging to reread it.

On other systems, you can use fflush to clean a stream in most cases.
You can skip the fclean or fflush if you know the stream is already clean. A

stream is clean whenever its buffer is empty. For example, an unbuffered stream is
always clean. An input stream that is at end-of-file is clean. A line-buffered stream
is clean when the last character output was a newline. However, a just-opened input
stream might not be clean, as its input buffer might not be empty.

There is one case in which cleaning a stream is impossible on most systems.
This is when the stream is doing input from a file that is not random access. Such
streams typically read ahead, and when the file is not random access, there is no

Chapter 2: Low-Level Input/Output 31

way to give back the excess data already read. When an input stream reads from a
random-access file, fflush does clean the stream, but leaves the file pointer at an
unpredictable place; you must set the file pointer before doing any further I/O. On
the GNU system, using fclean avoids both of these problems.

Closing an output-only stream also does fflush, so this is a valid way of clean-
ing an output stream. On the GNU system, closing an input stream does fclean.

You need not clean a stream before using its descriptor for control operations
such as setting terminal modes—these operations don’t affect the file position and
are not affected by it. You can use any descriptor for these operations, and all chan-
nels are affected simultaneously. However, text already “output” to a stream but
still buffered by the stream will be subject to the new terminal modes when subse-
quently flushed. To make sure “past” output is covered by the terminal settings that
were in effect at the time, flush the output streams for that terminal before setting
the modes (see Section 6.4 [Terminal Modes], page 181).

2.6 Fast Scatter-Gather I/O
Some applications may need to read or write data to multiple buffers, which are

separated in memory. Although this can be done easily enough with multiple calls
to read and write, it is inefficient because there is overhead associated with each
kernel call.

Instead, many platforms provide special high-speed primitives to perform these
scatter-gather operations in a single kernel call. The GNU C library will provide an
emulation on any system that lacks these primitives, so they are not a portability
threat. They are defined in sys/uio.h.

These functions are controlled with arrays of iovec structures, which describe
the location and size of each buffer.

Data Typestruct iovec
The iovec structure describes a buffer. It contains two fields:

void *iov_base
This contains the address of a buffer.

size_t iov_len
This contains the length of the buffer.

Functionssize_t readv (int filedes, const struct iovec
*vector, int count)

The readv function reads data from filedes and scatters it into the buffers de-
scribed in vector, which is taken to be count structures long. As each buffer is
filled, data is sent to the next.
readv is not guaranteed to fill all the buffers. It may stop at any point, for the
same reasons read would.
The return value is a count of bytes (not buffers) read, 0 indicating end-of-file,
or −1 indicating an error. The possible errors are the same as in read.

32 The GNU C Library: System & Network Applications

Functionssize_t writev (int filedes, const struct iovec
*vector, int count)

The writev function gathers data from the buffers described in vector, which
is taken to be count structures long, and writes them to filedes. As each
buffer is written, it moves on to the next.
Like readv, writev may stop midstream under the same conditions write
would.
The return value is a count of bytes written, or −1 indicating an error. The
possible errors are the same as in write.

If the buffers are small (under about 1kB), high-level streams may be easier to
use than these functions. However, readv and writev are more efficient when
the individual buffers themselves (as opposed to the total output), are large. In that
case, a high-level stream would not be able to cache the data effectively.

2.7 Memory-Mapped I/O
On modern operating systems, it is possible to mmap (pronounced “em-map”) a

file to a region of memory. When this is done, the file can be accessed just like an
array in the program.

This is more efficient than read or write, since only the regions of the file
that a program actually accesses are loaded. Accesses to not-yet-loaded parts of the
mmapped region are handled in the same way as swapped-out pages.

Since mmapped pages can be stored back to their file when physical memory is
low, it is possible to mmap files orders of magnitude larger than both the physical
memory and swap space. The only limit is address space. The theoretical limit
is 4GB on a 32-bit machine—however, the actual limit will be smaller since some
areas will be reserved for other purposes. If the LFS interface is used, the file
size on 32-bit systems is not limited to 2GB (offsets are signed, which reduces the
addressable area of 4GB by half); the full 64 bits are available.

Memory mapping only works on entire pages of memory. Thus, addresses for
mapping must be page aligned, and length values will be rounded up. To determine
the size of a page the machine uses, you should use:

size_t page_size = (size_t) sysconf (_SC_PAGESIZE);

These functions are declared in ‘sys/mman.h’.

Functionvoid * mmap (void *address, size_t length,int protect,
int flags, int filedes, off_t offset)

The mmap function creates a new mapping, connected to bytes (offset) to (offset
+ length - 1) in the file open on filedes. A new reference for the file specified
by filedes is created, which is not removed by closing the file.
address gives a preferred starting address for the mapping. NULL expresses no
preference. Any previous mapping at that address is automatically removed.
The address you give may still be changed, unless you use the MAP_FIXED
flag.

Chapter 2: Low-Level Input/Output 33

protect contains flags that control what kind of access is permitted. They in-
clude PROT_READ, PROT_WRITE and PROT_EXEC, which permit reading,
writing and execution, respectively. Inappropriate access will cause a segfault
(see Section 17.2.1 [Program-Error Signals], page 379).
Most hardware designs cannot support write permission without read permis-
sion, and many do not distinguish read and execute permission. Thus, you may
receive wider permissions than you ask for, and mappings of write-only files
may be denied even if you do not use PROT_READ.
flags contains flags that control the nature of the map. One of MAP_SHARED or
MAP_PRIVATE must be specified.
They include:

MAP_PRIVATE
This specifies that writes to the region should never be written back
to the attached file. Instead, a copy is made for the process, and
the region will be swapped normally if memory runs low. No other
process will see the changes.
Since private mappings effectively revert to ordinary memory
when written to, you must have enough virtual memory for a copy
of the entire mmapped region if you use this mode with PROT_
WRITE.

MAP_SHARED
This specifies that writes to the region will be written back to the
file. Changes made will be shared immediately with other pro-
cesses mmaping the same file.
Actual writing may take place at any time. You need to use
msync, described below, if it is important that other processes
using conventional I/O get a consistent view of the file.

MAP_FIXED
This forces the system to use the exact mapping address specified
in address and to fail if it can’t.

MAP_ANONYMOUS
MAP_ANON

This flag tells the system to create an anonymous mapping, not
connected to a file. filedes and off are ignored, and the region is
initialized with zeros.
Anonymous maps are used as the basic primitive to extend the heap
on some systems. They are also useful to share data between mul-
tiple tasks without creating a file.
On some systems, using private anonymous mmaps is more effi-
cient than using malloc for large blocks. This is not an issue with
the GNU C Library, since the included malloc automatically uses
mmap where appropriate.

34 The GNU C Library: System & Network Applications

mmap returns the address of the new mapping, or −1 for an error.
Possible errors include:

EINVAL

Either address was unusable, or inconsistent flags were given.

EACCES

filedes was not open for the type of access specified in protect.

ENOMEM

Either there is not enough memory for the operation, or the process
is out of address space.

ENODEV

This file is of a type that doesn’t support mapping.

ENOEXEC

The file is on a file system that doesn’t support mapping.

Functionvoid * mmap64 (void *address, size_t length,int
protect, int flags, int filedes, off64_t offset)

The mmap64 function is equivalent to the mmap function, but the offset param-
eter is of type off64_t. On 32-bit systems, this allows the file associated with
the filedes descriptor to be larger than 2GB. filedes must be a descriptor returned
from a call to open64 or fopen64 and freopen64, where the descriptor is
retrieved with fileno.
When the sources are translated with _FILE_OFFSET_BITS == 64, this
function is actually available under the name mmap—the new, extended API
using 64-bit file sizes and offsets transparently replaces the old API.

Functionint munmap (void *addr, size_t length)
munmap removes any memory maps from (addr) to (addr + length). length
should be the length of the mapping.
It is safe to unmap multiple mappings in one command, or include unmapped
space in the range. It is also possible to unmap only part of an existing mapping.
However, only entire pages can be removed. If length is not an even number of
pages, it will be rounded up.
It returns 0 for success and −1 for an error.
One error is possible:

EINVAL The memory range given was outside the user mmap range or
wasn’t page aligned.

Functionint msync (void *address, size_t length, int flags)
When using shared mappings, the kernel can write the file at any time before
the mapping is removed. To be certain data has actually been written to the file

Chapter 2: Low-Level Input/Output 35

and will be accessible to non-memory-mapped I/O, it is necessary to use this
function.
It operates on the region address to (address + length). It may be used on part of
a mapping or multiple mappings; however, the region given should not contain
any unmapped space.
flags can contain some options:

MS_SYNC

This flag makes sure the data is actually written to disk. Normally
msync only makes sure that accesses to a file with conventional
I/O reflect the recent changes.

MS_ASYNC
This tells msync to begin the synchronization, but not to wait for
it to complete.

msync returns 0 for success and −1 for error. Errors include:

EINVAL An invalid region was given, or the flags were invalid.

EFAULT There is no existing mapping in at least part of the given region.

Functionvoid * mremap (void *address, size_t length, size_t
new length, int flag)

This function can be used to change the size of an existing memory area. address
and length must cover a region entirely mapped in the same mmap statement.
A new mapping with the same characteristics will be returned with the length
new length.
One option is possible, MREMAP_MAYMOVE. If it is given in flags, the system
may remove the existing mapping and create a new one of the desired length in
another location.
The address of the resulting mapping is returned, or −1. Possible error codes
include:

EFAULT There is no existing mapping in at least part of the original region,
or the region covers two or more distinct mappings.

EINVAL The address given is misaligned or inappropriate.

EAGAIN The region has pages locked, and if extended it would exceed the
process’s resource limit for locked pages (see Section 14.2 [Limit-
ing Resource Usage], page 338).

ENOMEM The region is private writable, and insufficient virtual memory is
available to extend it. Also, this error will occur if MREMAP_
MAYMOVE is not given and the extension would collide with an-
other mapped region.

36 The GNU C Library: System & Network Applications

This function is only available on a few systems. Except for performing optional
optimizations, you should not rely on this function.

Not all file descriptors may be mapped. Sockets, pipes and most devices only al-
low sequential access and do not fit into the mapping abstraction. In addition, some
regular files may not be mmapable, and older kernels may not support mapping at
all. Thus, programs using mmap should have a fallback method to use should it
fail.7

Functionint madvise (void *addr, size_t length, int advice)
This function can be used to provide the system with advice about the intended
usage patterns of the memory region starting at addr and extending length bytes.
The valid BSD values for advice are

MADV_NORMAL
The region should receive no further special treatment.

MADV_RANDOM
The region will be accessed via random page references. The ker-
nel should page-in the minimal number of pages for each page
fault.

MADV_SEQUENTIAL
The region will be accessed via sequential page references. This
may cause the kernel to aggressively read ahead, expecting further
sequential references after any page fault within this region.

MADV_WILLNEED
The region will be needed. The pages within this region may be
prefaulted in by the kernel.

MADV_DONTNEED
The region is no longer needed. The kernel may free these pages,
causing any changes to the pages to be lost, as well as swapped-out
pages to be discarded.

The POSIX names are slightly different, but with the same meanings:

POSIX_MADV_NORMAL
This corresponds with BSD’s MADV_NORMAL.

POSIX_MADV_RANDOM
This corresponds with BSD’s MADV_RANDOM.

POSIX_MADV_SEQUENTIAL
This corresponds with BSD’s MADV_SEQUENTIAL.

POSIX_MADV_WILLNEED
This corresponds with BSD’s MADV_WILLNEED.

7 Richard Stallman et al., “Mmap” in GNU Coding Standards (January 16, 2004), http://
www.gnu.org/ prep/ standards_toc.html.

http:// www.gnu.org/ prep/ standards_toc.html
http:// www.gnu.org/ prep/ standards_toc.html

Chapter 2: Low-Level Input/Output 37

POSIX_MADV_DONTNEED
This corresponds with BSD’s MADV_DONTNEED.

msync returns 0 for success and −1 for error. Errors include:

EINVAL An invalid region was given, or the advice was invalid.

EFAULT There is no existing mapping in at least part of the given region.

2.8 Waiting for Input or Output
Sometimes a program needs to accept input on multiple input channels when-

ever input arrives. For example, some workstations may have devices such as a
digitizing tablet, function-button box or dial box that are connected via normal
asynchronous serial interfaces; good user interface style requires responding im-
mediately to input on any device. Another example is a program that acts as a
server to several other processes via pipes or sockets.

You cannot normally use read for this purpose, because this blocks the program
until input is available on one particular file descriptor; input on other channels
won’t wake it up. You could set nonblocking mode and poll each file-descriptor in
turn, but this is very inefficient.

A better solution is to use the select function. This blocks the program until
input or output is ready on a specified set of file descriptors, or until a timer expires,
whichever comes first. This facility is declared in the header file ‘sys/types.h’.

In the case of a server socket (see Section 5.9.2 [Listening for Connections],
page 155), we say that “input” is available when there are pending connections that
could be accepted (see Section 5.9.3 [Accepting Connections], page 155). accept
for server sockets blocks and interacts with select just as read does for normal
input.

The file-descriptor sets for the select function are specified as fd_set ob-
jects. Here is the description of the data type and some macros for manipulating
these objects:

Data Typefd set
The fd_set data type represents file-descriptor sets for the select function.
It is actually a bit array.

Macroint FD SETSIZE
The value of this macro is the maximum number of file descriptors that a fd_
set object can hold information about. On systems with a fixed maximum
number, FD_SETSIZE is at least that number. On some systems, including
GNU, there is no absolute limit on the number of descriptors open, but this macro
still has a constant value that controls the number of bits in an fd_set; if you
get a file descriptor with a value as high as FD_SETSIZE, you cannot put that
descriptor into an fd_set.

38 The GNU C Library: System & Network Applications

Macrovoid FD ZERO (fd_set *set)
This macro initializes the file-descriptor set set to be the empty set.

Macrovoid FD SET (int filedes, fd_set *set)
This macro adds filedes to the file-descriptor set set.
The filedes parameter must not have side effects, since it is evaluated more than
once.

Macrovoid FD CLR (int filedes, fd_set *set)
This macro removes filedes from the file-descriptor set set.
The filedes parameter must not have side effects, since it is evaluated more than
once.

Macroint FD ISSET (int filedes, const fd_set *set)
This macro returns a nonzero value (true) if filedes is a member of the file-
descriptor set set, and 0 (false) otherwise.
The filedes parameter must not have side effects, since it is evaluated more than
once.

Next, here is the description of the select function itself.

Functionint select (int nfds, fd_set *read-fds, fd_set *write-fds,
fd_set *except-fds, struct timeval *timeout)

The select function blocks the calling process until there is activity on any of
the specified sets of file descriptors, or until the timeout period has expired.
The file descriptors specified by the read-fds argument are checked to see if
they are ready for reading; the write-fds file descriptors are checked to see if
they are ready for writing; and the except-fds file-descriptors are checked for
exceptional conditions. You can pass a null pointer for any of these arguments
if you are not interested in checking for that kind of condition.
A file descriptor is considered ready for reading if it is not at end of file. A
server socket is considered ready for reading if there is a pending connection
which can be accepted with accept (see Section 5.9.3 [Accepting Connec-
tions], page 155). A client socket is ready for writing when its connection is
fully established (see Section 5.9.1 [Making a Connection], page 153).
“Exceptional conditions” does not mean errors—errors are reported immedi-
ately when an erroneous system call is executed, and do not constitute a state of
the descriptor. Rather, they include conditions such as the presence of an urgent
message on a socket (see Chapter 5 [Sockets], page 125).
The select function checks only the first nfds file descriptors. The usual thing
is to pass FD_SETSIZE as the value of this argument.
The timeout specifies the maximum time to wait. If you pass a null pointer for
this argument, it means to block indefinitely until one of the file descriptors is

Chapter 2: Low-Level Input/Output 39

ready. Otherwise, you should provide the time in struct timeval format.8
Specify zero as the time (a struct timeval containing all zeros) if you want
to find out which descriptors are ready without waiting if none are ready.
The normal return value from select is the total number of ready file descrip-
tors in all of the sets. Each of the argument sets is overwritten with information
about the descriptors that are ready for the corresponding operation. Thus, to
see if a particular descriptor desc has input, use FD_ISSET (desc, read-fds)
after select returns.
If select returns because the time-out period expires, it returns a value of 0.
Any signal will cause select to return immediately. So if your program uses
signals, you can’t rely on select to keep waiting for the full time specified. If
you want to be sure of waiting for a particular amount of time, you must check
for EINTR and repeat the select with a newly calculated time-out based on
the current time (see the example below and Section 17.5 [Primitives Interrupted
by Signals], page 408).
If an error occurs, select returns -1 and does not modify the argument file-
descriptor sets. The following errno error conditions are defined for this func-
tion:

EBADF One of the file-descriptor sets specified an invalid file-descriptor.

EINTR The operation was interrupted by a signal (see Section 17.5 [Prim-
itives Interrupted by Signals], page 408).

EINVAL The timeout argument is invalid; one of the components is negative
or too large.

Portability Note: The select function is a BSD Unix feature.
Here is an example showing how you can use select to establish a time-out

period for reading from a file descriptor. The input_timeout function blocks
the calling process until input is available on the file descriptor, or until the time-out
period expires.

#include <errno.h>

#include <stdio.h>

#include <unistd.h>

#include <sys/types.h>

#include <sys/time.h>

int

input_timeout (int filedes, unsigned int seconds)

{

8 See Loosemore et al., “High-Resolution Calendar” (see chap. 1, n. 1).

40 The GNU C Library: System & Network Applications

fd_set set;

struct timeval timeout;

/* Initialize the file-descriptor set. */

FD_ZERO (&set);

FD_SET (filedes, &set);

/* Initialize the timeout data structure. */

timeout.tv_sec = seconds;

timeout.tv_usec = 0;

/* select returns 0 if timeout, 1 if input available, -1 if error. */

return TEMP_FAILURE_RETRY (select (FD_SETSIZE,

&set, NULL, NULL,

&timeout));

}

int

main (void)

{

fprintf (stderr, "select returned %d.\n",

input_timeout (STDIN_FILENO, 5));

return 0;

}

There is another example showing the use of select to multiplex input
from multiple sockets in Section 5.9.7 [Byte-Stream Connection Server Example],
page 161.

2.9 Synchronizing I/O Operations

In most modern operating systems, the normal I/O operations are not executed
synchronously; even if a write system call returns, this does not mean the data is
actually written to the media, e.g., the disk.

In situations where synchronization points are necessary, you can use special
functions that ensure that all operations finish before they return.

Chapter 2: Low-Level Input/Output 41

Functionint sync (void)
A call to this function will not return as long as there is data that has not been
written to the device. All dirty buffers in the kernel will be written and so an
overall consistent system can be achieved (if no other process in parallel writes
data).
A prototype for sync can be found in ‘unistd.h’.
The return value is 0 to indicate no error.

Programs more often want to ensure that data written to a given file is committed,
rather than all data in the system. For this, sync is overkill.

Functionint fsync (int fildes)
The fsync function can be used to make sure all data associated with the open
file fildes is written to the device associated with the descriptor. The function
call does not return unless all actions have finished.
A prototype for fsync can be found in ‘unistd.h’.
This function is a cancellation point in multithreaded programs. This is a
problem if the thread allocates some resources (like memory, file descriptors,
semaphores, etc.) at the time fsync is called. If the thread gets canceled, these
resources stay allocated until the program ends. To avoid this, calls to fsync
should be protected using cancellation handlers.
The return value of the function is 0 if no error occurred. Otherwise, it is −1
and the global variable errno is set to the following values:

EBADF The descriptor fildes is not valid.

EINVAL No synchronization is possible since the system does not imple-
ment this.

Sometimes it is not even necessary to write all data associated with a file descrip-
tor. For example, in database files that do not change in size, it is enough to write all
the file content data to the device. Metainformation, such as the modification time,
is not that important, and leaving such information uncommitted does not prevent
a successful recovering of the file in case of a problem.

Functionint fdatasync (int fildes)
When a call to the fdatasync function returns, it is ensured that all of the file
data is written to the device. For all pending I/O operations, the parts guaran-
teeing data integrity finished.
Not all systems implement the fdatasync operation. On systems missing this
functionality, fdatasync is emulated by a call to fsync since the performed
actions are a superset of those required by fdatasync.
The prototype for fdatasync is in ‘unistd.h’.
The return value of the function is 0 if no error occurred. Otherwise, it is −1
and the global variable errno is set to the following values:

EBADF The descriptor fildes is not valid.

42 The GNU C Library: System & Network Applications

EINVAL No synchronization is possible since the system does not imple-
ment this.

2.10 Perform I/O Operations in Parallel
The POSIX.1b standard defines a new set of I/O operations that can significantly

reduce the time an application spends waiting at I/O. The new functions allow a
program to initiate one or more I/O operations and then immediately resume nor-
mal work while the I/O operations are executed in parallel. This functionality is
available if the ‘unistd.h’ file defines the symbol _POSIX_ASYNCHRONOUS_
IO.

These functions are part of the library with real-time functions named ‘librt’.
They are not actually part of the ‘libc’ binary. The implementation of these func-
tions can be done using support in the kernel (if available) or using an implementa-
tion based on threads at user level. In the latter case, it might be necessary to link
applications with the thread library ‘libpthread’ in addition to ‘librt’.

All AIO operations operate on files that were opened previously. There might be
an arbitrary number of operations running for one file. The asynchronous I/O op-
erations are controlled using a data structure named struct aiocb (AIO control
block). It is defined in ‘aio.h’ as follows:

Data Typestruct aiocb
The POSIX.1b standard mandates that the struct aiocb structure contain at
least the members described in the following table. There might be more ele-
ments that are used by the implementation, but depending upon these elements
is not portable and is highly deprecated.

int aio_fildes
This element specifies the file descriptor to be used for the oper-
ation. It must be a legal descriptor, otherwise the operation will
fail.
The device on which the file is opened must allow the seek
operation—it is not possible to use any of the AIO operations on
devices like terminals, where an lseek call would lead to an er-
ror.

off_t aio_offset
This element specifies the offset in the file at which the operation
(input or output) is performed. Since the operations are carried out
in arbitrary order and more than one operation for one file descrip-
tor can be started, you cannot expect a current read/write position
of the file descriptor.

volatile void *aio_buf
This is a pointer to the buffer with the data to be written or the
place where the read data is stored.

Chapter 2: Low-Level Input/Output 43

size_t aio_nbytes
This element specifies the length of the buffer pointed to by aio_
buf.

int aio_reqprio
If the platform has defined _POSIX_PRIORITIZED_IO
and _POSIX_PRIORITY_SCHEDULING, the AIO requests
are processed based on the current scheduling priority. The
aio_reqprio element can then be used to lower the priority of
the AIO operation.

struct sigevent aio_sigevent
This element specifies how the calling process is notified once the
operation terminates. If the sigev_notify element is SIGEV_
NONE, no notification is sent. If it is SIGEV_SIGNAL, the sig-
nal determined by sigev_signo is sent. Otherwise, sigev_
notify must be SIGEV_THREAD. In this case, a thread is
created that starts executing the function pointed to by sigev_
notify_function.

int aio_lio_opcode
This element is only used by the lio_listio and lio_
listio64 functions. Since these functions allow an arbitrary
number of operations to start at once, and each operation can be
input or output (or nothing), the information must be stored in the
control block. The possible values are

LIO_READ
Start a read operation. Read from the file at posi-
tion aio_offset and store the next aio_nbytes
bytes in the buffer pointed to by aio_buf.

LIO_WRITE
Start a write operation. Write aio_nbytes bytes
starting at aio_buf into the file starting at position
aio_offset.

LIO_NOP Do nothing for this control block. This value is useful
sometimes when an array of struct aiocb values
contains holes, i.e., some of the values must not be
handled although the whole array is presented to the
lio_listio function.

When the sources are compiled using _FILE_OFFSET_BITS == 64 on a 32-
bit machine, this type is in fact struct aiocb64, since the LFS interface
transparently replaces the struct aiocb definition.

For use with the AIO functions defined in the LFS, there is a similar type defined
that replaces the types of the appropriate members with larger types but otherwise
is equivalent to struct aiocb. Particularly, all member names are the same.

44 The GNU C Library: System & Network Applications

Data Typestruct aiocb64
int aio_fildes

This element specifies the file descriptor that is used for the oper-
ation. It must be a legal descriptor, since otherwise the operation
fails for obvious reasons.
The device on which the file is opened must allow the seek
operation—it is not possible to use any of the AIO operations on
devices like terminals, where an lseek call would lead to an er-
ror.

off64_t aio_offset
This element specifies at which offset in the file the operation (in-
put or output) is performed. Since the operations are carried out in
arbitrary order and more than one operation for one file descriptor
can be started, you cannot expect a current read/write position of
the file descriptor.

volatile void *aio_buf
This is a pointer to the buffer with the data to be written or the
place where the read data is stored.

size_t aio_nbytes
This element specifies the length of the buffer pointed to by aio_
buf.

int aio_reqprio
If for the platform _POSIX_PRIORITIZED_IO and _POSIX_
PRIORITY_SCHEDULING are defined, the AIO requests
are processed based on the current scheduling priority. The
aio_reqprio element can then be used to lower the priority of
the AIO operation.

struct sigevent aio_sigevent
This element specifies how the calling process is notified once the
operation terminates. If the sigev_notify element is SIGEV_
NONE, no notification is sent. If it is SIGEV_SIGNAL, the sig-
nal determined by sigev_signo is sent. Otherwise, sigev_
notify must be SIGEV_THREAD, in which case a thread that
starts executing the function pointed to by sigev_notify_
function.

int aio_lio_opcode
This element is only used by the lio_listio and [lio_
listio64 functions. Since these functions allow an arbitrary
number of operations to start at once, and since each operation can
be input or output (or nothing), the information must be stored in
the control block. See the description of struct aiocb for a
description of the possible values.

Chapter 2: Low-Level Input/Output 45

When the sources are compiled using _FILE_OFFSET_BITS == 64 on a 32-
bit machine, this type is available under the name struct aiocb64, since the
LFS transparently replaces the old interface.

2.10.1 Asynchronous Read and Write Operations

Functionint aio read (struct aiocb *aiocbp)
This function initiates an asynchronous read operation. It immediately returns
after the operation was enqueued or when an error was encountered.
The first aiocbp->aio_nbytes bytes of the file for which aiocbp-
>aio_fildes is a descriptor are written to the buffer starting at aiocbp-
>aio_buf. Reading starts at the absolute position aiocbp->aio_offset
in the file.
If prioritized I/O is supported by the platform, the aiocbp->aio_reqprio
value is used to adjust the priority before the request is actually enqueued.
The calling process is notified about the termination of the read request accord-
ing to the aiocbp->aio_sigevent value.
When aio_read returns, the return value is 0 if no error occurred that can
be found before the process is enqueued. If such an early error is found, the
function returns −1 and sets errno to one of the following values:

EAGAIN The request was not enqueued due to (temporarily) exceeded re-
source limitations.

ENOSYS The aio_read function is not implemented.

EBADF The aiocbp->aio_fildes descriptor is not valid. This con-
dition need not be recognized before enqueueing the request and
so this error might also be signaled asynchronously.

EINVAL The aiocbp->aio_offset or aiocbp->aio_reqpiro
value is invalid. This condition need not be recognized before
enqueueing the request and so this error might also be signaled
asynchronously.

If aio_read returns 0, the current status of the request can be queried using
aio_error and aio_return functions. As long as the value returned by
aio_error is EINPROGRESS, the operation has not yet completed. If aio_
error returns 0, the operation successfully terminated, otherwise the value is
to be interpreted as an error code. If the function terminated, the result of the
operation can be obtained using a call to aio_return. The returned value
is the same as an equivalent call to read would have returned. Possible error
codes returned by aio_error are

EBADF The aiocbp->aio_fildes descriptor is not valid.

ECANCELED
The operation was canceled before the operation was finished (see
Section 2.10.4 [Cancellation of AIO Operations], page 52).

46 The GNU C Library: System & Network Applications

EINVAL The aiocbp->aio_offset value is invalid.

When the sources are compiled with _FILE_OFFSET_BITS == 64, this
function is in fact aio_read64, since the LFS interface transparently replaces
the normal implementation.

Functionint aio read64 (struct aiocb *aiocbp)
This function is similar to the aio_read function. The only difference is
that on 32-bit machines, the file descriptor should be opened in the large file
mode. Internally, aio_read64 uses functionality equivalent to lseek64 (see
Section 2.3 [Setting the File Position of a Descriptor], page 25) to position the
file descriptor correctly for the reading, as opposed to lseek functionality used
in aio_read.
When the sources are compiled with _FILE_OFFSET_BITS == 64, this
function is available under the name aio_read and so transparently replaces
the interface for small files on 32-bit machines.

To write data asynchronously to a file, there exists an equivalent pair of functions
with a very similar interface.

Functionint aio write (struct aiocb *aiocbp)
This function initiates an asynchronous write operation. The function call im-
mediately returns after the operation is enqueued or if, before that happens, an
error is encountered.
The first aiocbp->aio_nbytes bytes from the buffer starting at aiocbp-
>aio_buf are written to the file for which aiocbp->aio_fildes is a de-
scriptor, starting at the absolute position aiocbp->aio_offset in the file.
If prioritized I/O is supported by the platform, the aiocbp->aio_reqprio
value is used to adjust the priority before the request is actually enqueued.
The calling process is notified about the termination of the read request accord-
ing to the aiocbp->aio_sigevent value.
When aio_write returns, the return value is 0 if no error occurred that can
be found before the process is enqueued. If such an early error is found, the
function returns −1 and sets errno to one of the following values:

EAGAIN The request was not enqueued due to (temporarily) exceeded re-
source limitations.

ENOSYS The aio_write function is not implemented.

EBADF The aiocbp->aio_fildes descriptor is not valid. This con-
dition may not be recognized before enqueueing the request, and
so this error might also be signaled asynchronously.

EINVAL The aiocbp->aio_offset or aiocbp->aio_reqprio
value is invalid. This condition may not be recognized before
enqueueing the request and so this error might also be signaled
asynchronously.

Chapter 2: Low-Level Input/Output 47

When aio_write returns 0, the current status of the request can be queried
using aio_error and aio_return functions. As long as the value returned
by aio_error is EINPROGRESS, the operation has not yet completed. If
aio_error returns 0, the operation successfully terminated, otherwise the
value is to be interpreted as an error code. If the function terminated, the result
of the operation can be had using a call to aio_return. The returned value
is the same as an equivalent call to read would have returned. Possible error
codes returned by aio_error are

EBADF The aiocbp->aio_fildes descriptor is not valid.

ECANCELED
The operation was canceled before the operation was finished (see
Section 2.10.4 [Cancellation of AIO Operations], page 52).

EINVAL The aiocbp->aio_offset value is invalid.

When the sources are compiled with _FILE_OFFSET_BITS == 64, this
function is in fact aio_write64 since the LFS interface transparently replaces
the normal implementation.

Functionint aio write64 (struct aiocb *aiocbp)
This function is similar to the aio_write function. The only difference is
that on 32-bit machines, the file descriptor should be opened in the large file
mode. Internally, aio_write64 uses functionality equivalent to lseek64
(see Section 2.3 [Setting the File Position of a Descriptor], page 25) to position
the file descriptor correctly for the writing, as opposed to lseek functionality
used in aio_write.
When the sources are compiled with _FILE_OFFSET_BITS == 64, this
function is available under the name aio_write and so transparently replaces
the interface for small files on 32-bit machines.

Besides these functions with the more or less traditional interface, POSIX.1b also
defines a function that can initiate more than one operation at a time, and that can
handle freely mixed read and write operations. It is therefore similar to a combina-
tion of readv and writev.

Functionint lio listio (int mode, struct aiocb *const list[], int
nent, struct sigevent *sig)

The lio_listio function can be used to enqueue an arbitrary number of read
and write requests at one time. The requests can all be meant for the same file,
all for different files or every solution in between.
lio_listio gets the nent requests from the array pointed to by list. The
operation to be performed is determined by the aio_lio_opcode member in
each element of list. If this field is LIO_READ, a read operation is enqueued,
similar to a call of aio_read for this element of the array (except that the way
the termination is signalled is different, as we will see below). If the aio_lio_
opcode member is LIO_WRITE, a write operation is enqueued. Otherwise,

48 The GNU C Library: System & Network Applications

the aio_lio_opcodemust be LIO_NOP, in which case this element of list is
simply ignored. This “operation” is useful in situations where you have a fixed
array of struct aiocb elements from which only a few need to be handled at
a time. Another situation is where the lio_listio call was canceled before
all requests are processed (see Section 2.10.4 [Cancellation of AIO Operations],
page 52) and the remaining requests have to be reissued.
The other members of each element of the array pointed to by list must have
values suitable for the operation as described in the documentation for aio_
read and aio_write above.
The mode argument determines how lio_listio behaves after having en-
queued all the requests. If mode is LIO_WAIT, it waits until all requests are
terminated. Otherwise, mode must be LIO_NOWAIT, and in this case the func-
tion returns immediately after having enqueued all the requests and the caller
gets a notification of the termination of all requests according to the sig parame-
ter. If sig is NULL, no notification is sent. Otherwise, a signal is sent or a thread
is started, just as described in the description for aio_read or aio_write.
If mode is LIO_WAIT, the return value of lio_listio is 0 when all requests
are completed successfully. Otherwise, the function return−1 and errno is set
accordingly. To find out which request or requests failed, you have to use the
aio_error function on all the elements of the array list.
In case mode is LIO_NOWAIT, the function returns 0 if all requests were en-
queued correctly. The current state of the requests can be found using aio_
error and aio_return as described above. If lio_listio returns −1
in this mode, the global variable errno is set accordingly. If a request did not
yet terminate, a call to aio_error returns EINPROGRESS. If the value is
different, the request is finished and the error value (or 0) is returned, and the
result of the operation can be retrieved using aio_return.
Possible values for errno are

EAGAIN The resources necessary to queue all the requests are not available
at the moment. The error status for each element of list must be
checked to determine which request failed.
Another reason could be that the system-wide limit of AIO requests
is exceeded. This cannot be the case for the implementation on
GNU systems, since no arbitrary limits exist.

EINVAL The mode parameter is invalid or nent is larger than
AIO_LISTIO_MAX.

EIO One or more of the request’s I/O operations failed. The error status
of each request should be checked to determine which one failed.

ENOSYS The lio_listio function is not supported.

If the mode parameter is LIO_NOWAIT and the caller cancels a request, the
error status for this request returned by aio_error is ECANCELED.

Chapter 2: Low-Level Input/Output 49

When the sources are compiled with _FILE_OFFSET_BITS == 64, this
function is in fact lio_listio64, since the LFS interface transparently re-
places the normal implementation.

Functionint lio listio64 (int mode, struct aiocb *const list,
int nent, struct sigevent *sig)

This function is similar to the lio_listio function. The only difference is
that on 32-bit machines, the file descriptor should be opened in the large file
mode. Internally, lio_listio64 uses functionality equivalent to lseek64
(see Section 2.3 [Setting the File Position of a Descriptor], page 25) to position
the file descriptor correctly for the reading or writing, as opposed to lseek
functionality used in lio_listio.
When the sources are compiled with _FILE_OFFSET_BITS == 64, this
function is available under the name lio_listio and so transparently re-
places the interface for small files on 32-bit machines.

2.10.2 Getting the Status of AIO Operations

As already described in the documentation of the functions in the last section,
it must be possible to get information about the status of an I/O request. When
the operation is performed truly asynchronously (as with aio_read and aio_
write and with lio_listio when the mode is LIO_NOWAIT), you sometimes
need to know whether a specific request already terminated and if so, what the result
was. The following two functions allow you to get this kind of information:

Functionint aio error (const struct aiocb *aiocbp)
This function determines the error state of the request described by the struct
aiocb variable pointed to by aiocbp. If the request has not yet terminated, the
value returned is always EINPROGRESS. Once the request has terminated, the
value aio_error returns is either 0 if the request completed successfully, or
the value that would be stored in the errno variable if the request would have
been done using read, write or fsync.
The function can return ENOSYS if it is not implemented. It could also return
EINVAL if the aiocbp parameter does not refer to an asynchronous operation
whose return status is not yet known.
When the sources are compiled with _FILE_OFFSET_BITS == 64, this
function is in fact aio_error64, since the LFS interface transparently re-
places the normal implementation.

Functionint aio error64 (const struct aiocb64 *aiocbp)
This function is similar to aio_error, with the only difference being that the
argument is a reference to a variable of type struct aiocb64.
When the sources are compiled with _FILE_OFFSET_BITS == 64, this
function is available under the name aio_error and so transparently replaces
the interface for small files on 32-bit machines.

50 The GNU C Library: System & Network Applications

Functionssize_t aio return (const struct aiocb *aiocbp)
This function can be used to retrieve the return status of the operation carried
out by the request described in the variable pointed to by aiocbp. As long as the
error status of this request as returned by aio_error is EINPROGRESS, the
return of this function is undefined.
Once the request is finished, this function can be used exactly once to retrieve
the return value. Following calls might lead to undefined behavior. The return
value itself is the value that would have been returned by the read, write, or
fsync call.
The function can return ENOSYS if it is not implemented. It could also return
EINVAL if the aiocbp parameter does not refer to an asynchronous operation
whose return status is not yet known.
When the sources are compiled with _FILE_OFFSET_BITS == 64, this
function is in fact aio_return64, since the LFS interface transparently re-
places the normal implementation.

Functionint aio return64 (const struct aiocb64 *aiocbp)
This function is similar to aio_return, with the only difference being that
the argument is a reference to a variable of type struct aiocb64.
When the sources are compiled with _FILE_OFFSET_BITS == 64, this
function is available under the name aio_return and so transparently re-
places the interface for small files on 32-bit machines.

2.10.3 Getting into a Consistent State

When dealing with asynchronous operations, it is sometimes necessary to get
into a consistent state. This would mean for AIO that you want to know whether
a certain request or a group of requests was processed. This could be done by
waiting for the notification sent by the system after the operation terminates, but
this sometimes would mean wasting resources (mainly computation time). Instead,
POSIX.1b defines two functions that will help with most kinds of consistency.

The aio_fsync and aio_fsync64 functions are only available if the symbol
_POSIX_SYNCHRONIZED_IO is defined in ‘unistd.h’.

Functionint aio fsync (int op, struct aiocb *aiocbp)
Calling this function forces all I/O operations operating queued at the time of
the function call operating on the file descriptor aiocbp->aio_fildes into
the synchronized I/O completion state (see Section 2.9 [Synchronizing I/O Op-
erations], page 40). The aio_fsync function returns immediately, but the
notification through the method described in aiocbp->aio_sigevent will
happen only after all requests for this file descriptor have terminated and the file
is synchronized. This also means that requests for this very same file-descriptor
that are queued after the synchronization request are not affected.

Chapter 2: Low-Level Input/Output 51

If op is O_DSYNC, the synchronization happens as with a call to fdatasync.
Otherwise, op should be O_SYNC, and the synchronization happens as with
fsync.
As long as the synchronization has not happened, a call to aio_errorwith the
reference to the object pointed to by aiocbp returns EINPROGRESS. Once the
synchronization is done, aio_error return 0 if the synchronization was not
successful. Otherwise, the value returned is the value to which the fsync or
fdatasync function would have set the errno variable. In this case, nothing
can be assumed about the consistency for the data written to this file descriptor.
The return value of this function is 0 if the request was successfully enqueued.
Otherwise, the return value is −1, and errno is set to one of the following
values:

EAGAIN The request could not be enqueued due to temporary lack of re-
sources.

EBADF The file descriptor aiocbp->aio_fildes is not valid or not
open for writing.

EINVAL The implementation does not support I/O synchronization or the
op parameter is other than O_DSYNC and O_SYNC.

ENOSYS This function is not implemented.

When the sources are compiled with _FILE_OFFSET_BITS == 64, this
function is in fact aio_fsync64, since the LFS interface transparently re-
places the normal implementation.

Functionint aio fsync64 (int op, struct aiocb64 *aiocbp)
This function is similar to aio_fsync, with the only difference being that the
argument is a reference to a variable of type struct aiocb64.
When the sources are compiled with _FILE_OFFSET_BITS == 64, this
function is available under the name aio_fsync and so transparently replaces
the interface for small files on 32-bit machines.

Another method of synchronization is to wait until one or more requests of a
specific set terminate. This could be achieved by the aio_* functions to notify the
initiating process about the termination, but in some situations this is not the ideal
solution. In a program that constantly updates clients somehow connected to the
server, it is not always the best solution to go round robin since some connections
might be slow. On the other hand letting the aio_* function notify the caller might
not be the best solution either, since whenever the process works on preparing data
for one client, it makes no sense for it to be interrupted by a notification because
the new client will not be handled before the current client is served. For situations
like this, aio_suspend should be used.

52 The GNU C Library: System & Network Applications

Functionint aio suspend (const struct aiocb *const list[], int
nent, const struct timespec *timeout)

When calling this function, the calling thread is suspended until at least one of
the requests pointed to by the nent elements of the array list has completed. If
any of the requests has already completed at the time aio_suspend is called,
the function returns immediately. Whether a request has terminated or not is
determined by comparing the error status of the request with EINPROGRESS.
If an element of list is NULL, the entry is simply ignored.
If no request has finished, the calling process is suspended. If timeout is NULL,
the process is not woken until a request has finished. If timeout is not NULL,
the process remains suspended at least as long as specified in timeout. In this
case, aio_suspend returns with an error.
The return value of the function is 0 if one or more requests from the list have
terminated. Otherwise, the function returns −1, and errno is set to one of the
following values:

EAGAIN None of the requests from the list completed in the time specified
by timeout.

EINTR A signal interrupted the aio_suspend function. This signal
might also be sent by the AIO implementation while signalling the
termination of one of the requests.

ENOSYS The aio_suspend function is not implemented.

When the sources are compiled with _FILE_OFFSET_BITS == 64, this
function is in fact aio_suspend64, since the LFS interface transparently re-
places the normal implementation.

Functionint aio suspend64 (const struct aiocb64 *const list[],
int nent, const struct timespec *timeout)

This function is similar to aio_suspend, with the only difference being that
the argument is a reference to a variable of type struct aiocb64.
When the sources are compiled with _FILE_OFFSET_BITS == 64, this
function is available under the name aio_suspend and so transparently re-
places the interface for small files on 32-bit machines.

2.10.4 Cancellation of AIO Operations

When one or more requests are asynchronously processed, it might be useful in
some situations to cancel a selected operation, e.g., if it becomes obvious that the
written data is no longer accurate and would have to be overwritten soon. As an
example, assume an application, which writes data in files, in a situation where
new incoming data would have to be written in a file that will be updated by an
enqueued request. The POSIX AIO implementation provides such a function, but
this function is not capable of forcing the cancellation of the request. It is up to
the implementation to decide whether it is possible to cancel the operation or not.
Therefore, using this function is merely a hint.

Chapter 2: Low-Level Input/Output 53

Functionint aio cancel (int fildes, struct aiocb *aiocbp)
The aio_cancel function can be used to cancel one or more outstanding re-
quests. If the aiocbp parameter is NULL, the function tries to cancel all of the
outstanding requests that would process the file descriptor fildes (i.e., whose
aio_fildes member is fildes). If aiocbp is not NULL, aio_cancel at-
tempts to cancel the specific request pointed to by aiocbp.
For requests that were successfully canceled, the normal notification about
the termination of the request should take place; depending on the struct
sigevent object that controls this, nothing happens, a signal is sent or a thread
is started. If the request cannot be canceled, it terminates the usual way after
performing the operation.
After a request is successfully canceled, a call to aio_error with a reference
to this request as the parameter will return ECANCELED, and a call to aio_
return will return −1. If the request wasn’t canceled and is still running the
error status is still EINPROGRESS.
The return value of the function is AIO_CANCELED if there were requests that
haven’t terminated and that were successfully canceled. If there is one or more
requests left that couldn’t be canceled, the return value is AIO_NOTCANCELED.
In this case, aio_error must be used to find out which of the, perhaps multi-
ple, requests (in aiocbp is NULL) weren’t successfully canceled. If all requests
already terminated at the time aio_cancel is called, the return value is AIO_
ALLDONE.
If an error occurred during the execution of aio_cancel, the function returns
−1, and sets errno to one of the following values:

EBADF The file descriptor fildes is not valid.

ENOSYS aio_cancel is not implemented.

When the sources are compiled with _FILE_OFFSET_BITS == 64, this
function is in fact aio_cancel64, since the LFS interface transparently re-
places the normal implementation.

Functionint aio cancel64 (int fildes, struct aiocb64 *aiocbp)
This function is similar to aio_cancel, with the only difference being that
the argument is a reference to a variable of type struct aiocb64.
When the sources are compiled with _FILE_OFFSET_BITS == 64, this
function is available under the name aio_cancel and so transparently re-
places the interface for small files on 32-bit machines.

2.10.5 How to Optimize the AIO Implementation

The POSIX standard does not specify how the AIO functions are implemented.
They could be system calls, but it is also possible to emulate them at user level.

At the time of this writing, the available implementation is a user-level imple-
mentation that uses threads for handling the enqueued requests. While this imple-
mentation requires making some decisions about limitations, hard limitations are

54 The GNU C Library: System & Network Applications

best avoided in the GNU C Library. Therefore, the GNU C Library provides a means
for tuning the AIO implementation according to the individual use.

Data Typestruct aioinit
This data type is used to pass the configuration or tunable parameters to the
implementation. The program has to initialize the members of this struct and
pass it to the implementation using the aio_init function.

int aio_threads
This member specifies the maximal number of threads that may be
used at any one time.

int aio_num
This number provides an estimate on the maximum number of si-
multaneously enqueued requests.

int aio_locks
This is unused.

int aio_usedba
This is unused.

int aio_debug
This is unused.

int aio_numusers
This is unused.

int aio_reserved[2]
This is unused.

Functionvoid aio init (const struct aioinit *init)
This function must be called before any other AIO function. Calling it is com-
pletely voluntary, as it is only meant to help the AIO implementation perform
better.
Before calling the aio_init function, the members of a variable of type
struct aioinit must be initialized. Then a reference to this variable is
passed as the parameter to aio_init, which itself may or may not pay atten-
tion to the hints.
The function has no return value, and no error cases are defined. It is an ex-
tension that follows a proposal from the SGI implementation in Irix 6. It is not
covered by POSIX.1b or Unix98.

2.11 Control Operations on Files
This section describes how you can perform various other operations on file de-

scriptors, such as inquiring about or setting flags describing the status of the file
descriptor, and manipulating record locks. All of these operations are performed
by the function fcntl.

Chapter 2: Low-Level Input/Output 55

The second argument to the fcntl function is a command that specifies which
operation to perform. The function and macros that name various flags that are used
with it are declared in the header file ‘fcntl.h’. Many of these flags are also used
by the open function (see Section 2.1 [Opening and Closing Files], page 17).

Functionint fcntl (int filedes, int command, ...)
The fcntl function performs the operation specified by command on the file
descriptor filedes. Some commands require additional arguments. These addi-
tional arguments, the return value and error conditions are given in the detailed
descriptions of the individual commands.
Briefly, here is a list of what the various commands are.

F_DUPFD Duplicate the file descriptor—return another file-descriptor point-
ing to the same open file (see Section 2.12 [Duplicating Descrip-
tors], page 55).

F_GETFD Get flags associated with the file descriptor (see Section 2.13 [File-
Descriptor Flags], page 57).

F_SETFD Set flags associated with the file descriptor (see Section 2.13 [File-
Descriptor Flags], page 57).

F_GETFL Get flags associated with the open file (see Section 2.14 [File Sta-
tus Flags], page 59).

F_SETFL Set flags associated with the open file (see Section 2.14 [File Status
Flags], page 59).

F_GETLK Get a file lock (see Section 2.15 [File Locks], page 64).

F_SETLK Set or clear a file lock (see Section 2.15 [File Locks], page 64).

F_SETLKW
Like F_SETLK, but wait for completion (see Section 2.15 [File
Locks], page 64).

F_GETOWN
Get process or process-group ID to receive SIGIO signals (see
Section 2.16 [Interrupt-Driven Input], page 68).

F_SETOWN
Set process or process-group ID to receive SIGIO signals (see Sec-
tion 2.16 [Interrupt-Driven Input], page 68).

This function is a cancellation point in multithreaded programs. This is a prob-
lem if the thread allocates some resources (such as memory, file descriptors or
semaphores) at the time fcntl is called. If the thread gets canceled, these re-
sources stay allocated until the program ends. To avoid this, calls to fcntl
should be protected using cancellation handlers.

56 The GNU C Library: System & Network Applications

2.12 Duplicating Descriptors
You can duplicate a file descriptor, or allocate another file descriptor that refers to

the same open file as the original. Duplicate descriptors share one file position and
one set of file status flags (see Section 2.14 [File Status Flags], page 59), but each
has its own set of file-descriptor flags (see Section 2.13 [File-Descriptor Flags],
page 57).

The major use of duplicating a file descriptor is to implement redirection of input
or output—to change the file or pipe that a particular file-descriptor corresponds to.

You can perform this operation using the fcntl function with the F_DUPFD
command, but there are also convenient functions dup and dup2 for duplicating
descriptors.

The fcntl function and flags are declared in ‘fcntl.h’, while prototypes for
dup and dup2 are in the header file ‘unistd.h’.

Functionint dup (int old)
This function copies descriptor old to the first available descriptor number (the
first number not currently open). It is equivalent to fcntl (old, F_DUPFD,
0).

Functionint dup2 (int old, int new)
This function copies the descriptor old to descriptor number new.
If old is an invalid descriptor, then dup2 does nothing; it does not close new.
Otherwise, the new duplicate of old replaces any previous meaning of descriptor
new, as if new were closed first.
If old and new are different numbers, and old is a valid descriptor number, then
dup2 is equivalent to:

close (new);

fcntl (old, F_DUPFD, new)

However, dup2 does this atomically; there is no instant in the middle of calling
dup2 at which new is closed and not yet a duplicate of old.

Macroint F DUPFD
This macro is used as the command argument to fcntl, to copy the file de-
scriptor given as the first argument.
The form of the call in this case is

fcntl (old, F_DUPFD, next-filedes)

The next-filedes argument is of type int and specifies that the file descriptor
returned should be the next available one greater than or equal to this value.
The return value from fcntl with this command is normally the value of the
new file-descriptor. A return value of −1 indicates an error. The following
errno error conditions are defined for this command:

EBADF The old argument is invalid.

Chapter 2: Low-Level Input/Output 57

EINVAL The next-filedes argument is invalid.

EMFILE There are no more file descriptors available—your program is al-
ready using the maximum. In BSD and GNU, the maximum is con-
trolled by a resource limit that can be changed (see Section 14.2
[Limiting Resource Usage], page 338 for more information about
the RLIMIT_NOFILE limit).

ENFILE is not a possible error code for dup2 because dup2 does not create
a new opening of a file; duplicate descriptors do not count toward the limit that
ENFILE indicates. EMFILE is possible because it refers to the limit on distinct
descriptor numbers in use in one process.

Here is an example showing how to use dup2 to do redirection. Typically, redi-
rection of the standard streams (like stdin) is done by a shell or shell-like pro-
gram before calling one of the exec functions to execute a new program in a child
process (see Section 7.5 [Executing a File], page 212). When the new program is
executed, it creates and initializes the standard streams to point to the corresponding
file-descriptors, before its main function is invoked.

So, to redirect standard input to a file, the shell could do something like:
pid = fork ();

if (pid == 0)

{

char *filename;

char *program;

int file;

...

file = TEMP_FAILURE_RETRY (open (filename, O_RDONLY));

dup2 (file, STDIN_FILENO);

TEMP_FAILURE_RETRY (close (file));

execv (program, NULL);

}

There is also a more detailed example showing how to implement redirection in
the context of a pipeline of processes in Section 8.6.3 [Launching Jobs], page 228.

2.13 File-Descriptor Flags
file-descriptor flags are miscellaneous attributes of a file descriptor. These flags

are associated with particular file descriptors, so that if you have created duplicate
file-descriptors from a single opening of a file, each descriptor has its own set of
flags.

Currently, there is just one file-descriptor flag: FD_CLOEXEC, which causes the
descriptor to be closed if you use any of the exec... functions (see Section 7.5
[Executing a File], page 212).

The symbols in this section are defined in the header file ‘fcntl.h’.

58 The GNU C Library: System & Network Applications

Macroint F GETFD
This macro is used as the command argument to fcntl, to specify that it
should return the file-descriptor flags associated with the filedes argument.
The normal return value from fcntl with this command is a nonnegative num-
ber that can be interpreted as the bit-wise OR of the individual flags (except that
currently there is only one flag to use).
In case of an error, fcntl returns −1. The following errno error conditions
are defined for this command:

EBADF The filedes argument is invalid.

Macroint F SETFD
This macro is used as the command argument to fcntl, to specify that it
should set the file-descriptor flags associated with the filedes argument. This
requires a third int argument to specify the new flags, so the form of the call is

fcntl (filedes, F_SETFD, new-flags)

The normal return value from fcntlwith this command is an unspecified value
other than −1, which indicates an error. The flags and error conditions are the
same as for the F_GETFD command.

The following macro is defined for use as a file-descriptor flag with the fcntl
function. The value is an integer constant usable as a bit-mask value.

Macroint FD CLOEXEC
This flag specifies that the file descriptor should be closed when an exec func-
tion is invoked (see Section 7.5 [Executing a File], page 212). When a file
descriptor is allocated (as with open or dup), this bit is initially cleared on the
new file-descriptor, meaning that descriptor will survive into the new program
after exec.

If you want to modify the file-descriptor flags, you should get the current flags
with F_GETFD and modify the value. Don’t assume that the flags listed here are
the only ones that are implemented; your program may be run years from now and
more flags may exist then. For example, here is a function to set or clear the flag
FD_CLOEXEC without altering any other flags:

/* Set the FD_CLOEXEC flag of desc if value is nonzero,

or clear the flag if value is 0.

Return 0 on success, or -1 on error with errno set. */

int

set_cloexec_flag (int desc, int value)

{

int oldflags = fcntl (desc, F_GETFD, 0);

/* If reading the flags failed, return error indication now. */

if (oldflags < 0)

return oldflags;

Chapter 2: Low-Level Input/Output 59

/* Set just the flag we want to set. */

if (value != 0)

oldflags |= FD_CLOEXEC;

else

oldflags &= ˜FD_CLOEXEC;

/* Store modified flag word in the descriptor. */

return fcntl (desc, F_SETFD, oldflags);

}

2.14 File Status Flags
File status flags are used to specify attributes of the opening of a file. Unlike

the file-descriptor flags (see Section 2.13 [File-Descriptor Flags], page 57), the file
status flags are shared by duplicated file-descriptors resulting from a single opening
of the file. The file status flags are specified with the flags argument to open (see
Section 2.1 [Opening and Closing Files], page 17).

File status flags fall into three categories, which are described in the following
sections.

• Access modes (see Section 2.14.1 [File-Access Modes], page 59) specify what
type of access is allowed to the file: reading, writing or both. They are set by
open and are returned by fcntl, but cannot be changed.

• Open-Time flags (see Section 2.14.2 [Open-Time Flags], page 60) control de-
tails of what open will do. These flags are not preserved after the open call.

• Operating modes (see Section 2.14.3 [I/O Operating Modes], page 62) affect
how operations such as read and write are done. They are set by open
and can be fetched or changed with fcntl.

The symbols in this section are defined in the header file ‘fcntl.h’.

2.14.1 File-Access Modes

The file-access modes allow a file descriptor to be used for reading, writing or
both. (In the GNU system, they can also allow none of these, and allow execution
of the file as a program.) The access modes are chosen when the file is opened, and
never change.

Macroint O RDONLY
Open the file for read access.

Macroint O WRONLY
Open the file for write access.

Macroint O RDWR
Open the file for both reading and writing.

60 The GNU C Library: System & Network Applications

In the GNU system (and not in other systems), O_RDONLY and O_WRONLY are
independent bits that can be bit-wise-ORed together, and it is valid for either bit to
be set or clear. This means that O_RDWR is the same as O_RDONLY|O_WRONLY.
A file-access mode of zero is permissible; it allows no operations that do input or
output to the file, but does allow other operations such as fchmod. On the GNU
system, since “read-only” or “write-only” are misnomers, ‘fcntl.h’ defines ad-
ditional names for the file-access modes. These names are preferred when writing
GNU-specific code. But most programs will want to be portable to other POSIX.1
systems and should use the POSIX.1 names above instead.

Macroint O READ
Open the file for reading. This is the same as O_RDONLY; it is only defined on
GNU.

Macroint O WRITE
Open the file for writing. This is the same as O_WRONLY; it is only defined on
GNU.

Macroint O EXEC
Open the file for executing. It is only defined on GNU.

To determine the file-access mode with fcntl, you must extract the access-
mode bits from the retrieved file-status flags. In the GNU system, you can just test
the O_READ and O_WRITE bits in the flags word. But in other POSIX.1 systems,
reading and writing access modes are not stored as distinct bit flags. The portable
way to extract the file-access mode bits is with O_ACCMODE.

Macroint O ACCMODE
This macro stands for a mask that can be bit-wise-ANDed with the file-status
flag value to produce a value representing the file-access mode. The mode will
be O_RDONLY, O_WRONLY or O_RDWR. (In the GNU system, it could also be
zero, and it never includes the O_EXEC bit.)

2.14.2 Open-Time Flags

The open-time flags specify options affecting how open will behave. These op-
tions are not preserved once the file is open. The exception to this is O_NONBLOCK,
which is also an I/O operating mode and so is saved (see Section 2.1 [Opening and
Closing Files], page 17, for how to call open).

There are two sorts of options specified by open-time flags.
• File-name translation flags affect how open looks up the file name to locate

the file, and whether the file can be created.
• Open-time action flags specify extra operations that open will perform on the

file once it is open.

Here are the file-name translation flags:

Chapter 2: Low-Level Input/Output 61

Macroint O CREAT
If set, the file will be created if it doesn’t already exist.

Macroint O EXCL
If both O_CREAT and O_EXCL are set, then open fails if the specified file
already exists. This is guaranteed to never clobber an existing file.

Macroint O NONBLOCK
This prevents open from blocking for a “long time” to open the file. This is
only meaningful for some kinds of files, usually devices such as serial ports;
when it is not meaningful, it is harmless and ignored. Often, opening a port to
a modem blocks until the modem reports carrier detection; if O_NONBLOCK is
specified, open will return immediately without a carrier.
The O_NONBLOCK flag is overloaded as both an I/O operating mode and a file-
name translation flag. This means that specifying O_NONBLOCK in open also
sets nonblocking I/O mode (see Section 2.14.3 [I/O Operating Modes], page 62).
To open the file without blocking but do normal I/O that blocks, you must call
open with O_NONBLOCK set and then call fcntl to turn the bit off.

Macroint O NOCTTY
If the named file is a terminal device, don’t make it the controlling terminal for
the process. (See Chapter 8 [Job Control], page 221, for information about what
it means to be the controlling terminal.)
In the GNU system and 4.4 BSD, opening a file never makes it the controlling
terminal and O_NOCTTY is zero. However, other systems may use a nonzero
value for O_NOCTTY and set the controlling terminal when you open a file that
is a terminal device; so to be portable, use O_NOCTTY when it is important to
avoid this.

The following three file-name translation flags exist only in the GNU system:

Macroint O IGNORE CTTY
Do not recognize the named file as the controlling terminal, even if it refers to
the process’s existing controlling terminal device. Operations on the new file-
descriptor will never induce job-control signals (see Chapter 8 [Job Control],
page 221).

Macroint O NOLINK
If the named file is a symbolic link, open the link itself instead of the file it refers
to. (fstat on the new file-descriptor will return the information returned by
lstat on the link’s name.)

Macroint O NOTRANS
If the named file is specially translated, do not invoke the translator. Open the
bare file the translator itself sees.

62 The GNU C Library: System & Network Applications

The open-time action flags tell open to do additional operations that are not
really related to opening the file. The reason to do them as part of open instead of
in separate calls is that open can do them atomically.

Macroint O TRUNC
Truncate the file to zero length. This option is only useful for regular files, not
special files such as directories or FIFOs. POSIX.1 requires that you open the
file for writing to use O_TRUNC. In BSD and GNU you must have permission to
write the file to truncate it, but you need not open for write access.
This is the only open-time action flag specified by POSIX.1. There is no good
reason for truncation to be done by open, instead of by calling ftruncate
after. The O_TRUNC flag existed in Unix before ftruncate was invented,
and is retained for backward compatibility.

The remaining operating modes are BSD extensions. They exist only on some
systems. On other systems, these macros are not defined.

Macroint O SHLOCK
Acquire a shared lock on the file, as with flock (see Section 2.15 [File Locks],
page 64).
If O_CREAT is specified, the locking is done atomically when creating the file.
You are guaranteed that no other process will get the lock on the new file first.

Macroint O EXLOCK
Acquire an exclusive lock on the file, as with flock (see Section 2.15 [File
Locks], page 64). This is atomic like O_SHLOCK.

2.14.3 I/O Operating Modes

The operating modes affect how input and output operations using a file descrip-
tor work. These flags are set by open and can be fetched and changed with fcntl.

Macroint O APPEND
This is the bit that enables append mode for the file. If set, then all write
operations write the data at the end of the file, extending it, regardless of the
current file position. This is the only reliable way to append to a file. In append
mode, you are guaranteed that the data you write will always go to the current
end of the file, regardless of other processes writing to the file. Conversely, if
you simply set the file position to the end of file and write, then another process
can extend the file after you set the file position but before you write, resulting
in your data appearing someplace before the real end of file.

Macroint O NONBLOCK
This is the bit that enables nonblocking mode for the file. If this bit is set, read
requests on the file can return immediately with a failure status if there is no

Chapter 2: Low-Level Input/Output 63

input immediately available, instead of blocking. Likewise, write requests
can also return immediately with a failure status if the output can’t be written
immediately.
The O_NONBLOCK flag is overloaded as both an I/O operating mode and a file-
name translation flag (see Section 2.14.2 [Open-Time Flags], page 60).

Macroint O NDELAY
This is an obsolete name for O_NONBLOCK, provided for compatibility with
BSD. It is not defined by the POSIX.1 standard.

The remaining operating modes are BSD and GNU extensions. They exist only
on some systems. On other systems, these macros are not defined.

Macroint O ASYNC
This is the bit that enables asynchronous-input mode. If set, then SIGIO signals
will be generated when input is available (see Section 2.16 [Interrupt-Driven
Input], page 68).
Asynchronous-input mode is a BSD feature.

Macroint O FSYNC
This is the bit that enables synchronous writing for the file. If set, each write
call will make sure the data is reliably stored on disk before returning.
Synchronous writing is a BSD feature.

Macroint O SYNC
This is another name for O_FSYNC. They have the same value.

Macroint O NOATIME
If this bit is set, read will not update the access time of the file (see Sec-
tion 3.9.9 [File Times], page 108). This is used by programs that do backups, so
that backing a file up does not count as reading it. Only the owner of the file or
the superuser may use this bit.
This is a GNU extension.

2.14.4 Getting and Setting File Status Flags

The fcntl function can fetch or change file status flags.

Macroint F GETFL
This macro is used as the command argument to fcntl, to read the file status
flags for the open file with descriptor filedes.
The normal return value from fcntl with this command is a nonnegative num-
ber that can be interpreted as the bit-wise OR of the individual flags. Since the
file-access modes are not single-bit values, you can mask off other bits in the
returned flags with O_ACCMODE to compare them.

64 The GNU C Library: System & Network Applications

In case of an error, fcntl returns −1. The following errno error conditions
are defined for this command:

EBADF The filedes argument is invalid.

Macroint F SETFL
This macro is used as the command argument to fcntl, to set the file status
flags for the open file corresponding to the filedes argument. This command
requires a third int argument to specify the new flags, so the call looks like
this:

fcntl (filedes, F_SETFL, new-flags)

You can’t change the access mode for the file in this way—whether the file
descriptor was opened for reading or writing.
The normal return value from fcntlwith this command is an unspecified value
other than −1, which indicates an error. The error conditions are the same as
for the F_GETFL command.

If you want to modify the file status flags, you should get the current flags with
F_GETFL and modify the value. Don’t assume that the flags listed here are the
only ones that are implemented; your program may be run years from now and
more flags may exist then. For example, here is a function to set or clear the flag
O_NONBLOCK without altering any other flags:

/* Set the O_NONBLOCK flag of desc if value is nonzero,

or clear the flag if value is 0.

Return 0 on success, or -1 on error with errno set. */

int

set_nonblock_flag (int desc, int value)

{

int oldflags = fcntl (desc, F_GETFL, 0);

/* If reading the flags failed, return error indication now. */

if (oldflags == -1)

return -1;

/* Set just the flag we want to set. */

if (value != 0)

oldflags |= O_NONBLOCK;

else

oldflags &= ˜O_NONBLOCK;

/* Store modified flag word in the descriptor. */

return fcntl (desc, F_SETFL, oldflags);

}

Chapter 2: Low-Level Input/Output 65

2.15 File Locks
The remaining fcntl commands are used to support record locking, which

permits multiple cooperating programs to prevent each other from simultaneously
accessing parts of a file in error-prone ways.

An exclusive or write lock gives a process exclusive access for writing to the
specified part of the file. While a write lock is in place, no other process can lock
that part of the file.

A shared or read lock prohibits any other process from requesting a write lock
on the specified part of the file. However, other processes can request read locks.

The read and write functions do not actually check to see whether there are
any locks in place. If you want to implement a locking protocol for a file shared by
multiple processes, your application must do explicit fcntl calls to request and
clear locks at the appropriate points.

Locks are associated with processes. A process can only have one kind of lock
set for each byte of a given file. When any file descriptor for that file is closed
by the process, all of the locks that process holds on that file are released, even
if the locks were made using other descriptors that remain open. Likewise, locks
are released when a process exits, and are not inherited by child processes created
using fork (see Section 7.4 [Creating a Process], page 211).

When making a lock, use a struct flock to specify what kind of lock and
where. This data type and the associated macros for the fcntl function are de-
clared in the header file ‘fcntl.h’.

Data Typestruct flock
This structure is used with the fcntl function to describe a file lock. It has
these members:
short int l_type

This specifies the type of the lock; either F_RDLCK, F_WRLCK or
F_UNLCK.

short int l_whence
This corresponds to the whence argument to fseek or lseek,
and specifies what the offset is relative to. Its value can be one of
SEEK_SET, SEEK_CUR or SEEK_END.

off_t l_start
This specifies the offset of the start of the region to which the lock
applies and is given in bytes relative to the point specified by the
l_whence member.

off_t l_len
This specifies the length of the region to be locked. A value of 0 is
treated specially; it means the region extends to the end of the file.

pid_t l_pid
This field is the process ID (see Section 7.2 [Process-Creation Con-
cepts], page 210) of the process holding the lock. It is filled in by

66 The GNU C Library: System & Network Applications

calling fcntl with the F_GETLK command, but is ignored when
making a lock.

Macroint F GETLK
This macro is used as the command argument to fcntl, to specify that it
should get information about a lock. This command requires a third argument
of type struct flock * to be passed to fcntl, so that the form of the call
is

fcntl (filedes, F_GETLK, lockp)

If there is a lock already in place that would block the lock described by the
lockp argument, information about that lock overwrites *lockp . Existing locks
are not reported if they are compatible with making a new lock as specified.
Thus, you should specify a lock type of F_WRLCK if you want to find out about
both read and write locks, or F_RDLCK if you want to find out about write locks
only.
There might be more than one lock affecting the region specified by the lockp
argument, but fcntl only returns information about one of them. The l_
whencemember of the lockp structure is set to SEEK_SET, and the l_start
and l_len fields are set to identify the locked region.
If no lock applies, the only change to the lockp structure is to update the l_
type to a value of F_UNLCK.
The normal return value from fcntlwith this command is an unspecified value
other than −1, which is reserved to indicate an error. The following errno
error conditions are defined for this command:

EBADF The filedes argument is invalid.

EINVAL Either the lockp argument doesn’t specify valid lock information,
or the file associated with filedes doesn’t support locks.

Macroint F SETLK
This macro is used as the command argument to fcntl, to specify that it
should set or clear a lock. This command requires a third argument of type
struct flock * to be passed to fcntl, so that the form of the call is

fcntl (filedes, F_SETLK, lockp)

If the process already has a lock on any part of the region, the old lock on that
part is replaced with the new lock. You can remove a lock by specifying a lock
type of F_UNLCK.
If the lock cannot be set, fcntl returns immediately with a value of −1. This
function does not block waiting for other processes to release locks. If fcntl
succeeds, it return a value other than −1.
The following errno error conditions are defined for this function:

EAGAIN
EACCES The lock cannot be set because it is blocked by an existing lock

on the file. Some systems use EAGAIN in this case, and other

Chapter 2: Low-Level Input/Output 67

systems use EACCES; your program should treat them alike, after
F_SETLK. The GNU system always uses EAGAIN.

EBADF Either the filedes argument is invalid; because you requested a read
lock but the filedes is not open for read access; or you requested a
write lock but the filedes is not open for write access.

EINVAL Either the lockp argument doesn’t specify valid lock information,
or the file associated with filedes doesn’t support locks.

ENOLCK The system has run out of file-lock resources—there are already
too many file locks in place.
Well-designed file systems never report this error, because they
have no limitation on the number of locks. However, you must
still account for the possibility of this error, as it could result from
network access to a file system on another machine.

Macroint F SETLKW
This macro is used as the command argument to fcntl, to specify that it
should set or clear a lock. It is just like the F_SETLK command, but causes
the process to block (or wait) until the request can be specified.
This command requires a third argument of type struct flock *, as for the
F_SETLK command.
The fcntl return values and errors are the same as for the F_SETLK com-
mand, but these additional errno error conditions are defined for this com-
mand:

EINTR The function was interrupted by a signal while it was waiting (see
Section 17.5 [Primitives Interrupted by Signals], page 408).

EDEADLK The specified region is being locked by another process. But that
process is waiting to lock a region that the current process has
locked, so waiting for the lock would result in deadlock. The sys-
tem does not guarantee that it will detect all such conditions, but it
lets you know if it notices one.

The following macros are defined for use as values for the l_type member of
the flock structure. The values are integer constants.

F_RDLCK This macro is used to specify a read (or shared) lock.

F_WRLCK This macro is used to specify a write (or exclusive) lock.

F_UNLCK This macro is used to specify that the region is unlocked.

As an example of a situation where file locking is useful, consider a program that
can be run simultaneously by several different users, which logs status information
to a common file. One example of such a program might be a game that uses a
file to keep track of high scores. Another example might be a program that records
usage or accounting information for billing purposes.

68 The GNU C Library: System & Network Applications

Having multiple copies of the program simultaneously writing to the file could
cause the contents of the file to become mixed up. But you can prevent this kind of
problem by setting a write lock on the file before actually writing to the file.

If the program also needs to read the file and wants to make sure that the contents
of the file are in a consistent state, then it can also use a read lock. While the read
lock is set, no other process can lock that part of the file for writing.

Remember that file locks are only a voluntary protocol for controlling access to
a file. There is still potential for access to the file by programs that don’t use the
lock protocol.

2.16 Interrupt-Driven Input
If you set the O_ASYNC status flag on a file descriptor (see Section 2.14 [File

Status Flags], page 59), a SIGIO signal is sent whenever input or output becomes
possible on that file descriptor. The process or process group to receive the signal
can be selected by using the F_SETOWN command to the fcntl function. If the
file descriptor is a socket, this also selects the recipient of SIGURG signals that are
delivered when out-of-band data arrives on that socket (see Section 5.9.8 [Out-of-
Band Data], page 164). [SIGURG is sent in any situation where select would
report the socket as having an “exceptional condition” (see Section 2.8 [Waiting for
Input or Output], page 37).]

If the file descriptor corresponds to a terminal device, then SIGIO signals are
sent to the foreground process group of the terminal (see Chapter 8 [Job Control],
page 221).

The symbols in this section are defined in the header file ‘fcntl.h’.

Macroint F GETOWN
This macro is used as the command argument to fcntl, to specify that it
should get information about the process or process group to which SIGIO
signals are sent. For a terminal, this is actually the foreground process-group
ID, which you can get using tcgetpgrp (see Section 8.7.3 [Functions for
Controlling-Terminal Access], page 241).
The return value is interpreted as a process ID; if negative, its absolute value is
the process-group ID.
The following errno error condition is defined for this command:

EBADF The filedes argument is invalid.

Macroint F SETOWN
This macro is used as the command argument to fcntl, to specify that it
should set the process or process group to which SIGIO signals are sent. This
command requires a third argument of type pid_t to be passed to fcntl, so
that the form of the call is

fcntl (filedes, F_SETOWN, pid)

Chapter 2: Low-Level Input/Output 69

The pid argument should be a process ID. You can also pass a negative number
whose absolute value is a process-group ID.
The return value from fcntl with this command is −1 in case of error and
some other value if successful. The following errno error conditions are de-
fined for this command:

EBADF The filedes argument is invalid.

ESRCH There is no process or process group corresponding to pid.

2.17 Generic I/O Control Operations
The GNU system can handle most input/output operations on many different de-

vices and objects in terms of a few file primitives: read, write and lseek.
However, most devices also have a few peculiar operations that do not fit into this
model, such as:

• Changing the character font used on a terminal
• Telling a magnetic tape system to rewind or fast forward (since they cannot

move in byte increments, lseek is inapplicable).
• Ejecting a disk from a drive
• Playing an audio track from a CD-ROM drive
• Maintaining routing tables for a network

Although some objects such as sockets and terminals have special functions of
their own, it would not be practical to create functions for all these cases.9

Instead these minor operations, known as IOCTLs, are assigned code numbers
and multiplexed through the ioctl function, defined in sys/ioctl.h. The
code numbers themselves are defined in many different headers.

Functionint ioctl (int filedes, int command, ...)
The ioctl function performs the generic I/O operation command on filedes.
A third argument is usually present, either a single number or a pointer to a
structure. The meaning of this argument, the returned value and any error codes
depends upon the command used. Often, −1 is returned for a failure.

On some systems, IOCTLs used by different devices share the same numbers.
Thus, although use of an inappropriate IOCTL usually only produces an error, you
should not attempt to use device-specific IOCTLs on an unknown device.

Most IOCTLs are OS specific and/or are only used in special system utilities, and
are thus beyond the scope of this document. For an example of the use of an IOCTL,
see Section 5.9.8 [Out-of-Band Data], page 164.

9 Actually, the terminal-specific functions are implemented with IOCTLs on many platforms.

70 The GNU C Library: System & Network Applications

Chapter 3: File-System Interface 71

3 File-System Interface
This chapter describes the GNU C Library’s functions for manipulating files.

Unlike the input and output functions (see Chapter 2 [Low-Level Input/Output],
page 17),1 these functions are concerned with operating on the files themselves
rather than on their contents.

Among the facilities described in this chapter are functions for examining or
modifying directories, functions for renaming and deleting files, and functions for
examining and setting file attributes such as access permissions and modification
times.

3.1 Working Directory
Each process has a directory associated with it, called its current working direc-

tory or simply working directory, which is used in the resolution of relative file
names.2

When you log in and begin a new session, your working directory is ini-
tially set to the home directory associated with your login account in the system
user database. You can find any user’s home directory using the getpwuid or
getpwnam functions (see Section 10.13 [User Database], page 274).

Users can change the working directory using shell commands like cd. The
functions described in this section are the primitives used by those commands and
by other programs for examining and changing the working directory.

Prototypes for these functions are declared in the header file ‘unistd.h’.

Functionchar * getcwd (char *buffer, size_t size)
The getcwd function returns an absolute file-name representing the current
working directory, storing it in the character array buffer that you provide. The
size argument is how you tell the system the allocation size of buffer.
The GNU library version of this function also permits you to specify a null
pointer for the buffer argument. Then getcwd allocates a buffer automati-
cally, as with malloc.3 If the size is greater than 0, then the buffer is that
large; otherwise, the buffer is as large as necessary to hold the result.
The return value is buffer on success and a null pointer on failure. The following
errno error conditions are defined for this function:

EINVAL The size argument is 0 and buffer is not a null pointer.

ERANGE The size argument is less than the length of the working directory
name. You need to allocate a bigger array and try again.

EACCES Permission to read or search a component of the file name was
denied.

1 See Loosemore et al., “Input/Output on Streams” (see chap. 1, n. 1).
2 Ibid., “File-Name Resolution”.
3 Ibid., “Unconstrained Allocation”.

72 The GNU C Library: System & Network Applications

You could implement the behavior of GNU’s getcwd (NULL, 0) using only
the standard behavior of getcwd:

char *

gnu_getcwd ()

{

size_t size = 100;

while (1)

{

char *buffer = (char *) xmalloc (size);

if (getcwd (buffer, size) == buffer)

return buffer;

free (buffer);

if (errno != ERANGE)

return 0;

size *= 2;

}

}

For information about xmalloc, which is not a library function but is a customary
name used in most GNU software, see Loosemore et al., “Examples of malloc”
(see chap. 1, n. 1).

Deprecated Functionchar * getwd (char *buffer)
This is similar to getcwd, but has no way to specify the size of the buffer. The
GNU library provides getwd only for backward compatibility with BSD.
The buffer argument should be a pointer to an array at least PATH_MAX bytes
long (see Section 12.6 [Limits on File-System Capacity], page 318). In the GNU
system, there is no limit to the size of a file name, so this is not necessarily
enough space to contain the directory name. That is why this function is depre-
cated.

Functionchar * get current dir name (void)
This get_current_dir_name function is basically equivalent to
getcwd (NULL, 0). The only difference is that the value of the PWD variable
is returned if this value is correct. This is a subtle difference that is visible if the
path described by the PWD value is using one or more symbol links, in which
case the value returned by getcwd can resolve the symbol links and therefore
yield a different result.
This function is a GNU extension.

Functionint chdir (const char *filename)
This function is used to set the process’s working directory to filename.
The normal, successful return value from chdir is 0. A value of -1 is returned
to indicate an error. The errno error conditions defined for this function are

Chapter 3: File-System Interface 73

the usual file-name syntax errors, plus ENOTDIR if the file filename is not a
directory.4

Functionint fchdir (int filedes)
This function is used to set the process’s working directory to the directory
associated with the file descriptor filedes.
The normal, successful return value from fchdir is 0. A value of -1 is re-
turned to indicate an error. The following errno error conditions are defined
for this function:

EACCES Read permission is denied for the directory named by dirname.

EBADF The filedes argument is not a valid file-descriptor.

ENOTDIR The file descriptor filedes is not associated with a directory.

EINTR The function call was interrupt by a signal.

EIO An I/O error occurred.

3.2 Accessing Directories
The facilities described in this section let you read the contents of a directory file.

This is useful if you want your program to list all the files in a directory, perhaps as
part of a menu.

The opendir function opens a directory stream whose elements are directory
entries. You use the readdir function on the directory stream to retrieve these
entries, represented as struct dirent objects. The name of the file for each
entry is stored in the d_name member of this structure. There are obvious parallels
here to the stream facilities for ordinary files.5

3.2.1 Format of a Directory Entry

This section describes what you find in a single directory entry, as you might
obtain it from a directory stream. All the symbols are declared in the header file
‘dirent.h’.

Data Typestruct dirent
This is a structure type used to return information about directory entries. It
contains the following fields:

char d_name[]
This is the null-terminated file-name component. This is the only
field you can count on in all POSIX systems.

4 Ibid., “File-Name Errors”.
5 Ibid., “Input/Output on Streams”.

74 The GNU C Library: System & Network Applications

ino_t d_fileno
This is the file serial number. For BSD compatibility, you can also
refer to this member as d_ino. In the GNU system and most
POSIX systems, for most files this the same as the st_ino mem-
ber that stat will return for the file (see Section 3.9 [File At-
tributes], page 93).

unsigned char d_namlen
This is the length of the file name, not including the terminating
null character. Its type is unsigned char because that is the
integer type of the appropriate size.

unsigned char d_type
This is the type of the file, possibly unknown. The following con-
stants are defined for its value:

DT_UNKNOWN
The type is unknown. On some systems, this is the
only value returned.

DT_REG This is a regular file.

DT_DIR This is a directory.

DT_FIFO This is a named pipe, or FIFO (see Section 4.3 [FIFO
Special Files], page 123).

DT_SOCK This is a local-domain socket.

DT_CHR This is a character device.

DT_BLK This is a block device.

This member is a BSD extension. The symbol _DIRENT_HAVE_
D_TYPE is defined if this member is available. On systems where
it is used, it corresponds to the file-type bits in the st_modemem-
ber of struct statbuf. If the value cannot be determined, the
member value is DT_UNKNOWN. These two macros convert be-
tween d_type values and st_mode values:

Functionint IFTODT (mode_t mode)
This returns the d_type value corresponding to mode.

Functionmode_t DTTOIF (int dtype)
This returns the st_mode value corresponding to dtype.

This structure may contain additional members in the future. Their availabil-
ity is always announced in the compilation environment by a macro named _
DIRENT_HAVE_D_xxx where xxx is replaced by the name of the new member.

Chapter 3: File-System Interface 75

For instance, the member d_reclen available on some systems is announced
through the macro _DIRENT_HAVE_D_RECLEN.
When a file has multiple names, each name has its own directory entry. The
only way you can tell that the directory entries belong to a single file is that they
have the same value for the d_fileno field.
File attributes such as size, modification times, etc., are part of the file itself, not
of any particular directory entry (see Section 3.9 [File Attributes], page 93).

3.2.2 Opening a Directory Stream

This section describes how to open a directory stream. All the symbols are de-
clared in the header file ‘dirent.h’.

Data TypeDIR
The DIR data type represents a directory stream.

You shouldn’t ever allocate objects of the struct dirent or DIR data types,
since the directory-access functions do that for you. Instead, you refer to these
objects using the pointers returned by the following functions:

FunctionDIR * opendir (const char *dirname)
The opendir function opens and returns a directory stream for reading the
directory whose file name is dirname. The stream has type DIR *.
If unsuccessful, opendir returns a null pointer. In addition to the usual file-
name errors, the following errno error conditions are defined for this func-
tion:6

EACCES Read permission is denied for the directory named by dirname.

EMFILE The process has too many files open.

ENFILE The entire system, or perhaps the file system that contains the di-
rectory, cannot support any additional open files at the moment.
This problem cannot happen on the GNU system.

The DIR type is typically implemented using a file descriptor, and the
opendir function in terms of the open function (see Chapter 2 [Low-Level
Input/Output], page 17). Directory streams and the underlying file-descriptors
are closed on exec (see Section 7.5 [Executing a File], page 212).

In some situations, it can be desirable to get hold of the file descriptor that is
created by the opendir call. For instance, to switch the current working directory
to the directory just read the fchdir function could be used. Historically, the DIR
type was exposed and programs could access the fields. This does not happen in
the GNU C Library. Instead, a separate function is provided to allow access.

6 Ibid., “File-Name Errors”.

76 The GNU C Library: System & Network Applications

Functionint dirfd (DIR *dirstream)
The function dirfd returns the file descriptor associated with the directory
stream dirstream. This descriptor can be used until the directory is closed with
closedir. If the directory stream implementation is not using file descriptors,
the return value is -1.

3.2.3 Reading and Closing a Directory Stream

This section describes how to read directory entries from a directory stream, and
how to close the stream when you are done with it. All the symbols are declared in
the header file ‘dirent.h’.

Functionstruct dirent * readdir (DIR *dirstream)
This function reads the next entry from the directory. It normally returns a
pointer to a structure containing information about the file. This structure is
statically allocated and can be rewritten by a subsequent call.
Portability Note: On some systems, readdir may not return entries for ‘.’
and ‘..’, even though these are always valid file-names in any directory.7

If there are no more entries in the directory or an error is detected, readdir
returns a null pointer. The following errno error condition is defined for this
function:

EBADF The dirstream argument is not valid.

readdir is not thread safe. Multiple threads using readdir on the same
dirstream may overwrite the return value. Use readdir_r when this is criti-
cal.

Functionint readdir r (DIR *dirstream, struct dirent *entry,
struct dirent **result)

This function is the reentrant version of readdir. Like readdir, it re-
turns the next entry from the directory. But to prevent conflicts between
simultaneously-running threads, the result is not stored in statically allocated
memory. Instead, the argument entry points to a place to store the result.
Normally, readdir_r returns 0 and sets *result to entry. If there are no more
entries in the directory or an error is detected, readdir_r sets *result to a null
pointer and returns a nonzero error code, also stored in errno, as described for
readdir.
Portability Note: On some systems, readdir_r may not return a NUL-
terminated string for the file name, even when there is no d_reclen field
in struct dirent and the file name is the maximum size allowed. Modern
systems all have the d_reclen field, and on old systems multithreading is not
critical. In any case, there is no such problem with the readdir function, so
that even on systems without the d_reclen member, you could use multiple
threads by using external locking.

7 Ibid., “File-Name Resolution”.

Chapter 3: File-System Interface 77

It is also important to look at the definition of the struct dirent type. Sim-
ply passing a pointer to an object of this type for the second parameter of
readdir_r might not be enough. Some systems don’t define the d_name
element to be sufficiently long. In this case, the user has to provide additional
space. There must be room for at least NAME_MAX + 1 characters in the d_
name array. Code to call readdir_r could look like this:

union

{

struct dirent d;

char b[offsetof (struct dirent, d_name) + NAME_MAX + 1];

} u;

if (readdir_r (dir, &u.d, &res) == 0)

...

To support large file-systems on 32-bit machines there are LFS variants of the
last two functions.

Functionstruct dirent64 * readdir64 (DIR *dirstream)
The readdir64 function is just like the readdir function, except that it
returns a pointer to a record of type struct dirent64. Some of the members
of this data type (notably d_ino) might have a different size to allow large file-
systems.
In all other aspects, this function is equivalent to readdir.

Functionint readdir64 r (DIR *dirstream, struct dirent64
*entry, struct dirent64 **result)

The readdir64_r function is equivalent to the readdir_r function, except
that it takes parameters of base type struct dirent64 instead of struct
dirent in the second and third position. The same precautions mentioned in
the documentation of readdir_r also apply here.

Functionint closedir (DIR *dirstream)
This function closes the directory stream dirstream. It returns 0 on success and
-1 on failure.
The following errno error conditions are defined for this function:

EBADF The dirstream argument is not valid.

3.2.4 Simple Program to List a Directory

Here’s a simple program that prints the names of the files in the current working
directory:

#include <stdio.h>

78 The GNU C Library: System & Network Applications

#include <sys/types.h>

#include <dirent.h>

int

main (void)

{

DIR *dp;

struct dirent *ep;

dp = opendir ("./");

if (dp != NULL)

{

while (ep = readdir (dp))

puts (ep->d_name);

(void) closedir (dp);

}

else

perror ("Couldn’t open the directory");

return 0;

}

The order in which files appear in a directory tends to be fairly random (see Sec-
tion 3.2.6 [Scanning the Content of a Directory], page 79. A more useful program
would sort the entries (perhaps by alphabetizing them) before printing them.8

3.2.5 Random Access in a Directory Stream

This section describes how to reread parts of a directory that you have already
read from an open directory stream. All the symbols are declared in the header file
‘dirent.h’.

Functionvoid rewinddir (DIR *dirstream)
The rewinddir function is used to reinitialize the directory stream dirstream,
so that if you call readdir, it returns information about the first entry in the
directory again. This function also notices if files have been added or removed
to the directory since it was opened with opendir. Entries for these files might
or might not be returned by readdir if they were added or removed since you
last called opendir or rewinddir.

8 Ibid., “Array Sort Function”.

Chapter 3: File-System Interface 79

Functionoff_t telldir (DIR *dirstream)
The telldir function returns the file position of the directory stream
dirstream. You can use this value with seekdir to restore the directory stream
to that position.

Functionvoid seekdir (DIR *dirstream, off_t pos)
The seekdir function sets the file position of the directory stream dirstream
to pos. The value pos must be the result of a previous call to telldir on
this particular stream; closing and reopening the directory can invalidate values
returned by telldir.

3.2.6 Scanning the Content of a Directory

A higher-level interface to the directory-handling functions is the scandir
function. With its help, you can select a subset of the entries in a directory, possibly
sort them and get a list of names as the result.

Functionint scandir (const char *dir, struct dirent
***namelist, int (*selector) (const struct dirent *), int
(*cmp) (const void *, const void *))

The scandir function scans the contents of the directory selected by dir.
The result in *namelist is an array of pointers to a structure of type struct
dirent, which describes all selected directory entries and is allocated using
malloc. Instead of always getting all directory entries returned, the user-
supplied function selector can be used to decide which entries are in the result.
Only the entries for which selector returns a nonzero value are selected.
Finally, the entries in *namelist are sorted using the user-supplied function cmp.
The arguments passed to the cmp function are of type struct dirent **,
therefore you cannot directly use the strcmp or strcoll functions; instead
see the functions alphasort and versionsort below.
The return value of the function is the number of entries placed in *namelist.
If it is -1, an error occurred (either the directory could not be opened for read-
ing or the malloc call failed), and the global variable errno contains more
information on the error.

As described above, the fourth argument to the scandir function must be a
pointer to a sorting function. For the convenience of the programmer, the GNU C
Library contains implementations of functions that are very useful for this purpose.

Functionint alphasort (const void *a, const void *b)
The alphasort function behaves like the strcoll function.9 The differ-
ence is that the arguments are not string pointers but instead are of type struct
dirent **.
The return value of alphasort is less than, equal to or greater than 0 depend-
ing on the order of the two entries a and b.

9 Ibid., “String/Array Comparison”.

80 The GNU C Library: System & Network Applications

Functionint versionsort (const void *a, const void *b)
The versionsort function is like alphasort, except that it uses the
strverscmp function internally.

If the file system supports large files, we cannot use scandir anymore, since
the dirent structure might not be able to contain all the information. The LFS
provides the new type struct dirent64. To use this, we need a new function.

Functionint scandir64 (const char *dir, struct dirent64
***namelist, int (*selector) (const struct dirent64 *),
int (*cmp) (const void *, const void *))

The scandir64 function works like the scandir function, except
that the directory entries it returns are described by elements of type
struct dirent64. The function pointed to by selector is again used to
select the desired entries, except that selector now must point to a function that
takes a struct dirent64 * parameter.
Similarly, the cmp function should expect its two arguments to be of type
struct dirent64 **.

As cmp is now a function of a different type, the functions alphasort and
versionsort cannot be supplied for that argument. Instead, we provide these
two replacement functions:

Functionint alphasort64 (const void *a, const void *b)
The alphasort64 function behaves like the strcoll function.10 The dif-
ference is that the arguments are not string pointers but instead are of type
struct dirent64 **.
The return value of alphasort64 is less than, equal to or greater than 0 de-
pending on the order of the two entries a and b.

Functionint versionsort64 (const void *a, const void *b)
The versionsort64 function is like alphasort64, except that it uses the
strverscmp function internally.

It is important not to mix the use of scandir and the 64-bit comparison func-
tions or vice versa. There are systems on which this works, but on others it fails
miserably.

3.2.7 Simple Program to List a Directory, Mark II

Here is a revised version of the directory lister found in Section 3.2.4 [Simple
Program to List a Directory], page 77. Using the scandir function we can avoid
the functions that work directly with the directory contents. After the call, the
returned entries are available for direct use.

10 Ibid., “String/Array Comparison”.

Chapter 3: File-System Interface 81

#include <stdio.h>

#include <dirent.h>

static int

one (struct dirent *unused)

{

return 1;

}

int

main (void)

{

struct dirent **eps;

int n;

n = scandir ("./", &eps, one, alphasort);

if (n >= 0)

{

int cnt;

for (cnt = 0; cnt < n; ++cnt)

puts (eps[cnt]->d_name);

}

else

perror ("Couldn’t open the directory");

return 0;

}

Note the simple selector function in this example. Since we want to see all
directory entries, we always return 1.

3.3 Working with Directory Trees

The functions described so far for handling the files in a directory have allowed
you to either retrieve the information bit by bit, or to process all the files as a group
(see scandir). Sometimes it is useful to process whole hierarchies of directories
and their contained files. The X/Open specification defines two functions to do
this. The simpler form is derived from an early definition in System V systems and
therefore this function is available on SVID-derived systems. The prototypes and
required definitions can be found in the ‘ftw.h’ header.

82 The GNU C Library: System & Network Applications

There are four functions in this family: ftw, nftw and their 64-bit counterparts
ftw64 and nftw64. These functions take as one of their arguments a pointer to a
callback function of the appropriate type.

Data Typeftw func t
int (*) (const char *, const struct stat *, int)

This is the type of callback function given to the ftw function. The first param-
eter points to the file name, the second parameter to an object of type struct
stat, which is filled in for the file named in the first parameter.
The last parameter is a flag giving more information about the current file. It
can have the following values:

FTW_F The item is either a normal file or a file that does not fit into one of
the following categories. This could be special files, sockets, etc.

FTW_D The item is a directory.

FTW_NS The stat call failed, so the information pointed to by the second
parameter is invalid.

FTW_DNR The item is a directory that cannot be read.

FTW_SL The item is a symbolic link. Since symbolic links are normally
followed, seeing this value in a ftw callback function means the
referenced file does not exist. The situation for nftw is different.
This value is only available if the program is compiled with _
BSD_SOURCE or _XOPEN_EXTENDED defined before including
the first header. The original SVID systems do not have symbolic
links.

If the sources are compiled with _FILE_OFFSET_BITS == 64, this type is
in fact __ftw64_func_t, since this mode changes struct stat to be
struct stat64.

For the LFS interface and for use in the function ftw64, the header ‘ftw.h’
defines another function type.

Data Typeftw64 func t
int (*) (const char *, const struct stat64 *, int)

This type is used just like __ftw_func_t for the callback function, but this
time is called from ftw64. The second parameter to the function is a pointer
to a variable of type struct stat64, which is able to represent the larger
values.

Data Typenftw func t
int (*) (const char *, const struct stat *, int, struct FTW *)

The first three arguments are the same as for the __ftw_func_t type. How-
ever for the third argument some additional values are defined to allow finer
differentiation:

Chapter 3: File-System Interface 83

FTW_DP The current item is a directory and all subdirectories have already
been visited and reported. This flag is returned instead of FTW_D
if the FTW_DEPTH flag is passed to nftw (see below).

FTW_SLN The current item is a stale symbolic link. The file it points to does
not exist.

The last parameter of the callback function is a pointer to a structure with some
extra information as described below.
If the sources are compiled with _FILE_OFFSET_BITS == 64, this type is
in fact __nftw64_func_t, since this mode changes struct stat to be
struct stat64.

For the LFS interface there is also a variant of this data type available, which has
to be used with the nftw64 function.

Data Typenftw64 func t
int (*) (const char *, const struct stat64 *, int, struct FTW *)

This type is used just like __nftw_func_t for the callback function, but this
time is called from nftw64. The second parameter to the function is this time
a pointer to a variable of type struct stat64, which is able to represent the
larger values.

Data Typestruct FTW
The information contained in this structure helps in interpreting the name pa-
rameter and gives some information about the current state of the traversal of
the directory hierarchy.

int base The value is the offset into the string passed in the first parameter
to the callback function of the beginning of the file name. The rest
of the string is the path of the file. This information is especially
important if the FTW_CHDIR flag was set in calling nftw, since
then the current directory is the one the current item is found in.

int level
While processing, the code tracks how many directories down it
has gone to find the current file. This nesting level starts at 0 for
files in the initial directory (or is 0 for the initial file if a file was
passed).

Functionint ftw (const char *filename, __ftw_func_t func, int
descriptors)

The ftw function calls the callback function given in the parameter func for
every item that is found in the directory specified by filename and all directories
below. The function follows symbolic links if necessary but does not process an
item twice. If filename is not a directory then it itself is the only object returned
to the callback function.

84 The GNU C Library: System & Network Applications

The file name passed to the callback function is constructed by taking the file-
name parameter and appending the names of all passed directories and then the
local file-name. So the callback function can use this parameter to access the
file. ftw also calls stat for the file and passes that information on to the call-
back function. If this stat call was not successful the failure is indicated by
setting the third argument of the callback function to FTW_NS. Otherwise it is
set according to the description given in the account of __ftw_func_t above.
The callback function is expected to return 0 to indicate that no error occurred
and that processing should continue. If an error occurred in the callback function
or it wants ftw to return immediately, the callback function can return a value
other than 0. This is the only correct way to stop the function. The program
must not use setjmp or similar techniques to continue from another place.
This would leave resources allocated by the ftw function unfreed.
The descriptors parameter to ftw specifies how many file descriptors it is al-
lowed to consume. The function runs faster the more descriptors it can use. For
each level in the directory hierarchy at most one descriptor is used, but for very
deep ones any limit on open file-descriptors for the process or the system may be
exceeded. Moreover, file-descriptor limits in a multithreaded program apply to
all the threads as a group, and therefore it is a good idea to supply a reasonable
limit to the number of open descriptors.
The return value of the ftw function is 0 if all callback function calls returned 0
and all actions performed by the ftw succeeded. If a function call failed (other
than calling stat on an item) the function returns −1. If a callback function
returns a value other than 0, this value is returned as the return value of ftw.
When the sources are compiled with _FILE_OFFSET_BITS == 64 on a 32-
bit system, this function is in fact ftw64—the LFS interface transparently re-
places the old interface.

Functionint ftw64 (const char *filename, __ftw64_func_t func,
int descriptors)

This function is similar to ftw but it can work on file systems with large files.
File information is reported using a variable of type struct stat64, which
is passed by reference to the callback function.
When the sources are compiled with _FILE_OFFSET_BITS == 64 on a 32-
bit system, this function is available under the name ftw and transparently re-
places the old implementation.

Functionint nftw (const char *filename, __nftw_func_t func,
int descriptors, int flag)

The nftw function works like the ftw functions. They call the callback func-
tion func for all items found in the directory filename and below. At most
descriptors file descriptors are consumed during the nftw call.
One difference is that the callback function is of a different type. It is of type
struct FTW * and provides the callback function with the extra information
described above.

Chapter 3: File-System Interface 85

A second difference is that nftw takes a fourth argument, which is 0 or a bit-
wise-OR combination of any of the following values:

FTW_PHYS
While traversing the directory, symbolic links are not followed.
Instead, symbolic links are reported using the FTW_SL value for
the type parameter to the callback function. If the file referenced
by a symbolic link does not exist, FTW_SLN is returned instead.

FTW_MOUNT
The callback function is only called for items that are on the same
mounted file-system as the directory given by the filename param-
eter to nftw.

FTW_CHDIR
If this flag is given, the current working directory is changed to
the directory of the reported object before the callback function is
called. When ntfw finally returns, the current directory is restored
to its original value.

FTW_DEPTH
If this option is specified, all subdirectories and files within them
are processed before processing the top directory itself (depth-first
processing). This also means the type flag given to the callback
function is FTW_DP and not FTW_D.

The return value is computed in the same way as for ftw. nftw returns 0 if no
failures occurred and all callback functions returned 0. In case of internal errors,
such as memory problems, the return value is−1 and errno is set accordingly. If
the return value of a callback invocation was nonzero, then that value is returned.
When the sources are compiled with _FILE_OFFSET_BITS == 64 on a 32-
bit system, this function is in fact nftw64—the LFS interface transparently
replaces the old interface.

Functionint nftw64 (const char *filename, __nftw64_func_t
func, int descriptors, int flag)

This function is similar to nftw, but it can work on file systems with large files.
File information is reported using a variable of type struct stat64, which
is passed by reference to the callback function.
When the sources are compiled with _FILE_OFFSET_BITS == 64 on a 32-
bit system, this function is available under the name nftw and transparently
replaces the old implementation.

3.4 Hard Links
In POSIX systems, one file can have many names at the same time. All of the

names are equally real, and no one of them is preferred to the others.

86 The GNU C Library: System & Network Applications

To add a name to a file, use the link function. (The new name is also called a
hard link to the file.) Creating a new link to a file does not copy the contents of the
file; it simply makes a new name by which the file can be known, in addition to the
file’s existing name or names.

One file can have names in several directories, so the organization of the file
system is not a strict hierarchy or tree.

In most implementations, it is not possible to have hard links to the same file in
multiple file systems. link reports an error if you try to make a hard link to the
file from another file system when this cannot be done.

The prototype for the link function is declared in the header file ‘unistd.h’.

Functionint link (const char *oldname, const char *newname)
The link function makes a new link to the existing file named by oldname,
under the new name newname.
This function returns a value of 0 if it is successful and -1 on failure. In addi-
tion to the usual file-name errors for both oldname and newname, the following
errno error conditions are defined for this function:11

EACCES You are not allowed to write to the directory in which the new link
is to be written.

EEXIST There is already a file named newname. If you want to replace this
link with a new link, you must remove the old link explicitly first.

EMLINK There are already too many links to the file named by oldname.
The maximum number of links to a file is LINK_MAX (see Sec-
tion 12.6 [Limits on File-System Capacity], page 318).

ENOENT The file named by oldname doesn’t exist. You can’t make a link to
a file that doesn’t exist.

ENOSPC The directory or file system that would contain the new link is full
and cannot be extended.

EPERM In the GNU system and some others, you cannot make links to
directories. Many systems allow only privileged users to do so.
This error is used to report the problem.

EROFS The directory containing the new link can’t be modified because
it’s on a read-only file system.

EXDEV The directory specified in newname is on a different file system
than the existing file.

EIO A hardware error occurred while trying to read or write to the file
system.

11 Ibid., “File-Name Errors”.

Chapter 3: File-System Interface 87

3.5 Symbolic Links
The GNU system supports soft links or symbolic links. This is a kind of “file”

that is essentially a pointer to another file name. Unlike hard links, symbolic links
can be made to directories or across file systems with no restrictions. You can also
make a symbolic link to a name that is not the name of any file (opening this link
will fail until a file by that name is created). Likewise, if the symbolic link points
to an existing file that is later deleted, the symbolic link continues to point to the
same file name even though the name no longer names any file.

The reason symbolic links work the way they do is that special things happen
when you try to open the link. The open function realizes you have specified the
name of a link, reads the file name contained in the link, and opens that file name
instead. The stat function likewise operates on the file that the symbolic link
points to, instead of on the link itself.

By contrast, other operations, such as deleting or renaming the file, operate on
the link itself. The functions readlink and lstat also refrain from following
symbolic links, because their purpose is to obtain information about the link. link,
the function that makes a hard link, does too. It makes a hard link to the symbolic
link, which you rarely want.

Some systems have for some functions operating on files a limit on how many
symbolic links are followed when resolving a path name. The limit, if it exists, is
published in the ‘sys/param.h’ header file.

Macroint MAXSYMLINKS
The macro MAXSYMLINKS specifies how many symlinks some function will
follow before returning ELOOP. Not all functions behave the same, and this
value is not the same as that returned for _SC_SYMLOOP by sysconf. In
fact, the sysconf result can indicate that there is no fixed limit even though
MAXSYMLINKS exists and has a finite value.

Prototypes for most of the functions listed in this section are in ‘unistd.h’.

Functionint symlink (const char *oldname, const char
*newname)

The symlink function makes a symbolic link to oldname named newname.
The normal return value from symlink is 0. A return value of -1 indicates
an error. In addition to the usual file-name syntax errors, the following errno
error conditions are defined for this function:12

EEXIST There is already an existing file named newname.

EROFS The file newname would exist on a read-only file system.

ENOSPC The directory or file system cannot be extended to make the new
link.

12 Ibid., “File-Name Errors”.

88 The GNU C Library: System & Network Applications

EIO A hardware error occurred while reading or writing data on the
disk.

Functionint readlink (const char *filename, char *buffer,
size_t size)

The readlink function gets the value of the symbolic link filename. The file
name that the link points to is copied into buffer. This file-name string is not null
terminated; readlink normally returns the number of characters copied. The
size argument specifies the maximum number of characters to copy—usually
the allocation size of buffer.
If the return value equals size, you cannot tell whether or not there was room
to return the entire name. So make a bigger buffer and call readlink again.
Here is an example:

char *

readlink_malloc (const char *filename)

{

int size = 100;

char *buffer = NULL;

while (1)

{

buffer = (char *) xrealloc (buffer, size);

int nchars = readlink (filename, buffer, size);

if (nchars < 0)

{

free (buffer);

return NULL;

}

if (nchars < size)

return buffer;

size *= 2;

}

}

A value of -1 is returned in case of error. In addition to the usual file-name
errors, the following errno error conditions are defined for this function:13

EINVAL The named file is not a symbolic link.
EIO A hardware error occurred while reading or writing data on the

disk.

In some situations it is desirable to resolve all the symbolic links to get the real
name of a file where no prefix names a symbolic link that is followed and no file
name in the path is ‘.’ or ‘..’. This is desirable if, for example, files have to be
compared, in which case different names can refer to the same inode.
13 Ibid., “File-Name Errors”.

Chapter 3: File-System Interface 89

Functionchar * canonicalize file name (const char *name)
The canonicalize_file_name function returns the absolute name of the
file named by name that contains no ‘.’, ‘..’ components nor any repeated
path separators (‘/’) or symlinks. The result is passed back as the return value
of the function in a block of memory allocated with malloc. If the result is not
used anymore, the memory should be freed with a call to free.
If any of the path components except the last one is missing, the function returns
a NULL pointer. This is also what is returned if the length of the path reaches
or exceeds PATH_MAX characters. In any case, errno is set accordingly.

ENAMETOOLONG
The resulting path is too long. This error only occurs on systems
that have a limit on the file-name length.

EACCES At least one of the path components is not readable.

ENOENT The input file-name is empty.

ENOENT At least one of the path components does not exist.

ELOOP More than MAXSYMLINKS many symlinks have been followed.

This function is a GNU extension and is declared in ‘stdlib.h’.

The Unix standard includes a similar function that differs from
canonicalize_file_name in that the user has to provide the buffer
where the result is placed in.

Functionchar * realpath (const char *restrict name, char
*restrict resolved)

A call to realpath where the resolved parameter is NULL behaves exactly
like canonicalize_file_name. The function allocates a buffer for the file
name and returns a pointer to it. If resolved is not NULL, it points to a buffer into
which the result is copied. It is the caller’s responsibility to allocate a buffer that
is large enough. On systems that define PATH_MAX, this means the buffer must
be large enough for a pathname of this size. For systems without limitations on
the pathname length, the requirement cannot be met, and programs should not
call realpath with anything but NULL for the second parameter.
One other difference is that the buffer resolved (if nonzero) will contain the
part of the path component that does not exist or is not readable if the function
returns NULL and errno is set to EACCES or ENOENT.
This function is declared in ‘stdlib.h’.

The advantage of using this function is that it is more widely available. The
drawback is that it reports failures for long path on systems that have no limits on
the file-name length.

90 The GNU C Library: System & Network Applications

3.6 Deleting Files
You can delete a file with unlink or remove.
Deletion actually deletes a file name. If this is the file’s only name, then the file is

deleted as well. If the file has other remaining names (see Section 3.4 [Hard Links],
page 85), it remains accessible under those names.

Functionint unlink (const char *filename)
The unlink function deletes the file name filename. If this is a file’s sole name,
the file itself is also deleted. If any process has the file open when this happens,
deletion is postponed until all processes have closed the file.
The function unlink is declared in the header file ‘unistd.h’.
This function returns 0 on successful completion and -1 on error. In addition
to the usual file-name errors, the following errno error conditions are defined
for this function:14

EACCES Write permission is denied for the directory from which the file is
to be removed, or the directory has the sticky bit set and you do
not own the file.

EBUSY This error indicates that the file is being used by the system in such
a way that it can’t be unlinked. For example, you might see this
error if the file name specifies the root directory or a mount point
for a file system.

ENOENT The file name to be deleted doesn’t exist.

EPERM On some systems, unlink cannot be used to delete the name of a
directory, or at least can only be used this way by a privileged user.
To avoid such problems, use rmdir to delete directories. (In the
GNU system unlink can never delete the name of a directory.)

EROFS The directory containing the file name to be deleted is on a read-
only file system and can’t be modified.

Functionint rmdir (const char *filename)
The rmdir function deletes a directory. The directory must be empty before it
can be removed; in other words, it can only contain entries for ‘.’ and ‘..’.
In most other respects, rmdir behaves like unlink. There are two additional
errno error conditions defined for rmdir:

ENOTEMPTY
EEXIST The directory to be deleted is not empty.

These two error codes are synonymous; some systems use one, and some use
the other. The GNU system always uses ENOTEMPTY.
The prototype for this function is declared in the header file ‘unistd.h’.

14 Ibid., “File-Name Errors”.

Chapter 3: File-System Interface 91

Functionint remove (const char *filename)
This is the ISO C function to remove a file. It works like unlink for files and
like rmdir for directories. remove is declared in ‘stdio.h’.

3.7 Renaming Files
The rename function is used to change a file’s name.

Functionint rename (const char *oldname, const char
*newname)

The rename function renames the file oldname to newname. The file formerly
accessible under the name oldname is afterward accessible as newname instead.
If the file had any other names aside from oldname, it continues to have those
names.
The directory containing the name newname must be on the same file system as
the directory containing the name oldname.
One special case for rename is when oldname and newname are two names for
the same file. The consistent way to handle this case is to delete oldname. How-
ever, in this case POSIX requires that rename do nothing and report success—
which is inconsistent. We don’t know what your operating system will do.
If oldname is not a directory, then any existing file named newname is removed
during the renaming operation. However, if newname is the name of a directory,
rename fails in this case.
If oldname is a directory, then either newname must not exist, or it must name a
directory that is empty. In the latter case, the existing directory named newname
is deleted first. The name newname must not specify a subdirectory of the
directory oldname that is being renamed.
One useful feature of rename is that the meaning of newname changes “atom-
ically” from any previously existing file by that name to its new meaning (i.e.
the file that was called oldname). There is no instant at which newname is
nonexistent “in between” the old meaning and the new meaning. If there is a
system crash during the operation, it is possible for both names to still exist; but
newname will always be intact if it exists at all.
If rename fails, it returns -1. In addition to the usual file-name errors, the
followingerrno error conditions are defined for this function:15

EACCES One of the directories containing newname or oldname refuses
write permission; or newname and oldname are directories and
write permission is refused for one of them.

EBUSY A directory named by oldname or newname is being used by the
system in a way that prevents the renaming from working. This
includes directories that are mount points for file systems, and di-
rectories that are the current working directories of processes.

15 Ibid., “File-Name Errors”.

92 The GNU C Library: System & Network Applications

ENOTEMPTY
EEXIST The directory newname isn’t empty. The GNU system always

returns ENOTEMPTY for this, but some other systems return
EEXIST.

EINVAL oldname is a directory that contains newname.

EISDIR newname is a directory but the oldname isn’t.

EMLINK The parent directory of newname would have too many links (en-
tries).

ENOENT The file oldname doesn’t exist.

ENOSPC The directory that would contain newname has no room for an-
other entry, and there is no space left in the file system to expand
it.

EROFS The operation would involve writing to a directory on a read-only
file system.

EXDEV The two file names newname and oldname are on different file
systems.

3.8 Creating Directories
Directories are created with the mkdir function. (There is also a shell command

mkdir that does the same thing.)

Functionint mkdir (const char *filename, mode_t mode)
The mkdir function creates a new, empty directory with name filename.
The argument mode specifies the file permissions for the new directory file (see
Section 3.9.5 [The Mode Bits for Access Permission], page 102).
A return value of 0 indicates successful completion, and -1 indicates failure. In
addition to the usual file-name syntax errors, the following errno error condi-
tions are defined for this function:16

EACCES Write permission is denied for the parent directory in which the
new directory is to be added.

EEXIST A file named filename already exists.

EMLINK The parent directory has too many links (entries).
Well-designed file systems never report this error, because they
permit more links than your disk could possibly hold. However,
you must still take account of the possibility of this error, as it
could result from network access to a file system on another ma-
chine.

16 Ibid., “File-Name Errors”.

Chapter 3: File-System Interface 93

ENOSPC The file system doesn’t have enough room to create the new direc-
tory.

EROFS The parent directory of the directory being created is on a read-
only file system and cannot be modified.

To use this function, your program should include the header file
‘sys/stat.h’.

3.9 File Attributes
When you issue an ‘ls -l’ shell command on a file, it gives you information

about the size of the file, who owns it, when it was last modified, etc. These are
called the file attributes, and are associated with the file itself and not a particular
one of its names.

This section contains information about how you can inquire about and modify
the attributes of a file.

3.9.1 The Meaning of the File Attributes

When you read the attributes of a file, they come back in a structure called
struct stat. This section describes the names of the attributes, their data types,
and what they mean. For the functions to read the attributes of a file, see Sec-
tion 3.9.2 [Reading the Attributes of a File], page 97.

The header file ‘sys/stat.h’ declares all the symbols defined in this section.

Data Typestruct stat
The stat structure type is used to return information about the attributes of a
file. It contains at least the following members:

mode_t st_mode
This specifies the mode of the file. This includes file-type infor-
mation (see Section 3.9.3 [Testing the Type of a File], page 99)
and the file permission bits (see Section 3.9.5 [The Mode Bits for
Access Permission], page 102).

ino_t st_ino
This is the file serial number, which distinguishes this file from all
other files on the same device.

dev_t st_dev
This identifies the device containing the file. The st_ino and
st_dev, taken together, uniquely identify the file. The st_
dev value is not necessarily consistent across reboots or system
crashes, however.

94 The GNU C Library: System & Network Applications

nlink_t st_nlink
This is the number of hard links to the file. This count keeps track
of how many directories have entries for this file. If the count is
ever decremented to 0, then the file itself is discarded as soon as no
process still holds it open. Symbolic links are not counted in the
total.

uid_t st_uid
This is the user ID of the file’s owner (see Section 3.9.4 [File
Owner], page 101).

gid_t st_gid
This is the group ID of the file (see Section 3.9.4 [File Owner],
page 101).

off_t st_size
This specifies the size of a regular file in bytes. For files that are
really devices, this field isn’t usually meaningful. For symbolic
links, this specifies the length of the file name the link refers to.

time_t st_atime
This is the last access-time for the file (see Section 3.9.9 [File
Times], page 108).

unsigned long int st_atime_usec
This is the fractional part of the last access-time for the file (see
Section 3.9.9 [File Times], page 108).

time_t st_mtime
This is the time of the last modification to the contents of the file
(see Section 3.9.9 [File Times], page 108).

unsigned long int st_mtime_usec
This is the fractional part of the time of the last modification to the
contents of the file (see Section 3.9.9 [File Times], page 108).

time_t st_ctime
This is the time of the last modification to the attributes of the file
(see Section 3.9.9 [File Times], page 108).

unsigned long int st_ctime_usec
This is the fractional part of the time of the last modification to the
attributes of the file (see Section 3.9.9 [File Times], page 108).

blkcnt_t st_blocks
This is the amount of disk space that the file occupies, measured in
units of 512-byte blocks.
The number of disk blocks is not strictly proportional to the size of
the file, for two reasons: the file system may use some blocks for
internal record keeping; and the file may be sparse—it may have

Chapter 3: File-System Interface 95

“holes” that contain zeros but do not actually take up space on the
disk.
You can tell (approximately) whether a file is sparse by comparing
this value with st_size, like this:

(st.st_blocks * 512 < st.st_size)

This test is not perfect, because a file that is just slightly sparse
might not be detected as sparse at all. For practical applications,
this is not a problem.

unsigned int st_blksize
The optimal block size for reading or writing this file, in bytes.
You might use this size for allocating the buffer space for reading
or writing the file. (This is unrelated to st_blocks.)

The extensions for the Large File Support (LFS) require, even on 32-bit machines,
types that can handle file sizes up to 263. Therefore, a new definition of struct
stat is necessary.

Data Typestruct stat64
The members of this type are the same and have the same names as those in
struct stat. The only difference is that the members st_ino, st_size
and st_blocks have a different type to support larger values.

mode_t st_mode
This specifies the mode of the file. This includes file-type infor-
mation (see Section 3.9.3 [Testing the Type of a File], page 99)
and the file permission bits (see Section 3.9.5 [The Mode Bits for
Access Permission], page 102).

ino64_t st_ino
This is the file serial number, which distinguishes this file from all
other files on the same device.

dev_t st_dev
This identifies the device containing the file. The st_ino and
st_dev, taken together, uniquely identify the file. The st_
dev value is not necessarily consistent across reboots or system
crashes, however.

nlink_t st_nlink
This is the number of hard links to the file. This count keeps track
of how many directories have entries for this file. If the count is
ever decremented to 0, then the file itself is discarded as soon as no
process still holds it open. Symbolic links are not counted in the
total.

uid_t st_uid
This is the user ID of the file’s owner (see Section 3.9.4 [File
Owner], page 101).

96 The GNU C Library: System & Network Applications

gid_t st_gid
This is the group ID of the file (see Section 3.9.4 [File Owner],
page 101).

off64_t st_size
This specifies the size of a regular file in bytes. For files that are
really devices, this field isn’t usually meaningful. For symbolic
links, this specifies the length of the file name the link refers to.

time_t st_atime
This is the last access-time for the file (see Section 3.9.9 [File
Times], page 108).

unsigned long int st_atime_usec
This is the fractional part of the last access-time for the file (see
Section 3.9.9 [File Times], page 108).

time_t st_mtime
This is the time of the last modification to the contents of the file
(see Section 3.9.9 [File Times], page 108).

unsigned long int st_mtime_usec
This is the fractional part of the time of the last modification to the
contents of the file (see Section 3.9.9 [File Times], page 108).

time_t st_ctime
This is the time of the last modification to the attributes of the file
(see Section 3.9.9 [File Times], page 108).

unsigned long int st_ctime_usec
This is the fractional part of the time of the last modification to the
attributes of the file (see Section 3.9.9 [File Times], page 108).

blkcnt64_t st_blocks
This is the amount of disk space that the file occupies, measured in
units of 512-byte blocks.

unsigned int st_blksize
This is the optimal block size for reading or writing this file, in
bytes. You might use this size for allocating the buffer space for
reading or writing the file. It is unrelated to st_blocks.

Some of the file attributes have special data-type names that exist specifically for
those attributes. They are all aliases for well-known integer types that you know
and love. These typedef names are defined in the header file ‘sys/types.h’ as
well as in ‘sys/stat.h’. Here is a list of them:

Data Typemode t
This is an integer data type used to represent file modes. In the GNU system,
this is equivalent to unsigned int.

Chapter 3: File-System Interface 97

Data Typeino t
This is an arithmetic data type used to represent file serial numbers. In Unix
jargon, these are sometimes called inode numbers. In the GNU system, this type
is equivalent to unsigned long int.
If the source is compiled with _FILE_OFFSET_BITS == 64, this type is
transparently replaced by ino64_t.

Data Typeino64 t
This is an arithmetic data type used to represent file serial numbers for use in
LFS. In the GNU system, this type is equivalent to unsigned long longint.
When compiling with _FILE_OFFSET_BITS == 64, this type is available
under the name ino_t.

Data Typedev t
This is an arithmetic data type used to represent file device numbers. In the GNU
system, this is equivalent to int.

Data Typenlink t
This is an arithmetic data type used to represent file link counts. In the GNU
system, this is equivalent to unsigned short int.

Data Typeblkcnt t
This is an arithmetic data type used to represent block counts. In the GNU sys-
tem, this is equivalent to unsigned long int.
If the source is compiled with _FILE_OFFSET_BITS == 64, this type is
transparently replaced by blkcnt64_t.

Data Typeblkcnt64 t
This is an arithmetic data type used to represent block counts for use in LFS. In
the GNU system, this is equivalent to unsigned long long int.
When compiling with _FILE_OFFSET_BITS == 64, this type is available
under the name blkcnt_t.

3.9.2 Reading the Attributes of a File

To examine the attributes of files, use the functions stat, fstat and lstat.
They return the attribute information in a struct stat object. All three func-
tions are declared in the header file ‘sys/stat.h’.

Functionint stat (const char *filename, struct stat *buf)
The stat function returns information about the attributes of the file named by
filename in the structure pointed to by buf.
If filename is the name of a symbolic link, the attributes you get describe the file
that the link points to. If the link points to a nonexistent file name, then stat
fails, reporting a nonexistent file.

98 The GNU C Library: System & Network Applications

The return value is 0 if the operation is successful or -1 on failure. In addition
to the usual file-name errors, the following errno error condition is defined for
this function:17

ENOENT The file named by filename doesn’t exist.

When the sources are compiled with _FILE_OFFSET_BITS == 64, this
function is in fact stat64, since the LFS interface transparently replaces the
normal implementation.

Functionint stat64 (const char *filename, struct stat64 *buf)
This function is similar to stat but it is also able to work on files larger then
231 bytes on 32-bit systems. To be able to do this, the result is stored in a
variable of type struct stat64 to which buf must point.
When the sources are compiled with _FILE_OFFSET_BITS == 64, this
function is available under the name stat and so transparently replaces the
interface for small files on 32-bit machines.

Functionint fstat (int filedes, struct stat *buf)
The fstat function is like stat, except that it takes an open file-descriptor
as an argument instead of a file name (see Chapter 2 [Low-Level Input/Output],
page 17).
Like stat, fstat returns 0 on success and -1 on failure. The following
errno error condition is defined for fstat:

EBADF The filedes argument is not a valid file-descriptor.

When the sources are compiled with _FILE_OFFSET_BITS == 64, this
function is in fact fstat64, since the LFS interface transparently replaces the
normal implementation.

Functionint fstat64 (int filedes, struct stat64 *buf)
This function is similar to fstat but is able to work on large files on 32-
bit platforms. For large files, the file descriptor filedes should be obtained by
open64 or creat64. The buf pointer points to a variable of type struct
stat64 that is able to represent the larger values.
When the sources are compiled with _FILE_OFFSET_BITS == 64, this
function is available under the name fstat and so transparently replaces the
interface for small files on 32-bit machines.

Functionint lstat (const char *filename, struct stat *buf)
The lstat function is like stat, except that it does not follow symbolic links.
If filename is the name of a symbolic link, lstat returns information about
the link itself. Otherwise, lstat works like stat (see Section 3.5 [Symbolic
Links], page 87).

17 Ibid., “File-Name Errors”.

Chapter 3: File-System Interface 99

When the sources are compiled with _FILE_OFFSET_BITS == 64, this
function is in fact lstat64, since the LFS interface transparently replaces the
normal implementation.

Functionint lstat64 (const char *filename, struct stat64 *buf)
This function is similar to lstat, but it is also able to work on files larger
then 231 bytes on 32-bit systems. To be able to do this, the result is stored in a
variable of type struct stat64 to which buf must point.
When the sources are compiled with _FILE_OFFSET_BITS == 64, this
function is available under the name lstat and so transparently replaces the
interface for small files on 32-bit machines.

3.9.3 Testing the Type of a File

The file mode, stored in the st_mode field of the file attributes, contains two
kinds of information: the file-type code, and the access-permission bits. This sec-
tion discusses only the type code, which you can use to tell whether the file is
a directory, socket, symbolic link, etc. For details about access permissions, see
Section 3.9.5 [The Mode Bits for Access Permission], page 102.

There are two ways you can access the file-type information in a file mode. First,
for each file type there is a predicate macro that examines a given file mode and
returns whether it is of that type or not. Second, you can mask out the rest of the
file mode to leave just the file-type code, and compare this against constants for
each of the supported file-types.

All of the symbols listed in this section are defined in the header file
‘sys/stat.h’.

The following predicate macros test the type of a file, given the value m, which
is the st_mode field returned by stat on that file:

Macroint S ISDIR (mode_t m)
This macro returns nonzero if the file is a directory.

Macroint S ISCHR (mode_t m)
This macro returns nonzero if the file is a character special file (a device like a
terminal).

Macroint S ISBLK (mode_t m)
This macro returns nonzero if the file is a block special file (a device like a disk).

Macroint S ISREG (mode_t m)
This macro returns nonzero if the file is a regular file.

Macroint S ISFIFO (mode_t m)
This macro returns nonzero if the file is a FIFO special file, or a pipe (see Chap-
ter 4 [Pipes and FIFOs], page 119).

100 The GNU C Library: System & Network Applications

Macroint S ISLNK (mode_t m)
This macro returns nonzero if the file is a symbolic link (see Section 3.5 [Sym-
bolic Links], page 87).

Macroint S ISSOCK (mode_t m)
This macro returns nonzero if the file is a socket (see Chapter 5 [Sockets],
page 125).

An alternate non-POSIX method of testing the file type is supported for compat-
ibility with BSD. The mode can be bit-wise ANDed with S_IFMT to extract the
file-type code, and compared to the appropriate constant. For example:

S_ISCHR (mode)

is equivalent to:
((mode & S_IFMT) == S_IFCHR)

Macroint S IFMT
This is a bit mask used to extract the file-type code from a mode value.

These are the symbolic names for the different file-type codes:

S_IFDIR This is the file-type constant of a directory file.

S_IFCHR This is the file-type constant of a character-oriented device file.

S_IFBLK This is the file-type constant of a block-oriented device file.

S_IFREG This is the file-type constant of a regular file.

S_IFLNK This is the file-type constant of a symbolic link.

S_IFSOCK
This is the file-type constant of a socket.

S_IFIFO This is the file-type constant of a FIFO or pipe.

The POSIX.1b standard introduced a few more objects that can possibly be im-
plemented as objects in the file system. These are message queues, semaphores and
shared memory objects. To allow differentiation of these objects from other files,
the POSIX standard introduces three new test macros. But unlike the other macros,
they do not take the value of the st_mode field as the parameter. Instead, they
expect a pointer to the whole struct stat structure.

Macroint S TYPEISMQ (struct stat *s)
If the system implements POSIX message queues as distinct objects and the file
is a message-queue object, this macro returns a nonzero value. In all other cases,
the result is 0.

Macroint S TYPEISSEM (struct stat *s)
If the system implements POSIX semaphores as distinct objects and the file is
a semaphore object, this macro returns a nonzero value. In all other cases, the
result is 0.

Chapter 3: File-System Interface 101

Macroint S TYPEISSHM (struct stat *s)
If the system implements POSIX shared memory objects as distinct objects and
the file is an shared memory object, this macro returns a nonzero value. In all
other cases, the result is 0.

3.9.4 File Owner

Every file has an owner that is one of the registered user names defined on the
system. Each file also has a group that is one of the defined groups. The file owner
can often be useful for showing you who edited the file (especially when you edit
with GNU Emacs), but its main purpose is for access control.

The file owner and group play a role in determining access because the file has
one set of access-permission bits for the owner, another set that applies to users
who belong to the file’s group, and a third set that applies to everyone else. See
Section 3.9.6 [How Your Access to a File is Decided], page 104, for the details of
how access is decided based on this data.

When a file is created, its owner is set to the effective user-ID of the process that
creates it (see Section 10.2 [The Persona of a Process], page 253). The file’s group
ID may be set to either the effective group-ID of the process, or the group ID of the
directory that contains the file, depending on the system where the file is stored.
When you access a remote file system, it behaves according to its own rules, not
according to the system your program is running on. Thus, your program must be
prepared to encounter either kind of behavior no matter what kind of system you
run it on.

You can change the owner and/or group owner of an existing file using the
chown function. This is the primitive for the chown and chgrp shell commands.

The prototype for this function is declared in ‘unistd.h’.

Functionint chown (const char *filename, uid_t owner, gid_t
group)

The chown function changes the owner of the file filename to owner and its
group owner to group.
Changing the owner of the file on certain systems clears the set-user-ID and set-
group-ID permission bits. This is because those bits may not be appropriate for
the new owner. Other file permission bits are not changed.
The return value is 0 on success and -1 on failure. In addition to the usual file-
name errors, the following errno error conditions are defined for this func-
tion:18

EPERM This process lacks permission to make the requested change.
Only privileged users or the file’s owner can change the file’s
group. On most file systems, only privileged users can change the
file owner; some file systems allow you to change the owner if you

18 Ibid., “File-Name Errors”.

102 The GNU C Library: System & Network Applications

are currently the owner. When you access a remote file system, the
behavior you encounter is determined by the system that actually
holds the file, not by the system your program is running on.
See Section 12.7 [Optional Features in File Support], page 319, for
information about the _POSIX_CHOWN_RESTRICTED macro.

EROFS The file is on a read-only file system.

Functionint fchown (int filedes, int owner, int group)
This is like chown, except that it changes the owner of the open file with de-
scriptor filedes.
The return value from fchown is 0 on success and -1 on failure. The following
errno error codes are defined for this function:
EBADF The filedes argument is not a valid file-descriptor.
EINVAL The filedes argument corresponds to a pipe or socket, not an ordi-

nary file.
EPERM This process lacks permission to make the requested change. For

details, see chmod above.
EROFS The file resides on a read-only file system.

3.9.5 The Mode Bits for Access Permission

The file mode, stored in the st_mode field of the file attributes, contains two
kinds of information: the file-type code, and the access-permission bits. This sec-
tion discusses only the access-permission bits, which control who can read or write
the file. See Section 3.9.3 [Testing the Type of a File], page 99, for information
about the file-type code.

All of the symbols listed in this section are defined in the header file
‘sys/stat.h’.

These symbolic constants are defined for the file mode bits that control access
permission for the file:
S_IRUSR
S_IREAD This is the read permission bit for the owner of the file. On many

systems, this bit is 0400. S_IREAD is an obsolete synonym provided
for BSD compatibility.

S_IWUSR
S_IWRITE

This is the write permission bit for the owner of the file. Usually, it is
0200. S_IWRITE is an obsolete synonym provided for BSD compat-
ibility.

S_IXUSR
S_IEXEC This is the execute (for ordinary files) or search (for directories) per-

mission bit for the owner of the file. It is usually 0100. S_IEXEC is
an obsolete synonym provided for BSD compatibility.

Chapter 3: File-System Interface 103

S_IRWXU This is equivalent to ‘(S_IRUSR | S_IWUSR | S_IXUSR)’.

S_IRGRP This is the read permission bit for the group owner of the file. Usually,
it is 040.

S_IWGRP This is the write permission bit for the group owner of the file. Usu-
ally, it is 020.

S_IXGRP This is the execute or search permission bit for the group owner of the
file. Usually, it is 010.

S_IRWXG This is equivalent to ‘(S_IRGRP | S_IWGRP | S_IXGRP)’.

S_IROTH This is the read permission bit for other users. Usually, it is 04.

S_IWOTH This is the write permission bit for other users. Usually, it is 02.

S_IXOTH This is the execute or search permission bit for other users. Usually,
it is 01.

S_IRWXO This is equivalent to ‘(S_IROTH | S_IWOTH | S_IXOTH)’.

S_ISUID This is the set-user-ID-on-execute bit. Usually, it is 04000 (see Sec-
tion 10.4 [How an Application Can Change Persona], page 254).

S_ISGID This is the set-group-ID-on-execute bit Usually, it is 02000 (see Sec-
tion 10.4 [How an Application Can Change Persona], page 254).

S_ISVTX This is the sticky bit. Usually, it is 01000.
For a directory, it gives permission to delete a file in that directory only
if you own that file. Ordinarily, a user can either delete all the files in a
directory or cannot delete any of them (based on whether the user has
write permission for the directory). The same restriction applies—you
must have both write permission for the directory and own the file you
want to delete. The one exception is that the owner of the directory
can delete any file in the directory, no matter who owns it (provided
the owner has given himself write permission for the directory). This
is commonly used for the ‘/tmp’ directory, where anyone may create
files but not delete files created by other users.
Originally, the sticky bit on an executable file modified the swapping
policies of the system. Normally, when a program terminated, its
pages in core were immediately freed and reused. If the sticky bit
was set on the executable file, the system kept the pages in core for
a while as if the program were still running. This was advantageous
for a program likely to be run many times in succession. This usage
is obsolete in modern systems. When a program terminates, its pages
always remain in core as long as there is no shortage of memory in the
system. When the program is next run, its pages will still be in core if
no shortage arose since the last run.
On some modern systems where the sticky bit has no useful meaning
for an executable file, you cannot set the bit at all for a nondirectory.

104 The GNU C Library: System & Network Applications

If you try, chmod fails with EFTYPE (see Section 3.9.7 [Assigning
File Permissions], page 104).
Some systems (particularly SunOS) have yet another use for the sticky
bit. If the sticky bit is set on a file that is not executable, it means the
opposite—never cache the pages of this file at all. The main use of
this is for the files on an NFS server machine that are used as the
swap area of diskless client machines. The idea is that the pages of
the file will be cached in the client’s memory, so it is a waste of the
server’s memory to cache them a second time. With this usage, the
sticky bit also implies that the file system may fail to record the file’s
modification time onto disk reliably (the idea being that no one cares
for a swap file).
This bit is only available on BSD systems (and those derived from
them). Therefore, you have to use the _BSD_SOURCE feature-select
macro to get the definition (see Section 1.3.4 [Feature-Test Macros],
page 8).

The actual bit values of the symbols are listed in the table above so you can
decode file mode values when debugging your programs. These bit values are
correct for most systems, but they are not guaranteed.

Warning: Writing explicit numbers for file permissions is bad practice. Not only
is it not portable, it also requires everyone who reads your program to remember
what the bits mean. To make your program clean use the symbolic names.

3.9.6 How Your Access to a File is Decided

Recall that the operating system normally decides access permission for a file
based on the effective user and group IDs of the process and its supplementary
group-IDs, together with the file’s owner, group and permission bits. These con-
cepts are discussed in detail in Section 10.2 [The Persona of a Process], page 253.

If the effective user-ID of the process matches the owner user-ID of the file, then
permissions for read, write and execute/search are controlled by the corresponding
“user” (or “owner”) bits. Likewise, if any of the effective group-ID or supplemen-
tary group-IDs of the process matches the group owner ID of the file, then permis-
sions are controlled by the “group” bits. Otherwise, permissions are controlled by
the “other” bits.

Privileged users, like ‘root’, can access any file regardless of its permission
bits. As a special case, for a file to be executable even by a privileged user, at least
one of its execute bits must be set.

3.9.7 Assigning File Permissions

The primitive functions for creating files (for example, open or mkdir) take a
mode argument, which specifies the file permissions to give the newly created file.
This mode is modified by the process’s file creation mask, or umask, before it is
used.

Chapter 3: File-System Interface 105

The bits that are set in the file-creation mask identify permissions that are always
to be disabled for newly created files. For example, if you set all the “other” access
bits in the mask, then newly created files are not accessible at all to processes in the
“other” category, even if the mode argument passed to the create function would
permit such access. In other words, the file-creation mask is the complement of the
ordinary access-permissions you want to grant.

Programs that create files typically specify a mode argument that includes all
the permissions that make sense for the particular file. For an ordinary file, this is
typically read and write permission for all classes of users. These permissions are
then restricted as specified by the individual user’s own file-creation mask.

To change the permission of an existing file given its name, call chmod. This
function uses the specified permission bits and ignores the file creation mask.

In normal use, the file-creation mask is initialized by the user’s login shell (us-
ing the umask shell command), and inherited by all subprocesses. Application
programs normally don’t need to worry about the file-creation mask. It will auto-
matically do what it is supposed to do.

When your program needs to create a file and bypass the umask for its access-
permissions, the easiest way to do this is to use fchmod after opening the file,
rather than changing the umask. In fact, changing the umask is usually done only
by shells. They use the umask function.

The functions in this section are declared in ‘sys/stat.h’.

Functionmode_t umask (mode_t mask)
The umask function sets the file-creation mask of the current process to mask,
and returns the previous value of the file-creation mask.
Here is an example showing how to read the mask with umask without chang-
ing it permanently:

mode_t

read_umask (void)

{

mode_t mask = umask (0);

umask (mask);

return mask;

}

However, it is better to use getumask if you just want to read the mask value,
because it is reentrant (at least if you use the GNU operating system).

Functionmode_t getumask (void)
Return the current value of the file-creation mask for the current process. This
function is a GNU extension.

Functionint chmod (const char *filename, mode_t mode)
The chmod function sets the access-permission bits for the file named by file-
name to mode.

106 The GNU C Library: System & Network Applications

If filename is a symbolic link, chmod changes the permissions of the file
pointed to by the link, not those of the link itself.
This function returns 0 if successful and -1 if not. In addition to the usual file-
name errors, the following errno error conditions are defined for this func-
tion:19

ENOENT The named file doesn’t exist.

EPERM This process does not have permission to change the access per-
missions of this file. Only the file’s owner (as judged by the effec-
tive user ID of the process) or a privileged user can change them.

EROFS The file resides on a read-only file system.

EFTYPE mode has the S_ISVTX bit (the sticky bit) set, and the named file
is not a directory. Some systems do not allow setting the sticky bit
on nondirectory files, and some do (and only some of those assign
a useful meaning to the bit for nondirectory files).
You only get EFTYPE on systems where the sticky bit has no use-
ful meaning for nondirectory files, so it is always safe to just clear
the bit in mode and call chmod again. See Section 3.9.5 [The
Mode Bits for Access Permission], page 102, for full details on the
sticky bit.

Functionint fchmod (int filedes, int mode)
This is like chmod, except that it changes the permissions of the currently open
file given by filedes.
The return value from fchmod is 0 on success and -1 on failure. The following
errno error codes are defined for this function:

EBADF The filedes argument is not a valid file-descriptor.

EINVAL The filedes argument corresponds to a pipe or socket, or something
else that doesn’t really have access permissions.

EPERM This process does not have permission to change the access per-
missions of this file. Only the file’s owner (as judged by the effec-
tive user-ID of the process) or a privileged user can change them.

EROFS The file resides on a read-only file system.

3.9.8 Testing Permission to Access a File

In some situations, it is desirable to allow programs to access files or devices
even if this is not possible with the permissions granted to the user. One possible
solution is to set the setuid-bit of the program file. If such a program is started,
the effective user ID of the process is changed to that of the owner of the program

19 Ibid., “File-Name Errors”.

Chapter 3: File-System Interface 107

file. So to allow write access to files like ‘/etc/passwd’, which normally can
be written only by the superuser, the modifying program will have to be owned by
root and the setuid-bit set.

But besides the files the program is intended to change, the user should not be
allowed to access any file to which he would not have access anyway. The program
therefore must explicitly check whether the user would have the necessary access
to a file, before it reads or writes the file.

To do this, use the function access, which checks for access permission based
on the process’s real user-ID rather than the effective user-ID. (The setuid feature
does not alter the real user-ID, so it reflects the user who actually ran the program.)

There is another way you could check this access, which is easy to describe, but
very hard to use. This is to examine the file mode bits and mimic the system’s
own access computation. This method is undesirable, because many systems have
additional access-control features; your program cannot portably mimic them, and
you would not want to try to keep track of the diverse features that different systems
have. Using access is simple and automatically does whatever is appropriate for
the system you are using.
access is only appropriate to use in setuid programs. A non-setuid program

will always use the effective ID rather than the real ID.
The symbols in this section are declared in ‘unistd.h’.

Functionint access (const char *filename, int how)
The access function checks to see whether the file named by filename can be
accessed in the way specified by the how argument. The how argument either
can be the bit-wise OR of the flags R_OK, W_OK, X_OK or the existence test
F_OK.
This function uses the real user and group-IDs of the calling process, rather
than the effective IDs, to check for access permission. As a result, if you use
the function from a setuid or setgid program (see Section 10.4 [How an
Application Can Change Persona], page 254), it gives information relative to
the user who actually ran the program.
The return value is 0 if the access is permitted and -1 otherwise. (In other
words, treated as a predicate function, access returns true if the requested
access is denied.)
In addition to the usual file-name errors, the following errno error conditions
are defined for this function:20

EACCES The access specified by how is denied.

ENOENT The file doesn’t exist.

EROFS Write permission was requested for a file on a read-only file sys-
tem.

20 Ibid., “File-Name Errors”.

108 The GNU C Library: System & Network Applications

These macros are defined in the header file ‘unistd.h’ for use as the how
argument to the access function. The values are integer constants.

Macroint R OK
This is a flag meaning test for read permission.

Macroint W OK
This is a flag meaning test for write permission.

Macroint X OK
This is a flag meaning test for execute/search permission.

Macroint F OK
This is a flag meaning test for existence of the file.

3.9.9 File Times

Each file has three time stamps associated with it: its access time, its modification
time and its attribute-modification time. These correspond to the st_atime, st_
mtime, and st_ctime members of the stat structure (see Section 3.9 [File
Attributes], page 93).

All of these times are represented in calendar-time format, as time_t objects.
This data type is defined in ‘time.h’.21

Reading from a file updates its access-time attribute, and writing updates its mod-
ification time. When a file is created, all three time stamps for that file are set to the
current time. In addition, the attribute-change-time and modification-time fields of
the directory that contains the new entry are updated.

Adding a new name for a file with the link function updates the attribute-
change-time field of the file being linked, and both the attribute-change-time
and modification-time fields of the directory containing the new name. These
same fields are affected if a file name is deleted with unlink, remove or
rmdir. Renaming a file with rename affects only the attribute-change-time and
modification-time fields of the two parent directories involved, and not the times
for the file being renamed.

Changing the attributes of a file (for example, with chmod) updates its attribute-
change-time field.

You can also change some of the time stamps of a file explicitly using the utime
function—all except the attribute-change time. You need to include the header file
‘utime.h’ to use this facility.

Data Typestruct utimbuf
The utimbuf structure is used with the utime function to specify new access
and modification times for a file. It contains the following members:

21 Ibid., “Calendar Time”.

Chapter 3: File-System Interface 109

time_t actime
This is the access time for the file.

time_t modtime
This is the modification time for the file.

Functionint utime (const char *filename, const struct
utimbuf *times)

This function is used to modify the file times associated with the file named
filename.
If times is a null pointer, then the access and modification times of the file are
set to the current time. Otherwise, they are set to the values from the actime
and modtime members (respectively) of the utimbuf structure pointed to by
times.
The attribute-modification time for the file is set to the current time in either case
(since changing the time stamps is itself a modification of the file attributes).
The utime function returns 0 if successful and -1 on failure. In addition to
the usual file-name errors, the following errno error conditions are defined for
this function:22

EACCES There is a permission problem in the case where a null pointer was
passed as the times argument. In order to update the time stamp
on the file, you must either be the owner of the file, have write
permission for the file or be a privileged user.

ENOENT The file doesn’t exist.

EPERM If the times argument is not a null pointer, you must either be the
owner of the file or be a privileged user.

EROFS The file lives on a read-only file system.

Each of the three time stamps has a corresponding microsecond part, which ex-
tends its resolution. These fields are called st_atime_usec, st_mtime_usec
and st_ctime_usec; each has a value between 0 and 999,999, which indicates
the time in microseconds. They correspond to the tv_usec field of a timeval
structure.23

The utimes function is like utime, but also lets you specify the fractional
part of the file times. The prototype for this function is in the header file
‘sys/time.h’.

Functionint utimes (const char *filename, struct timeval
tvp[2])

This function sets the file access and modification times of the file filename.
The new file access-time is specified by tvp[0] and the new modification time

22 Ibid., “File-Name Errors”.
23 Ibid., “High-Resolution Calendar”

110 The GNU C Library: System & Network Applications

by tvp[1]. Similar to utime, if tvp is a null pointer, then the access and
modification times of the file are set to the current time. This function comes
from BSD.
The return values and error conditions are the same as for the utime function.

Functionint lutimes (const char *filename, struct timeval
tvp[2])

This function is like utimes, except that it does not follow symbolic links.
If filename is the name of a symbolic link, lutimes sets the file access and
modification times of the symbolic link special file itself, as seen by lstat (see
Section 3.5 [Symbolic Links], page 87), while utimes sets the file access and
modification times of the file the symbolic link refers to. This function comes
from FreeBSD and is not available on all platforms (if not available, it will fail
with ENOSYS).
The return values and error conditions are the same as for the utime function.

Functionint futimes (int *fd, struct timeval tvp[2])
This function is like utimes, except that it takes an open file descriptor as
an argument instead of a file name (see Chapter 2 [Low-Level Input/Output],
page 17). This function comes from FreeBSD and is not available on all plat-
forms (if not available, it will fail with ENOSYS).
Like utimes, futimes returns 0 on success and -1 on failure. The following
errno error conditions are defined for futimes:

EACCES There is a permission problem in the case where a null pointer was
passed as the times argument. In order to update the time stamp
on the file, you must either be the owner of the file, have write
permission for the file or be a privileged user.

EBADF The filedes argument is not a valid file-descriptor.

EPERM If the times argument is not a null pointer, you must either be the
owner of the file or be a privileged user.

EROFS The file lives on a read-only file system.

3.9.10 File Size

Normally, file sizes are maintained automatically. A file begins with a size of 0
and is automatically extended when data is written past its end. It is also possible
to empty a file completely by an open or fopen call.

However, sometimes it is necessary to reduce the size of a file. This can be done
with the truncate and ftruncate functions. They were introduced in BSD
Unix. ftruncate was later added to POSIX.1.

Some systems allow you to extend a file (creating holes) with these functions.
This is useful when using memory-mapped I/O (see Section 2.7 [Memory-Mapped
I/O], page 32), where files are not automatically extended. However it is not

Chapter 3: File-System Interface 111

portable, but must be implemented if mmap allows mapping of files (i.e., _POSIX_
MAPPED_FILES is defined).

Using these functions on anything other than a regular file gives undefined re-
sults. On many systems, such a call will appear to succeed, without actually ac-
complishing anything.

Functionint truncate (const char *filename, off_t length)
The truncate function changes the size of filename to length. If length is
shorter than the previous length, data at the end will be lost. The file must be
writable by the user to perform this operation.
If length is longer, holes will be added to the end. However, some systems do
not support this feature and will leave the file unchanged.
When the source file is compiled with _FILE_OFFSET_BITS == 64, the
truncate function is in fact truncate64, and the type off_t has 64 bits,
which makes it possible to handle files up to 263 bytes in length.
The return value is 0 for success and −1 for an error. In addition to the usual
file-name errors, the following errors may occur:

EACCES The file is a directory or not writable.

EINVAL length is negative.

EFBIG The operation would extend the file beyond the limits of the oper-
ating system.

EIO A hardware I/O error occurred.

EPERM The file is “append-only” or “immutable”.

EINTR The operation was interrupted by a signal.

Functionint truncate64 (const char *name, off64_t length)
This function is similar to the truncate function. The difference is that the
length argument is 64 bits wide even on 32-bit machines, which allows the
handling of files with sizes up to 263 bytes.
When the source file is compiled with _FILE_OFFSET_BITS == 64 on a 32-
bit machine, this function is actually available under the name truncate and
so transparently replaces the 32-bit interface.

Functionint ftruncate (int fd, off_t length)
This is like truncate, but it works on a file descriptor fd for an opened file
instead of a file name to identify the object. The file must be opened for writing
to successfully carry out the operation.
The POSIX standard leaves implementation defined what happens if the specified
new length of the file is bigger than the original size. The ftruncate function
might simply leave the file alone and do nothing, or it can increase the size to the
desired size. In this later case, the extended area should be zero filled. So using
ftruncate is not a reliable way to increase the file size, but if it is possible, it

112 The GNU C Library: System & Network Applications

is probably the fastest way. The function also operates on POSIX shared memory
segments if these are implemented by the system.
ftruncate is especially useful in combination with mmap. Since the mapped
region must have a fixed size, you cannot enlarge the file by writing something
beyond the last mapped page. Instead you have to enlarge the file itself and then
remap the file with the new size. The example below shows how this works.
When the source file is compiled with _FILE_OFFSET_BITS == 64, the
ftruncate function is in fact ftruncate64, and the type off_t has 64
bits, which makes it possible to handle files up to 263 bytes in length.
The return value is 0 for success and −1 for an error. The following errors may
occur:

EBADF fd does not correspond to an open file.

EACCES fd is a directory or not open for writing.

EINVAL length is negative.

EFBIG The operation would extend the file beyond the limits of the oper-
ating system.

EIO A hardware I/O error occurred.

EPERM The file is “append-only” or “immutable”.

EINTR The operation was interrupted by a signal.

Functionint ftruncate64 (int id, off64_t length)
This function is similar to the ftruncate function. The difference is that
the length argument is 64 bits wide even on 32-bit machines, which allows the
handling of files with sizes up to 263 bytes.
When the source file is compiled with _FILE_OFFSET_BITS == 64 on a 32-
bit machine, this function is actually available under the name ftruncate and
so transparently replaces the 32-bit interface.

Here is a little example of how to use ftruncate in combination with mmap:
int fd;

void *start;

size_t len;

int

add (off_t at, void *block, size_t size)

{

if (at + size > len)

{

/* Resize the file and remap. */

size_t ps = sysconf (_SC_PAGESIZE);

size_t ns = (at + size + ps - 1) & ˜(ps - 1);

Chapter 3: File-System Interface 113

void *np;

if (ftruncate (fd, ns) < 0)

return -1;

np = mmap (NULL, ns, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);

if (np == MAP_FAILED)

return -1;

start = np;

len = ns;

}

memcpy ((char *) start + at, block, size);

return 0;

}

The function add writes a block of memory at an arbitrary position in the file.
If the current size of the file is too small, it is extended. It is extended by a round
number of pages. This is a requirement of mmap. The program has to keep track of
the real size, and when it has finished, a final ftruncate call should set the real
size of the file.

3.10 Making Special Files
The mknod function is the primitive for making special files, such as files that

correspond to devices. The GNU library includes this function for compatibility
with BSD.

The prototype for mknod is declared in ‘sys/stat.h’.

Functionint mknod (const char *filename, int mode, int dev)
The mknod function makes a special file with name filename. The mode spec-
ifies the mode of the file, and may include the various special-file bits, such as
S_IFCHR (for a character special file) or S_IFBLK (for a block special file)
(see Section 3.9.3 [Testing the Type of a File], page 99).
The dev argument specifies which device the special file refers to. Its exact
interpretation depends on the kind of special file being created.
The return value is 0 on success and -1 on error. In addition to the usual file-
name errors, the following errno error conditions are defined for this func-
tion:24

EPERM The calling process is not privileged. Only the superuser can create
special files.

ENOSPC The directory or file system that would contain the new file is full
and cannot be extended.

EROFS The directory containing the new file can’t be modified because
it’s on a read-only file system.

24 Ibid., “File-Name Errors”.

114 The GNU C Library: System & Network Applications

EEXIST There is already a file named filename. If you want to replace this
file, you must remove the old file explicitly first.

3.11 Temporary Files
If you need to use a temporary file in your program, you can use the tmpfile

function to open it. Or you can use either the tmpnam or tmpnam_r (better)
function to provide a name for a temporary file, and then you can open it in the
usual way with fopen.

The tempnam function is like tmpnam but lets you choose what directory tem-
porary files will go in, and something about what their file names will look like. Im-
portant for multithreaded programs is that tempnam is reentrant, while tmpnam
is not, since it returns a pointer to a static buffer.

These facilities are declared in the header file ‘stdio.h’.

FunctionFILE * tmpfile (void)
This function creates a temporary binary file for update mode, as if by calling
fopen with mode ‘wb+’. The file is deleted automatically when it is closed or
when the program terminates. On some other ISO C systems, the file may fail to
be deleted if the program terminates abnormally.
This function is reentrant.
When the sources are compiled with _FILE_OFFSET_BITS == 64 on a 32-
bit system, this function is in fact tmpfile64—the LFS interface transparently
replaces the old interface.

FunctionFILE * tmpfile64 (void)
This function is similar to tmpfile, but the stream it returns a pointer to was
opened using tmpfile64. Therefore, this stream can be used for files larger
then 231 bytes on 32-bit machines.
The return type is still FILE *. There is no special FILE type for the LFS
interface.
If the sources are compiled with _FILE_OFFSET_BITS == 64 on a 32-bit
machine, this function is available under the name tmpfile and so transpar-
ently replaces the old interface.

Functionchar * tmpnam (char *result)
This function constructs and returns a valid file name that does not refer to
any existing file. If the result argument is a null pointer, the return value is a
pointer to an internal static string, which might be modified by subsequent calls
and therefore makes this function nonreentrant. Otherwise, the result argument
should be a pointer to an array of at least L_tmpnam characters, and the result
is written into that array.
It is possible for tmpnam to fail if you call it too many times without removing
previously created files. This is because the limited length of the temporary file

Chapter 3: File-System Interface 115

names gives room for only a finite number of different names. If tmpnam fails
it returns a null pointer.
Warning: Between the time the pathname is constructed and the file is created,
another process might have created a file with the same name using tmpnam,
leading to a possible security hole. The implementation generates names which
can hardly be predicted, but when opening the file, you should use the O_EXCL
flag. Using tmpfile or mkstemp is a safe way to avoid this problem.

Functionchar * tmpnam r (char *result)
This function is nearly identical to the tmpnam function, except that if result is
a null pointer, it returns a null pointer.
This guarantees reentrancy because the nonreentrant situation of tmpnam can-
not happen here.
Warning: This function has the same security problems as tmpnam.

Macroint L tmpnam
The value of this macro is an integer constant expression that represents the
minimum size of a string large enough to hold a file name generated by the
tmpnam function.

Macroint TMP MAX
The macro TMP_MAX is a lower bound for how many temporary names you can
create with tmpnam. You can rely on being able to call tmpnam at least this
many times before it might fail saying you have made too many temporary file
names.
With the GNU library, you can create a very large number of temporary file
names. If you actually created the files, you would probably run out of disk
space before you ran out of names. Some other systems have a fixed, small
limit on the number of temporary files. The limit is never less than 25.

Functionchar * tempnam (const char *dir, const char *prefix)
This function generates a unique temporary file name. If prefix is not a null
pointer, up to five characters of this string are used as a prefix for the file name.
The return value is a string newly allocated with malloc, so you should release
its storage with free when it is no longer needed.
Because the string is dynamically allocated, this function is reentrant.
The directory prefix for the temporary file name is determined by testing each
of the following in sequence. The directory must exist and be writable.

• The environment variable TMPDIR, if it is defined—for security reasons,
this only happens if the program is not SUID or SGID enabled

• The dir argument, if it is not a null pointer
• The value of the P_tmpdir macro
• The directory ‘/tmp’

116 The GNU C Library: System & Network Applications

This function is defined for SVID compatibility.
Warning: Between the time the pathname is constructed and the file is created,
another process might have created a file with the same name using tempnam,
leading to a possible security hole. The implementation generates names that
can hardly be predicted, but when opening the file you should use the O_EXCL
flag. Using tmpfile or mkstemp is a safe way to avoid this problem.

SVID Macrochar * P tmpdir
This macro is the name of the default directory for temporary files.

Older Unix systems did not have the functions just described. Instead, they used
mktemp and mkstemp. Both of these functions work by modifying a file-name
template string you pass. The last six characters of this string must be ‘XXXXXX’.
These six ‘X’s are replaced with six characters that make the whole string a unique
file-name. Usually the template string is something like ‘/tmp/prefixXXXXXX’,
and each program uses a unique prefix.

Because mktemp and mkstemp modify the template string, you must not pass
string constants to them. String constants are normally in read-only storage, so
your program would crash when mktemp or mkstemp tried to modify the string.
These functions are declared in the header file ‘stdlib.h’.

Functionchar * mktemp (char *template)
The mktemp function generates a unique file-name by modifying template as
described above. If successful, it returns template as modified. If mktemp
cannot find a unique file name, it makes template an empty string and returns
that. If template does not end with ‘XXXXXX’, mktemp returns a null pointer.
Warning: Between the time the pathname is constructed and the file is created,
another process might have created a file with the same name using mktemp,
leading to a possible security hole. The implementation generates names that
can hardly be predicted, but when opening the file you should use the O_EXCL
flag. Using mkstemp is a safe way to avoid this problem.

Functionint mkstemp (char *template)
The mkstemp function generates a unique file-name just as mktemp does, but
it also opens the file for you with open (see Section 2.1 [Opening and Closing
Files], page 17). If successful, it modifies template in place and returns a file
descriptor for that file open for reading and writing. If mkstemp cannot create
a uniquely named file, it returns -1. If template does not end with ‘XXXXXX’,
mkstemp returns -1 and does not modify template.
The file is opened using mode 0600. If the file is meant to be used by other
users, this mode must be changed explicitly.

Unlike mktemp, mkstemp is actually guaranteed to create a unique file that
cannot possibly clash with any other program trying to create a temporary file.
This is because it works by calling open with the O_EXCL flag, which says you
want to create a new file and get an error if the file already exists.

Chapter 3: File-System Interface 117

Functionchar * mkdtemp (char *template)
The mkdtemp function creates a directory with a unique name. If it suc-
ceeds, it overwrites template with the name of the directory, and returns tem-
plate. As with mktemp and mkstemp, template should be a string ending with
‘XXXXXX’.
If mkdtemp cannot create an uniquely named directory, it returns NULL and
sets errno appropriately. If template does not end with ‘XXXXXX’, mkdtemp
returns NULL and does not modify template. errno will be set to EINVAL in
this case.
The directory is created using mode 0700.

The directory created by mkdtemp cannot clash with temporary files or direc-
tories created by other users. This is because directory creation always works like
open with O_EXCL (see Section 3.8 [Creating Directories], page 92).

The mkdtemp function comes from OpenBSD.

118 The GNU C Library: System & Network Applications

Chapter 4: Pipes and FIFOs 119

4 Pipes and FIFOs

A pipe is a mechanism for interprocess communication; data written to the pipe
by one process can be read by another process. The data is handled in a first-in,
first-out (FIFO) order. The pipe has no name; it is created for one use, and both ends
must be inherited from the single process that created the pipe.

A FIFO special file is similar to a pipe, but instead of being an anonymous,
temporary connection, a FIFO has a name or names like any other file. Processes
open the FIFO by name in order to communicate through it.

A pipe or FIFO has to be open at both ends simultaneously. If you read from
a pipe or FIFO file that doesn’t have any processes writing to it (perhaps because
they have all closed the file, or exited), the read returns end-of-file. Writing to a
pipe or FIFO that doesn’t have a reading process is treated as an error condition;
it generates a SIGPIPE signal, and fails with error code EPIPE if the signal is
handled or blocked.

Neither pipes nor FIFO special files allow file positioning. Both reading and
writing operations happen sequentially; reading from the beginning of the file and
writing at the end.

4.1 Creating a Pipe
The primitive for creating a pipe is the pipe function. This creates both the

reading and writing ends of the pipe. It is not very useful for a single process to use
a pipe to talk to itself. In typical use, a process creates a pipe just before it forks
one or more child processes (see Section 7.4 [Creating a Process], page 211). The
pipe is then used for communication either between the parent or child processes
or between two sibling processes.

The pipe function is declared in the header file ‘unistd.h’.

Functionint pipe (int filedes[2])
The pipe function creates a pipe and puts the file descriptors for the reading
and writing ends of the pipe, respectively, into filedes[0] and filedes[1].
An easy way to remember that the input end comes first is that file descriptor 0
is standard input, and file descriptor 1 is standard output.
If successful, pipe returns a value of 0. On failure, -1 is returned. The fol-
lowing errno error conditions are defined for this function:

EMFILE The process has too many files open.

ENFILE There are too many open files in the entire system.1 This error
never occurs in the GNU system.

1 For more information about ENFILE, see Loosemore et al., “Error Codes” (see chap. 1, n. 1).

120 The GNU C Library: System & Network Applications

Here is an example of a simple program that creates a pipe. This program uses
the fork function to create a child process (see Section 7.4 [Creating a Process],
page 211). The parent process writes data to the pipe, which is read by the child
process.

#include <sys/types.h>

#include <unistd.h>

#include <stdio.h>

#include <stdlib.h>

/* Read characters from the pipe and echo them to stdout. */

void

read_from_pipe (int file)

{

FILE *stream;

int c;

stream = fdopen (file, "r");

while ((c = fgetc (stream)) != EOF)

putchar (c);

fclose (stream);

}

/* Write some random text to the pipe. */

void

write_to_pipe (int file)

{

FILE *stream;

stream = fdopen (file, "w");

fprintf (stream, "hello, world!\n");

fprintf (stream, "goodbye, world!\n");

fclose (stream);

}

int

main (void)

{

pid_t pid;

int mypipe[2];

/* Create the pipe. */

if (pipe (mypipe))

{

Chapter 4: Pipes and FIFOs 121

fprintf (stderr, "Pipe failed.\n");

return EXIT_FAILURE;

}

/* Create the child process. */

pid = fork ();

if (pid == (pid_t) 0)

{

/* This is the child process.

Close other end first. */

close (mypipe[1]);

read_from_pipe (mypipe[0]);

return EXIT_SUCCESS;

}

else if (pid < (pid_t) 0)

{

/* The fork failed. */

fprintf (stderr, "Fork failed.\n");

return EXIT_FAILURE;

}

else

{

/* This is the parent process.

Close other end first. */

close (mypipe[0]);

write_to_pipe (mypipe[1]);

return EXIT_SUCCESS;

}

}

4.2 Pipe to a Subprocess

A common use of pipes is to send data to or receive data from a program being
run as a subprocess. One way of doing this is by using a combination of pipe (to
create the pipe), fork (to create the subprocess), dup2 (to force the subprocess to
use the pipe as its standard input or output channel) and exec (to execute the new
program). Or, you can use popen and pclose.

The advantage of using popen and pclose is that the interface is much simpler
and easier to use. But it doesn’t offer as much flexibility as using the low-level
functions directly.

122 The GNU C Library: System & Network Applications

FunctionFILE * popen (const char *command, const char
*mode)

The popen function is closely related to the system function (see Section 7.1
[Running a Command], page 209). It executes the shell command command
as a subprocess. However, instead of waiting for the command to complete, it
creates a pipe to the subprocess and returns a stream that corresponds to that
pipe.
If you specify a mode argument of ‘r’, you can read from the stream to retrieve
data from the standard output channel of the subprocess. The subprocess inherits
its standard input channel from the parent process.
Similarly, if you specify a mode argument of ‘w’, you can write to the stream
to send data to the standard input channel of the subprocess. The subprocess
inherits its standard output channel from the parent process.
In the event of an error, popen returns a null pointer. This might happen if the
pipe or stream cannot be created, if the subprocess cannot be forked or if the
program cannot be executed.

Functionint pclose (FILE *stream)
The pclose function is used to close a stream created by popen. It waits for
the child process to terminate and returns its status value, as for the system
function.

Here is an example showing how to use popen and pclose to filter output
through another program, in this case the paging program more.

#include <stdio.h>

#include <stdlib.h>

void

write_data (FILE * stream)

{

int i;

for (i = 0; i < 100; i++)

fprintf (stream, "%d\n", i);

if (ferror (stream))

{

fprintf (stderr, "Output to stream failed.\n");

exit (EXIT_FAILURE);

}

}

int

main (void)

{

FILE *output;

Chapter 4: Pipes and FIFOs 123

output = popen ("more", "w");

if (!output)

{

fprintf (stderr,

"incorrect parameters or too many files.\n");

return EXIT_FAILURE;

}

write_data (output);

if (pclose (output) != 0)

{

fprintf (stderr,

"Could not run more or other error.\n");

}

return EXIT_SUCCESS;

}

4.3 FIFO Special Files
A FIFO special file is similar to a pipe, except that it is created in a different

way. Instead of being an anonymous communications channel, a FIFO special file
is entered into the file system by calling mkfifo.

Once you have created a FIFO special file in this way, any process can open it
for reading or writing, in the same way as an ordinary file. However, it has to be
open at both ends simultaneously before you can proceed to do any input or output
operations on it. Opening a FIFO for reading normally blocks until some other
process opens the same FIFO for writing, and vice versa.

The mkfifo function is declared in the header file ‘sys/stat.h’.

Functionint mkfifo (const char *filename, mode_t mode)
The mkfifo function makes a FIFO special file with name filename. The mode
argument is used to set the file’s permissions (see Section 3.9.7 [Assigning File
Permissions], page 104).
The normal, successful return value from mkfifo is 0. In the case of an error,
-1 is returned. In addition to the usual file-name errors, the following errno
error conditions are defined for this function:2

EEXIST The named file already exists.

ENOSPC The directory or file system cannot be extended.

EROFS The directory that would contain the file resides on a read-only file
system.

2 Ibid., “File-Name Errors”.

124 The GNU C Library: System & Network Applications

4.4 Atomicity of Pipe I/O
Reading or writing pipe data is atomic if the size of data written is not greater

than PIPE_BUF. This means that the data transfer seems to be an instantaneous
unit, in that nothing else in the system can observe a state in which it is partially
complete. Atomic I/O may not begin right away (it may need to wait for buffer
space or for data), but once it does begin, it finishes immediately.

Reading or writing a larger amount of data may not be atomic; for example,
output data from other processes sharing the descriptor may be interspersed. Also,
once PIPE_BUF characters have been written, further writes will block until some
characters are read.

See Section 12.6 [Limits on File-System Capacity], page 318, for information
about the PIPE_BUF parameter.

Chapter 5: Sockets 125

5 Sockets
This chapter describes the GNU facilities for interprocess communication using

sockets.
A socket is a generalized interprocess communication channel. Like a pipe, a

socket is represented as a file descriptor. Unlike pipes, sockets support communi-
cation between unrelated processes, and even between processes running on dif-
ferent machines that communicate over a network. Sockets are the primary means
of communicating with other machines; telnet, rlogin, ftp, talk and the
other familiar network programs use sockets.

Not all operating systems support sockets. In the GNU library, the header file
‘sys/socket.h’ exists regardless of the operating system, and the socket func-
tions always exist, but if the system does not really support sockets, these functions
always fail.

We do not currently document the facilities for broadcast messages or for con-
figuring Internet interfaces. The reentrant functions and some newer functions that
are related to IPv6 aren’t yet documented either.

5.1 Socket Concepts
When you create a socket, you must specify the style of communication you want

to use and the type of protocol that should implement it. The communication style
of a socket defines the user-level semantics of sending and receiving data on the
socket. Choosing a communication style specifies the answers to questions such as
these:

• What are the units of data transmission? Some communication styles re-
gard the data as a sequence of bytes with no larger structure; others group the
bytes into records (which are known in this context as packets).

• Can data be lost during normal operation? Some communication styles
guarantee that all the data sent arrives in the order it was sent (barring system
or network crashes); other styles occasionally lose data as a normal part of
operation, and may sometimes deliver packets more than once or in the wrong
order.
Designing a program to use unreliable communication styles usually involves
taking precautions to detect lost or misordered packets and to retransmit data
as needed.

• Is communication entirely with one partner? Some communication styles
are like a telephone call—you make a connection with one remote socket and
then exchange data freely. Other styles are like mailing letters—you specify a
destination address for each message you send.

You must also choose a namespace for naming the socket. A socket name (“ad-
dress”) is meaningful only in the context of a particular namespace. In fact, even
the data type to use for a socket name may depend on the namespace. Namespaces

126 The GNU C Library: System & Network Applications

are also called “domains”, but we avoid that word as it can be confused with other
usage of the same term. Each namespace has a symbolic name that starts with
‘PF_’. A corresponding symbolic name starting with ‘AF_’ designates the address
format for that namespace.

Finally, you must choose the protocol to carry out the communication. The
protocol determines what low-level mechanism is used to transmit and receive
data. Each protocol is valid for a particular namespace and communication style; a
namespace is sometimes called a protocol family because of this, which is why the
namespace names start with ‘PF_’.

The rules of a protocol apply to the data passing between two programs, perhaps
on different computers; most of these rules are handled by the operating system and
you need not know about them. What you do need to know about protocols is this:

• In order to have communication between two sockets, they must specify the
same protocol.

• Each protocol is meaningful with particular style/namespace combinations
and cannot be used with inappropriate combinations. For example, the TCP
protocol fits only the byte-stream style of communication and the Internet
namespace.

• For each combination of style and namespace, there is a default protocol,
which you can request by specifying 0 as the protocol number. And that’s
what you should normally do—use the default.

Throughout the following description, at various places variables/parameters to
denote sizes are required. And here the trouble starts. In the first implementations,
the type of these variables was simply int. On most machines at that time, an int
was 32 bits wide, which created a de facto standard requiring 32-bit variables. This
is important, since references to variables of this type are passed to the kernel.

Then the POSIX people came and unified the interface with the words "all size
values are of type size_t". On 64-bit machines, size_t is 64 bits wide, so
pointers to variables were no longer possible.

The Unix98 specification provides a solution by introducing a type socklen_
t. This type is used in all of the cases that POSIX changed to use size_t. The only
requirement of this type is that it be an unsigned type of at least 32 bits. Therefore,
implementations that require that references to 32-bit variables be passed can be as
happy as implementations that use 64-bit values.

5.2 Communication Styles

The GNU library includes support for several different kinds of sockets, each
with different characteristics. This section describes the supported socket types.
The symbolic constants listed here are defined in ‘sys/socket.h’.

Chapter 5: Sockets 127

Macroint SOCK STREAM
The SOCK_STREAM style is like a pipe (see Chapter 4 [Pipes and FIFOs],
page 119). It operates over a connection with a particular remote socket and
transmits data reliably as a stream of bytes.
Use of this style is covered in detail in Section 5.9 [Using Sockets with Connec-
tions], page 153.

Macroint SOCK DGRAM
The SOCK_DGRAM style is used for sending individually addressed packets un-
reliably. It is the diametrical opposite of SOCK_STREAM.
Each time you write data to a socket of this kind, that data becomes one packet.
Since SOCK_DGRAM sockets do not have connections, you must specify the
recipient address with each packet.
The only guarantee that the system makes about your requests to transmit data
is that it will try its best to deliver each packet you send. It may succeed with
the sixth packet after failing with the fourth and fifth packets; the seventh packet
may arrive before the sixth, and may arrive a second time after the sixth.
The typical use for SOCK_DGRAM is in situations where it is acceptable to sim-
ply resend a packet if no response is seen in a reasonable amount of time.
See Section 5.10 [Datagram Socket Operations], page 167, for detailed infor-
mation about how to use datagram sockets.

Macroint SOCK RAW
This style provides access to low-level network protocols and interfaces. Ordi-
nary user programs usually have no need to use this style.

5.3 Socket Addresses
The name of a socket is normally called an address. The functions and sym-

bols for dealing with socket addresses were named inconsistently, sometimes using
the term “name” and sometimes using “address”. You can regard these terms as
synonymous where sockets are concerned.

A socket newly created with the socket function has no address. Other pro-
cesses can find it for communication only if you give it an address. We call this
binding the address to the socket, and the way to do it is with the bind function.

You need be concerned with the address of a socket if other processes are to find
it and start communicating with it. You can specify an address for other sockets,
but this is usually pointless; the first time you send data from a socket, or use it to
initiate a connection, the system assigns an address automatically if you have not
specified one.

Occasionally a client needs to specify an address because the server discrimi-
nates based on address; for example, the rsh and rlogin protocols look at the client’s
socket address and only bypass password checking if it is less than IPPORT_
RESERVED (see Section 5.6.3 [Internet Ports], page 144).

128 The GNU C Library: System & Network Applications

The details of socket addresses vary depending on what namespace you are using
(see Section 5.5 [The Local Namespace], page 132, or Section 5.6 [The Internet
Namespace], page 134).

Regardless of the namespace, you use the same functions bind and
getsockname to set and examine a socket’s address. These functions use a
phony data type, struct sockaddr *, to accept the address. In practice, the
address lives in a structure of some other data type appropriate to the address
format you are using, but you cast its address to struct sockaddr * when you
pass it to bind.

5.3.1 Address Formats

The functions bind and getsockname use the generic data type struct
sockaddr * to represent a pointer to a socket address. You can’t use this data
type effectively to interpret an address or construct one; for that, you must use the
proper data type for the socket’s namespace.

Thus, the usual practice is to construct an address of the proper namespace-
specific type, then cast a pointer to struct sockaddr * when you call bind or
getsockname.

The one piece of information that you can get from the struct sockaddr
data type is the address format designator. This tells you which data type to use to
understand the address fully.

The symbols in this section are defined in the header file ‘sys/socket.h’.

Data Typestruct sockaddr
The struct sockaddr type itself has the following members:

short int sa_family
This is the code for the address format of this address. It identifies
the format of the data that follows.

char sa_data[14]
This is the actual socket address data, which is format dependent.
Its length also depends on the format, and may well be more than
14. The length 14 of sa_data is essentially arbitrary.

Each address format has a symbolic name that starts with ‘AF_’. Each of them
corresponds to a ‘PF_’ symbol that designates the corresponding namespace. Here
is a list of address format names:

AF_LOCAL
This designates the address format that goes with the local names-
pace. (PF_LOCAL is the name of that namespace.) See Section 5.5.2
[Details of Local Namespace], page 132, for information about this
address format.

AF_UNIX This is a synonym for AF_LOCAL. Although AF_LOCAL is mandated
by POSIX.1g, AF_UNIX is portable to more systems. AF_UNIX was

Chapter 5: Sockets 129

the traditional name stemming from BSD, so even most POSIX systems
support it. It is also the name of choice in the Unix98 specification.
The same is true for PF_UNIX vs. PF_LOCAL.

AF_FILE This is another synonym for AF_LOCAL, for compatibility. PF_
FILE is likewise a synonym for PF_LOCAL.

AF_INET This designates the address format that goes with the Internet names-
pace (see Section 5.6.1 [Internet Socket Address Formats], page 135).
PF_INET is the name of that namespace.

AF_INET6
This is similar to AF_INET, but refers to the IPv6 protocol. PF_
INET6 is the name of the corresponding namespace.

AF_UNSPEC
This designates no particular address format. It is used only in rare
cases, such as to clear out the default destination address of a “con-
nected” datagram socket (see Section 5.10.1 [Sending Datagrams],
page 167).
The corresponding namespace designator symbol PF_UNSPEC exists
for completeness, but there is no reason to use it in a program.

‘sys/socket.h’ defines symbols starting with ‘AF_’ for many different kinds
of networks, most or all of which are not actually implemented. We will document
those that really work as we receive information about how to use them.

5.3.2 Setting the Address of a Socket

Use the bind function to assign an address to a socket. The prototype for bind
is in the header file ‘sys/socket.h’. For examples of use, see Section 5.5.3 [Ex-
ample of Local-Namespace Sockets], page 133, or Section 5.6.7 [Internet Socket
Example], page 149.

Functionint bind (int socket, struct sockaddr *addr,
socklen_t length)

The bind function assigns an address to the socket socket. The addr and length
arguments specify the address; the detailed format of the address depends on
the namespace. The first part of the address is always the format designator,
which specifies a namespace and says that the address is in the format of that
namespace.
The return value is 0 on success and -1 on failure. The following errno error
conditions are defined for this function:

EBADF The socket argument is not a valid file-descriptor.

ENOTSOCK
The descriptor socket is not a socket.

130 The GNU C Library: System & Network Applications

EADDRNOTAVAIL
The specified address is not available on this machine.

EADDRINUSE
Some other socket is already using the specified address.

EINVAL The socket socket already has an address.

EACCES You do not have permission to access the requested address. In
the Internet domain, only the superuser is allowed to specify a port
number in the range 0 through IPPORT_RESERVED minus 1 (see
Section 5.6.3 [Internet Ports], page 144).

Additional conditions may be possible depending on the particular namespace
of the socket.

5.3.3 Reading the Address of a Socket

Use the function getsockname to examine the address of an Internet socket.
The prototype for this function is in the header file ‘sys/socket.h’.

Functionint getsockname (int socket, struct sockaddr *addr,
socklen_t *length-ptr)

The getsockname function returns information about the address of the
socket socket in the locations specified by the addr and length-ptr arguments.
The length-ptr is a pointer; you should initialize it to be the allocation size of
addr, and on return it contains the actual size of the address data.
The format of the address data depends on the socket namespace. The length
of the information is usually fixed for a given namespace, so normally you can
know exactly how much space is needed and can provide that much. The usual
practice is to allocate a place for the value using the proper data type for the
socket’s namespace, then cast its address to struct sockaddr * to pass it to
getsockname.
The return value is 0 on success and -1 on error. The following errno error
conditions are defined for this function:

EBADF The socket argument is not a valid file-descriptor.

ENOTSOCK
The descriptor socket is not a socket.

ENOBUFS There are not enough internal buffers available for the operation.

You can’t read the address of a socket in the file namespace. This is consistent
with the rest of the system; in general, there’s no way to find a file’s name from a
descriptor for that file.

Chapter 5: Sockets 131

5.4 Interface Naming
Each network interface has a name. This usually consists of a few letters that

relate to the type of interface, which may be followed by a number if there is more
than one interface of that type. Examples might be lo (the loopback interface) and
eth0 (the first Ethernet interface).

Although such names are convenient for humans, it would be clumsy to have to
use them whenever a program needs to refer to an interface. In such situations an
interface is referred to by its index, which is an arbitrarily-assigned small positive
integer.

The following functions, constants and data types are declared in the header file
‘net/if.h’.

Constantsize_t IFNAMSIZ
This constant defines the maximum buffer size needed to hold an interface name,
including its terminating zero byte.

Functionunsigned int if nametoindex (const char *ifname)
This function yields the interface index corresponding to a particular name. If
no interface exists with the name given, it returns 0.

Functionchar * if indextoname (unsigned int ifindex, char
*ifname)

This function maps an interface index to its corresponding name. The returned
name is placed in the buffer pointed to by ifname, which must be at least
IFNAMSIZ bytes in length. If the index was invalid, the function’s return value
is a null pointer, otherwise it is ifname.

Data Typestruct if nameindex
This data type is used to hold the information about a single interface. It has the
following members:

unsigned int if_index;
This is the interface index.

char *if_name
This is the null-terminated index name.

Functionstruct if_nameindex * if nameindex (void)
This function returns an array of if_nameindex structures, one for every
interface that is present. The end of the list is indicated by a structure with an
interface of 0 and a null name pointer. If an error occurs, this function returns a
null pointer.
The returned structure must be freed with if_freenameindex after use.

Functionvoid if freenameindex (struct if_nameindex *ptr)
This function frees the structure returned by an earlier call to if_nameindex.

132 The GNU C Library: System & Network Applications

5.5 The Local Namespace
This section describes the details of the local namespace, whose symbolic name

(required when you create a socket) is PF_LOCAL. The local namespace is also
known as “Unix domain sockets”. Another name is file namespace since socket
addresses are normally implemented as file names.

5.5.1 Local-Namespace Concepts

In the local namespace, socket addresses are file names. You can specify any file
name you want as the address of the socket, but you must have write permission on
the directory containing it. It’s common to put these files in the ‘/tmp’ directory.

One peculiarity of the local namespace is that the name is only used when open-
ing the connection; once open the address is not meaningful and may not exist.

Another peculiarity is that you cannot connect to such a socket from another
machine—not even if the other machine shares the file system that contains the
name of the socket. You can see the socket in a directory listing, but connecting
to it never succeeds. Some programs take advantage of this, such as by asking the
client to send its own process ID, and using the process IDs to distinguish between
clients. However, we recommend you not use this method in protocols you design,
as we might someday permit connections from other machines that mount the same
file systems. Instead, send each new client an identifying number if you want it to
have one.

After you close a socket in the local namespace, you should delete the file name
from the file system. Use unlink or remove to do this (see Section 3.6 [Deleting
Files], page 90).

The local namespace supports just one protocol for any communication style; it
is protocol number 0.

5.5.2 Details of Local Namespace

To create a socket in the local namespace, use the constant PF_LOCAL as the
namespace argument to socket or socketpair. This constant is defined in
‘sys/socket.h’.

Macroint PF LOCAL
This designates the local namespace, in which socket addresses are local names,
and its associated family of protocols. PF_Local is the macro used by
Posix.1g.

Macroint PF UNIX
This is a synonym for PF_LOCAL, for compatibility’s sake.

Macroint PF FILE
This is a synonym for PF_LOCAL, for compatibility’s sake.

Chapter 5: Sockets 133

The structure for specifying socket names in the local namespace is defined in
the header file ‘sys/un.h’:

Data Typestruct sockaddr un
This structure is used to specify local namespace socket addresses. It has the
following members:

short int sun_family
This identifies the address family or format of the socket address.
You should store the value AF_LOCAL to designate the local
namespace (see Section 5.3 [Socket Addresses], page 127).

char sun_path[108]
This is the file name to use.

You should compute the length parameter for a socket address in the local names-
pace as the sum of the size of the sun_family component and the string length
(not the allocation size!) of the file-name string. This can be done using the macro
SUN_LEN:

Macroint SUN LEN (struct sockaddr un * ptr)
The macro computes the length of socket address in the local namespace.

5.5.3 Example of Local-Namespace Sockets

Here is an example showing how to create and name a socket in the local names-
pace.

#include <stddef.h>

#include <stdio.h>

#include <errno.h>

#include <stdlib.h>

#include <string.h>

#include <sys/socket.h>

#include <sys/un.h>

int

make_named_socket (const char *filename)

{

struct sockaddr_un name;

int sock;

size_t size;

/* Create the socket. */

sock = socket (PF_LOCAL, SOCK_DGRAM, 0);

if (sock < 0)

{

134 The GNU C Library: System & Network Applications

perror ("socket");

exit (EXIT_FAILURE);

}

/* Bind a name to the socket. */

name.sun_family = AF_LOCAL;

strncpy (name.sun_path, filename, sizeof (name.sun_path));

name.sun_path[sizeof (name.sun_path) - 1] = ’\0’;

/* The size of the address is

the offset of the start of the file name,

plus its length,

plus 1 for the terminating null byte.

Alternatively you can just do:

size = SUN LEN (&name);

*/

size = (offsetof (struct sockaddr_un, sun_path)

+ strlen (name.sun_path) + 1);

if (bind (sock, (struct sockaddr *) &name, size) < 0)

{

perror ("bind");

exit (EXIT_FAILURE);

}

return sock;

}

5.6 The Internet Namespace
This section describes the details of the protocols and socket naming conventions

used in the Internet namespace.
Originally, the Internet namespace used only IP version 4 (IPv4). With the grow-

ing number of hosts on the Internet, a new protocol with a larger address space was
necessary: IP version 6 (IPv6). IPv6 introduces 128-bit addresses (IPv4 has 32-bit
addresses) and other features, and will eventually replace IPv4.

To create a socket in the IPv4 Internet namespace, use the symbolic name PF_
INET of this namespace as the namespace argument to socket or socketpair.
For IPv6 addresses, you need the macro PF_INET6. These macros are defined in
‘sys/socket.h’.

Macroint PF INET
This designates the IPv4 Internet namespace and associated family of protocols.

Chapter 5: Sockets 135

Macroint PF INET6
This designates the IPv6 Internet namespace and associated family of protocols.

A socket address for the Internet namespace includes the following components:
• The address of the machine you want to connect to; Internet addresses can

be specified in several ways—these are discussed in Section 5.6.1 [Internet
Socket Address Formats], page 135; Section 5.6.2 [Host Addresses], page 136
and Section 5.6.2.4 [Host Names], page 141.

• A port number for that machine (see Section 5.6.3 [Internet Ports], page 144)

You must ensure that the address and port number are represented in a canoni-
cal format called network byte order (see Section 5.6.5 [Byte-Order Conversion],
page 147).

5.6.1 Internet Socket Address Formats

In the Internet namespace, for both IPv4 (AF_INET) and IPv6 (AF_INET6), a
socket address consists of a host address and a port on that host. In addition, the
protocol you choose effectively serves as a part of the address because local port
numbers are meaningful only within a particular protocol.

The data types for representing socket addresses in the Internet namespace are
defined in the header file ‘netinet/in.h’.

Data Typestruct sockaddr in
This is the data type used to represent socket addresses in the Internet names-
pace. It has the following members:

sa_family_t sin_family
This identifies the address family or format of the socket address.
You should store the value AF_INET in this member (see Sec-
tion 5.3 [Socket Addresses], page 127).

struct in_addr sin_addr
This is the Internet address of the host machine. See Section 5.6.2
[Host Addresses], page 136, and Section 5.6.2.4 [Host Names],
page 141, for how to get a value to store here.

unsigned short int sin_port
This is the port number (see Section 5.6.3 [Internet Ports],
page 144).

When you call bind or getsockname, you should specify sizeof
(struct sockaddr_in) as the length parameter if you are using an IPv4
Internet namespace socket address.

Data Typestruct sockaddr in6
This is the data type used to represent socket addresses in the IPv6 namespace.
It has the following members:

136 The GNU C Library: System & Network Applications

sa_family_t sin6_family
This identifies the address family or format of the socket address.
You should store the value of AF_INET6 in this member (see Sec-
tion 5.3 [Socket Addresses], page 127).

struct in6_addr sin6_addr
This is the IPv6 address of the host machine. See Section 5.6.2
[Host Addresses], page 136, and Section 5.6.2.4 [Host Names],
page 141, for how to get a value to store here.

uint32_t sin6_flowinfo
This is a currently unimplemented field.

uint16_t sin6_port
This is the port number (see Section 5.6.3 [Internet Ports],
page 144).

5.6.2 Host Addresses

Each computer on the Internet has one or more Internet addresses, numbers
which identify that computer among all those on the Internet. Users typically write
IPv4 numeric host-addresses as sequences of four numbers, separated by periods,
as in ‘128.52.46.32’, and IPv6 numeric host-addresses as sequences of up to
eight numbers separated by colons, as in ‘5f03:1200:836f:c100::1’.

Each computer also has one or more host names, which are strings of words
separated by periods, as in ‘mescaline.gnu.org’.

Programs that let the user specify a host typically accept both numeric addresses
and host names. To open a connection, a program needs a numeric address, and so
must convert a host name to the numeric address it stands for.

5.6.2.1 Internet Host-Addresses

An IPv4 Internet host-address is a number containing 4 bytes of data. Histor-
ically, these are divided into two parts, a network number and a local network
address number within that network. In the mid-1990s, classless addresses were
introduced that changed this behavior. Since some functions implicitly expect the
old definitions, we first describe the class-based network and will then describe
classless addresses. IPv6 uses only classless addresses and therefore the following
paragraphs don’t apply to it.

The class-based IPv4 network number consists of the first 1, 2 or 3 bytes; the rest
of the bytes are the local address.

IPv4 network numbers are registered with the Network Information Center
(NIC), and are divided into three classes—A, B and C. The local network address
numbers of individual machines are registered with the administrator of the partic-
ular network.

Class A networks have single-byte numbers in the range 0 to 127. There are only
a small number of Class A networks, but they can each support a very large number

Chapter 5: Sockets 137

of hosts. Medium-sized Class B networks have 2-byte network numbers, with the
first byte in the range 128 to 191. Class C networks are the smallest; they have
3-byte network numbers, with the first byte in the range 192-255. Thus, the first 1,
2 or 3 bytes of an Internet address specify a network. The remaining bytes of the
Internet address specify the address within that network.

The Class A network 0 is reserved for broadcast to all networks. In addition,
the host number 0 within each network is reserved for broadcast to all hosts in that
network. These uses are obsolete now but for compatibility reasons, you shouldn’t
use network 0 and host number 0.

The Class A network 127 is reserved for loopback; you can always use the Inter-
net address ‘127.0.0.1’ to refer to the host machine.

Since a single machine can be a member of multiple networks, it can have multi-
ple Internet host-addresses. However, there is never supposed to be more than one
machine with the same host address.

There are four forms of the standard numbers-and-dots notation for Internet ad-
dresses:

a.b.c.d This specifies all 4 bytes of the address individually and is the com-
monly used representation.

a.b.c The last part of the address, c, is interpreted as a 2-byte quantity. This
is useful for specifying host addresses in a Class B network with net-
work address number a.b .

a.b The last part of the address, b, is interpreted as a 3-byte quantity. This
is useful for specifying host addresses in a Class A network with net-
work address number a.

a If only one part is given, this corresponds directly to the host-address
number.

Within each part of the address, the usual C conventions for specifying the radix
apply. In other words, a leading ‘0x’ or ‘0X’ implies hexadecimal radix; a leading
‘0’ implies octal; otherwise, decimal radix is assumed.

Classless Addresses

IPv4 addresses (and IPv6 addresses also) are now considered classless; the dis-
tinction between classes A, B and C can be ignored. Instead, an IPv4 host-address
consists of a 32-bit address and a 32-bit mask. The mask contains set bits for the
network part and cleared bits for the host part. The network part is contiguous from
the left, with the remaining bits representing the host. As a consequence, the net-
mask can simply be specified as the number of set bits. Classes A, B and C are just
special cases of this general rule. For example, class A addresses have a netmask
of ‘255.0.0.0’ or a prefix length of 8.

Classless IPv4 network addresses are written in numbers-and-dots notation with
the prefix length appended and a slash as separator. For example the class A net-
work 10 is written as ‘10.0.0.0/8’.

138 The GNU C Library: System & Network Applications

IPv6 Addresses

IPv6 addresses contain 128 bits (IPv4 has 32 bits) of data. A host address is
usually written as eight 16-bit hexadecimal numbers that are separated by colons.
Two colons are used to abbreviate strings of consecutive zeros. For example, the
IPv6 loopback address ‘0:0:0:0:0:0:0:1’ can just be written as ‘::1’.

5.6.2.2 Host-Address Data Type

IPv4 Internet host-addresses are represented in some contexts as integers (type
uint32_t). In other contexts, the integer is packaged inside a structure of type
struct in_addr. It would be better if the usage were made consistent, but it is
not hard to extract the integer from the structure or put the integer into a structure.

You will find older code that uses unsigned long int for IPv4 Internet host-
addresses instead of uint32_t or struct in_addr. Historically, unsigned
long int was a 32-bit number, but with 64-bit machines this has changed. Using
unsigned long int might break the code if it is used on machines where this
type doesn’t have 32 bits. uint32_t is specified by Unix98 and guaranteed to
have 32 bits.

IPv6 Internet host-addresses have 128 bits and are packaged inside a structure of
type struct in6_addr.

The following basic definitions for Internet addresses are declared in the header
file ‘netinet/in.h’:

Data Typestruct in addr
This data type is used in certain contexts to contain an IPv4 Internet host-
address. It has just one field, named s_addr, which records the host-address
number as an uint32_t.

Macrouint32_t INADDR LOOPBACK
You can use this constant to stand for “the address of this machine,” instead
of finding its actual address. It is the IPv4 Internet address ‘127.0.0.1’,
which is usually called ‘localhost’. This special constant saves you the
trouble of looking up the address of your own machine. Also, the system usually
implements INADDR_LOOPBACK specially, avoiding any network traffic for
the case of one machine talking to itself.

Macrouint32_t INADDR ANY
You can use this constant to stand for “any incoming address” when
binding to an address (see Section 5.3.2 [Setting the Address of a Socket],
page 129). This is the usual address to give in the sin_addr member of
struct sockaddr_in when you want to accept Internet connections.

Macrouint32_t INADDR BROADCAST
This constant is the address you use to send a broadcast message.

Chapter 5: Sockets 139

Macrouint32_t INADDR NONE
This constant is returned by some functions to indicate an error.

Data Typestruct in6 addr
This data type is used to store an IPv6 address. It stores 128 bits of data, which
can be accessed (via a union) in a variety of ways.

Constantstruct in6_addr in6addr loopback
This constant is the IPv6 address ‘::1’, the loopback address. See above for
a description of what this means. The macro IN6ADDR_LOOPBACK_INIT is
provided to allow you to initialize your own variables to this value.

Constantstruct in6_addr in6addr any
This constant is the IPv6 address ‘::’, the unspecified address. See above for a
description of what this means. The macro IN6ADDR_ANY_INIT is provided
to allow you to initialize your own variables to this value.

5.6.2.3 Host-Address Functions

These additional functions for manipulating Internet addresses are declared in the
header file ‘arpa/inet.h’. They represent Internet addresses in network byte
order, and network numbers and local-address-within-network numbers in host byte
order. See Section 5.6.5 [Byte-Order Conversion], page 147, for an explanation of
network and host byte order.

Functionint inet aton (const char *name, struct in_addr
*addr)

This function converts the IPv4 Internet host-address name from the standard
numbers-and-dots notation into binary data and stores it in the struct in_
addr that addr points to. inet_aton returns nonzero if the address is valid
and zero if not.

Functionuint32_t inet addr (const char *name)
This function converts the IPv4 Internet host-address name from the standard
numbers-and-dots notation into binary data. If the input is not valid, inet_
addr returns INADDR_NONE. This is an obsolete interface to inet_aton,
described immediately above. It is obsolete because INADDR_NONE is a valid
address (255.255.255.255), and inet_aton provides a cleaner way to indicate
error return.

Functionuint32_t inet network (const char *name)
This function extracts the network number from the address name, given in the
standard numbers-and-dots notation. The returned address is in host order. If
the input is not valid, inet_network returns -1.
The function works only with traditional IPv4 class A, B and C network types.
It doesn’t work with classless addresses and shouldn’t be used anymore.

140 The GNU C Library: System & Network Applications

Functionchar * inet ntoa (struct in_addr addr)
This function converts the IPv4 Internet host-address addr to a string in the stan-
dard numbers-and-dots notation. The return value is a pointer into a statically
allocated buffer. Subsequent calls will overwrite the same buffer, so you should
copy the string if you need to save it.
In multithreaded programs, each thread has its own statically allocated buffer.
But still, subsequent calls of inet_ntoa in the same thread will overwrite the
result of the last call.
Instead of inet_ntoa, the newer function inet_ntop, which is described
below, should be used since it handles both IPv4 and IPv6 addresses.

Functionstruct in_addr inet makeaddr (uint32_t net,
uint32_t local)

This function makes an IPv4 Internet host-address by combining the network
number net with the local-address-within-network number local.

Functionuint32_t inet lnaof (struct in_addr addr)
This function returns the local-address-within-network part of the Internet host-
address addr.
The function works only with traditional IPv4 class A, B and C network types.
It doesn’t work with classless addresses and shouldn’t be used anymore.

Functionuint32_t inet netof (struct in_addr addr)
This function returns the network number part of the Internet host address addr.
The function works only with traditional IPv4 class A, B and C network types.
It doesn’t work with classless addresses and shouldn’t be used anymore.

Functionint inet pton (int af, const char *cp, void *buf)
This function converts an Internet address (either IPv4 or IPv6) from presen-
tation (textual) to network (binary) format. af should be either AF_INET or
AF_INET6, as appropriate for the type of address being converted. cp is a
pointer to the input string, and buf is a pointer to a buffer for the result. It is the
caller’s responsibility to make sure the buffer is large enough.

Functionconst char * inet ntop (int af, const void *cp, char
*buf, size_t len)

This function converts an Internet address (either IPv4 or IPv6) from network
(binary) to presentation (textual) form. af should be either AF_INET or AF_
INET6, as appropriate. cp is a pointer to the address to be converted. buf
should be a pointer to a buffer to hold the result, and len is the length of this
buffer. The return value from the function will be this buffer address.

Chapter 5: Sockets 141

5.6.2.4 Host Names

Besides the standard numbers-and-dots notation for Internet addresses, you can
also refer to a host by a symbolic name. The advantage of a symbolic name is that
it is usually easier to remember. For example, the machine with Internet address
‘158.121.106.19’ is also known as ‘alpha.gnu.org’; and other machines
in the ‘gnu.org’ domain can refer to it simply as ‘alpha’.

Internally, the system uses a database to keep track of the mapping between host
names and host numbers. This database is usually either the file ‘/etc/hosts’
or an equivalent provided by a name server. The functions and other symbols for
accessing this database are declared in ‘netdb.h’. They are BSD features, defined
unconditionally if you include ‘netdb.h’.

Data Typestruct hostent
This data type is used to represent an entry in the hosts database. It has the
following members:

char *h_name
This is the “official” name of the host.

char **h_aliases
These are alternative names for the host, represented as a null-
terminated vector of strings.

int h_addrtype
This is the host-address type; in practice, its value is always ei-
ther AF_INET or AF_INET6, with the latter being used for IPv6
hosts. In principle, other kinds of addresses could be represented
in the database as well as Internet addresses; if this were done, you
might find a value in this field other than AF_INET or AF_INET6
(see Section 5.3 [Socket Addresses], page 127).

int h_length
This is the length, in bytes, of each address.

char **h_addr_list
This is the vector of addresses for the host. (Recall that the host
might be connected to multiple networks and have different ad-
dresses on each one.) The vector is terminated by a null pointer.

char *h_addr
This is a synonym for h_addr_list[0]; in other words, it is
the first host-address.

As far as the host database is concerned, each address is just a block of memory
h_length bytes long. But in other contexts, there is an implicit assumption that
you can convert IPv4 addresses to a struct in_addr or an uint32_t. Host
addresses in a struct hostent structure are always given in network byte order
(see Section 5.6.5 [Byte-Order Conversion], page 147).

142 The GNU C Library: System & Network Applications

You can use gethostbyname, gethostbyname2 or gethostbyaddr to
search the hosts database for information about a particular host. The information
is returned in a statically allocated structure; you must copy the information if you
need to save it across calls. You can also use getaddrinfo and getnameinfo
to obtain this information.

Functionstruct hostent * gethostbyname (const char *name)
The gethostbyname function returns information about the host named
name. If the lookup fails, it returns a null pointer.

Functionstruct hostent * gethostbyname2 (const char *name,
int af)

The gethostbyname2 function is like gethostbyname, but allows the
caller to specify the desired address family (e.g. AF_INET or AF_INET6) of
the result.

Functionstruct hostent * gethostbyaddr (const char *addr,
size_t length, int format)

The gethostbyaddr function returns information about the host with Inter-
net address addr. The parameter addr is not really a pointer to char - it can be
a pointer to an IPv4 or an IPv6 address. The length argument is the size (in
bytes) of the address at addr. format specifies the address format; for an IPv4
Internet address, specify a value of AF_INET; for an IPv6 Internet address, use
AF_INET6.
If the lookup fails, gethostbyaddr returns a null pointer.

If the name lookup by gethostbyname or gethostbyaddr fails, you can
find out the reason by looking at the value of the variable h_errno. It would be
cleaner design for these functions to set errno, but use of h_errno is compatible
with other systems.

Here are the error codes that you may find in h_errno:

HOST_NOT_FOUND
No such host is known in the database.

TRY_AGAIN
This condition happens when the name server could not be contacted.
If you try again later, you may succeed then.

NO_RECOVERY
A nonrecoverable error occurred.

NO_ADDRESS
The host database contains an entry for the name, but it doesn’t have
an associated Internet address.

The lookup functions above all have one thing in common: they are not reentrant
and so are unusable in multithreaded applications. Therefore, the GNU C Library
provides a new set of functions that can be used in this context.

Chapter 5: Sockets 143

Functionint gethostbyname r (const char *restrict name,
struct hostent *restrict result buf, char *restrict
buf, size_t buflen, struct hostent **restrict result,
int *restrict h errnop)

The gethostbyname_r function returns information about the host named
name. The caller must pass a pointer to an object of type struct hostent in
the result buf parameter. In addition, the function may need extra buffer space,
and the caller must pass a pointer and the size of the buffer in the buf and buflen
parameters.
A pointer to the buffer, in which the result is stored, is available in *result after
the function call successfully returned. If an error occurs or if no entry is found,
the pointer *result is a null pointer. Success is signalled by a zero return value.
If the function failed, the return value is an error number. In addition to the
errors defined for gethostbyname, it can also be ERANGE. In this case, the
call should be repeated with a larger buffer. Additional error information is not
stored in the global variable h_errno but instead in the object pointed to by
h errnop.
Here’s a small example:

struct hostent *

gethostname (char *host)

{

struct hostent hostbuf, *hp;

size_t hstbuflen;

char *tmphstbuf;

int res;

int herr;

hstbuflen = 1024;

/* Allocate buffer, remember to free it to avoid memory leakage. */

tmphstbuf = malloc (hstbuflen);

while ((res = gethostbyname_r (host, &hostbuf, tmphstbuf, hstbuflen,

&hp, &herr)) == ERANGE)

{

/* Enlarge the buffer. */

hstbuflen *= 2;

tmphstbuf = realloc (tmphstbuf, hstbuflen);

}

/* Check for errors. */

if (res || hp == NULL)

return NULL;

return hp;

}

144 The GNU C Library: System & Network Applications

Functionint gethostbyname2 r (const char *name, int af,
struct hostent *restrict result buf, char *restrict
buf, size_t buflen, struct hostent **restrict result,
int *restrict h errnop)

The gethostbyname2_r function is like gethostbyname_r, but allows
the caller to specify the desired address family (e.g. AF_INET or AF_INET6)
for the result.

Functionint gethostbyaddr r (const char *addr, size_t length,
int format, struct hostent *restrict result buf, char
*restrict buf, size_t buflen, struct hostent
**restrict result, int *restrict h errnop)

The gethostbyaddr_r function returns information about the host with In-
ternet address addr. The parameter addr is not really a pointer to char—it can
be a pointer to an IPv4 or an IPv6 address. The length argument is the size (in
bytes) of the address at addr. format specifies the address format; for an IPv4
Internet address, specify a value of AF_INET; for an IPv6 Internet address, use
AF_INET6.
Similar to the gethostbyname_r function, the caller must provide buffers
for the result and memory used internally. In case of success, the function re-
turns 0. Otherwise, the value is an error number where ERANGE has the special
meaning that the caller-provided buffer is too small.

You can also scan the entire hosts database one entry at a time using
sethostent, gethostent and endhostent. Be careful when using these
functions, because they are not reentrant.

Functionvoid sethostent (int stayopen)
This function opens the hosts database to begin scanning it. You can then call
gethostent to read the entries.
If the stayopen argument is nonzero, this sets a flag so that subsequent calls to
gethostbyname or gethostbyaddr will not close the database (as they
usually would). This makes for more efficiency if you call those functions sev-
eral times, by avoiding reopening the database for each call.

Functionstruct hostent * gethostent (void)
This function returns the next entry in the hosts database. It returns a null pointer
if there are no more entries.

Functionvoid endhostent (void)
This function closes the hosts database.

5.6.3 Internet Ports

A socket address in the Internet namespace consists of a machine’s Internet ad-
dress plus a port number that distinguishes the sockets on a given machine (for a
given protocol). Port numbers range from 0 to 65,535.

Chapter 5: Sockets 145

Port numbers less than IPPORT_RESERVED are reserved for standard servers,
such as finger and telnet. There is a database that keeps track of these, and
you can use the getservbyname function to map a service name onto a port
number (see Section 5.6.4 [The Services Database], page 145).

If you write a server that is not one of the standard ones defined in the database,
you must choose a port number for it. Use a number greater than IPPORT_
USERRESERVED; such numbers are reserved for servers and won’t ever be gen-
erated automatically by the system. Avoiding conflicts with servers being run by
other users is up to you.

When you use a socket without specifying its address, the system generates a
port number for it. This number is between IPPORT_RESERVED and IPPORT_
USERRESERVED.

On the Internet, it is actually legitimate to have two different sockets with the
same port number, as long as they never both try to communicate with the same
socket address (host address plus port number). You shouldn’t duplicate a port
number except in special circumstances where a higher-level protocol requires it.
Normally, the system won’t let you do it; bind normally insists on distinct port
numbers. To reuse a port number, you must set the socket option SO_REUSEADDR
(see Section 5.12.2 [Socket-Level Options], page 174).

These macros are defined in the header file ‘netinet/in.h’.

Macroint IPPORT RESERVED
Port numbers less than IPPORT_RESERVED are reserved for superuser use.

Macroint IPPORT USERRESERVED
Port numbers greater than or equal to IPPORT_USERRESERVED are reserved
for explicit use; they will never be allocated automatically.

5.6.4 The Services Database

The database that keeps track of “well-known” services is usually either the file
‘/etc/services’ or an equivalent from a name server. You can use these utili-
ties, declared in ‘netdb.h’, to access the services database.

Data Typestruct servent
This data type holds information about entries from the services database. It has
the following members:

char *s_name
This is the “official” name of the service.

char **s_aliases
These are alternate names for the service, represented as an array
of strings. A null pointer terminates the array.

146 The GNU C Library: System & Network Applications

int s_port
This is the port number for the service. Port numbers are given
in network byte order (see Section 5.6.5 [Byte-Order Conversion],
page 147).

char *s_proto
This is the name of the protocol to use with this service (see Sec-
tion 5.6.6 [Protocols Database], page 147).

To get information about a particular service, use the getservbyname or
getservbyport functions. The information is returned in a statically allocated
structure; you must copy the information if you need to save it across calls.

Functionstruct servent * getservbyname (const char *name,
const char *proto)

The getservbyname function returns information about the service named
name using protocol proto. If it can’t find such a service, it returns a null pointer.
This function is useful for servers as well as for clients; servers use it to deter-
mine which port they should listen on (see Section 5.9.2 [Listening for Connec-
tions], page 155).

Functionstruct servent * getservbyport (int port, const char
*proto)

The getservbyport function returns information about the service at port
port using protocol proto. If it can’t find such a service, it returns a null pointer.

You can also scan the services database using setservent, getservent and
endservent. Be careful when using these functions, because they are not reen-
trant.

Functionvoid setservent (int stayopen)
This function opens the services database to begin scanning it.
If the stayopen argument is nonzero, this sets a flag so that subsequent calls to
getservbyname or getservbyport will not close the database (as they
usually would). This makes for more efficiency if you call those functions sev-
eral times, by avoiding reopening the database for each call.

Functionstruct servent * getservent (void)
This function returns the next entry in the services database. If there are no more
entries, it returns a null pointer.

Functionvoid endservent (void)
This function closes the services database.

Chapter 5: Sockets 147

5.6.5 Byte-Order Conversion

Different kinds of computers use different conventions for the ordering of bytes
within a word. Some computers put the most significant byte within a word first
(this is called “big-endian” order), and others put it last (“little-endian” order).

So that machines with different byte-order conventions can communicate, the
Internet protocols specify a canonical byte-order convention for data transmitted
over the network. This is known as network byte order.

When establishing an Internet socket connection, you must make sure that the
data in the sin_port and sin_addr members of the sockaddr_in structure
are represented in network byte order. If you are encoding integer data in the mes-
sages sent through the socket, you should convert this to network byte order too. If
you don’t do this, your program may fail when running on or talking to other kinds
of machines.

If you use getservbyname and gethostbyname or inet_addr to get
the port number and host address, the values are already in network byte order, and
you can copy them directly into the sockaddr_in structure.

Otherwise, you have to convert the values explicitly. Use htons and ntohs
to convert values for the sin_port member. Use htonl and ntohl to convert
IPv4 addresses for the sin_addr member. (Remember, struct in_addr is
equivalent to uint32_t.) These functions are declared in ‘netinet/in.h’.

Functionuint16_t htons (uint16_t hostshort)
This function converts the uint16_t integer hostshort from host byte order to
network byte order.

Functionuint16_t ntohs (uint16_t netshort)
This function converts the uint16_t integer netshort from network byte order
to host byte order.

Functionuint32_t htonl (uint32_t hostlong)
This function converts the uint32_t integer hostlong from host byte order to
network byte order.
This is used for IPv4 Internet addresses.

Functionuint32_t ntohl (uint32_t netlong)
This function converts the uint32_t integer netlong from network byte order
to host byte order.
This is used for IPv4 Internet addresses.

5.6.6 Protocols Database

The communications protocol used with a socket controls low-level details of
how data are exchanged. For example, the protocol implements things like check-
sums to detect errors in transmissions, and routing instructions for messages. Nor-
mal user programs have little reason to mess with these details directly.

148 The GNU C Library: System & Network Applications

The default communications protocol for the Internet namespace depends on the
communication style. For stream communication, the default is TCP (“transmission
control protocol”). For datagram communication, the default is UDP (“user data-
gram protocol”). For reliable datagram communication, the default is RDP (“reli-
able datagram protocol”). You should nearly always use the default.

Internet protocols are generally specified by a name instead of a number. The
network protocols that a host knows about are stored in a database. This is usually
either derived from the file ‘/etc/protocols’, or it may be an equivalent pro-
vided by a name server. You look up the protocol number associated with a named
protocol in the database using the getprotobyname function.

Here are detailed descriptions of the utilities for accessing the protocols database.
These are declared in ‘netdb.h’.

Data Typestruct protoent
This data type is used to represent entries in the network protocols database. It
has the following members:

char *p_name
This is the official name of the protocol.

char **p_aliases
These are alternate names for the protocol, specified as an array of
strings. The last element of the array is a null pointer.

int p_proto
This is the protocol number (in host byte order); use this member
as the protocol argument to socket.

You can use getprotobyname and getprotobynumber to search the pro-
tocols database for a specific protocol. The information is returned in a statically
allocated structure; you must copy the information if you need to save it across
calls.

Functionstruct protoent * getprotobyname (const char
*name)

The getprotobyname function returns information about the network proto-
col named name. If there is no such protocol, it returns a null pointer.

Functionstruct protoent * getprotobynumber (int protocol)
The getprotobynumber function returns information about the network
protocol with number protocol. If there is no such protocol, it returns a null
pointer.

You can also scan the whole protocols database one protocol at a time by using
setprotoent, getprotoent and endprotoent. Be careful when using
these functions, because they are not reentrant.

Chapter 5: Sockets 149

Functionvoid setprotoent (int stayopen)
This function opens the protocols database to begin scanning it.
If the stayopen argument is nonzero, this sets a flag so that subsequent calls to
getprotobyname or getprotobynumber will not close the database (as
they usually would). This makes for more efficiency if you call those functions
several times, by avoiding reopening the database for each call.

Functionstruct protoent * getprotoent (void)
This function returns the next entry in the protocols database. It returns a null
pointer if there are no more entries.

Functionvoid endprotoent (void)
This function closes the protocols database.

5.6.7 Internet Socket Example

Here is an example showing how to create and name a socket in the Internet
namespace. The newly created socket exists on the machine that the program is
running on. Rather than finding and using the machine’s Internet address, this
example specifies INADDR_ANY as the host address; the system replaces that with
the machine’s actual address.

#include <stdio.h>

#include <stdlib.h>

#include <sys/socket.h>

#include <netinet/in.h>

int

make_socket (uint16_t port)

{

int sock;

struct sockaddr_in name;

/* Create the socket. */

sock = socket (PF_INET, SOCK_STREAM, 0);

if (sock < 0)

{

perror ("socket");

exit (EXIT_FAILURE);

}

/* Give the socket a name. */

name.sin_family = AF_INET;

name.sin_port = htons (port);

name.sin_addr.s_addr = htonl (INADDR_ANY);

150 The GNU C Library: System & Network Applications

if (bind (sock, (struct sockaddr *) &name, sizeof (name)) < 0)

{

perror ("bind");

exit (EXIT_FAILURE);

}

return sock;

}

Here is another example, showing how you can fill in a sockaddr_in struc-
ture, given a host name string and a port number:

#include <stdio.h>

#include <stdlib.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <netdb.h>

void

init_sockaddr (struct sockaddr_in *name,

const char *hostname,

uint16_t port)

{

struct hostent *hostinfo;

name->sin_family = AF_INET;

name->sin_port = htons (port);

hostinfo = gethostbyname (hostname);

if (hostinfo == NULL)

{

fprintf (stderr, "Unknown host %s.\n", hostname);

exit (EXIT_FAILURE);

}

name->sin_addr = *(struct in_addr *) hostinfo->h_addr;

}

5.7 Other Namespaces

Certain other namespaces and associated protocol families are supported but not
documented yet because they are not often used. PF_NS refers to the Xerox Net-
work Software protocols. PF_ISO stands for Open Systems Interconnect. PF_
CCITT refers to protocols from CCITT. ‘socket.h’ defines these symbols and
other naming protocols not actually implemented.

Chapter 5: Sockets 151

PF_IMPLINK is used for communicating between hosts and Internet Message
Processors.1

5.8 Opening and Closing Sockets
This section describes the actual library functions for opening and closing sock-

ets. The same functions work for all namespaces and connection styles.

5.8.1 Creating a Socket

The primitive for creating a socket is the socket function, declared in
‘sys/socket.h’.

Functionint socket (int namespace, int style, int protocol)
This function creates a socket and specifies communication style style, which
should be one of the socket styles listed in Section 5.2 [Communication Styles],
page 126. The namespace argument specifies the namespace; it must be PF_
LOCAL (see Section 5.5 [The Local Namespace], page 132) or PF_INET (see
Section 5.6 [The Internet Namespace], page 134). protocol designates the spe-
cific protocol (see Section 5.1 [Socket Concepts], page 125); zero is usually
right for protocol.
The return value from socket is the file descriptor for the new socket or -
1 in case of error. The following errno error conditions are defined for this
function:

EPROTONOSUPPORT
The protocol or style is not supported by the namespace specified.

EMFILE The process already has too many file descriptors open.

ENFILE The system already has too many file descriptors open.

EACCES The process does not have the privilege to create a socket of the
specified style or protocol.

ENOBUFS The system ran out of internal buffer space.

The file descriptor returned by the socket function supports both read and
write operations. However, like pipes, sockets do not support file-positioning
operations.

For examples of how to call the socket function, see Section 5.5.3 [Example of
Local-Namespace Sockets], page 133, or Section 5.6.7 [Internet Socket Example],
page 149.

1 For information on this and PF_ROUTE, an occasionally used local-area routing protocol, see
Marcus Brinkmann et al., GNU Hurd Manual (April 24, 2002), http:// www.gnu.org/
software/ hurd/doc/ hurd_toc.html.

http:// www.gnu.org/ software/ hurd/doc/ hurd_toc.html
http:// www.gnu.org/ software/ hurd/doc/ hurd_toc.html

152 The GNU C Library: System & Network Applications

5.8.2 Closing a Socket

When you have finished using a socket, you can simply close its file descriptor
with close (see Section 2.1 [Opening and Closing Files], page 17). If there is still
data waiting to be transmitted over the connection, normally close tries to com-
plete this transmission. You can control this behavior using the SO_LINGER socket
option to specify a time-out period (see Section 5.12 [Socket Options], page 173).

You can also shut down only reception or transmission on a connection by calling
shutdown, which is declared in ‘sys/socket.h’.

Functionint shutdown (int socket, int how)
The shutdown function shuts down the connection of socket socket. The ar-
gument how specifies what action to perform:

0 Stop receiving data for this socket. If further data arrives, reject it.

1 Stop trying to transmit data from this socket. Discard any data
waiting to be sent. Stop looking for acknowledgement of data al-
ready sent; don’t retransmit it if it is lost.

2 Stop both reception and transmission.

The return value is 0 on success and -1 on failure. The following errno error
conditions are defined for this function:

EBADF socket is not a valid file-descriptor.

ENOTSOCK
socket is not a socket.

ENOTCONN
socket is not connected.

5.8.3 Socket Pairs

A socket pair consists of a pair of connected (but unnamed) sockets. It is very
similar to a pipe and is used in much the same way. Socket pairs are created with
the socketpair function, declared in ‘sys/socket.h’. A socket pair is much
like a pipe; the main difference is that the socket pair is bidirectional, whereas the
pipe has one input-only end and one output-only end (see Chapter 4 [Pipes and
FIFOs], page 119).

Functionint socketpair (int namespace, int style, int protocol,
int filedes[2])

This function creates a socket pair, returning the file descriptors in filedes[0]
and filedes[1]. The socket pair is a full-duplex communications channel, so
that both reading and writing may be performed at either end.
The namespace, style and protocol arguments are interpreted as for the socket
function. style should be one of the communication styles listed in Section 5.2

Chapter 5: Sockets 153

[Communication Styles], page 126. The namespace argument specifies the
namespace, which must be AF_LOCAL (see Section 5.5 [The Local Names-
pace], page 132); protocol specifies the communications protocol, but 0 is the
only meaningful value.
If style specifies a connectionless communication style, then the two sockets
you get are not connected, strictly speaking, but each of them knows the other
as the default destination address, so they can send packets to each other.
The socketpair function returns 0 on success and -1 on failure. The fol-
lowing errno error conditions are defined for this function:
EMFILE The process has too many file descriptors open.
EAFNOSUPPORT

The specified namespace is not supported.
EPROTONOSUPPORT

The specified protocol is not supported.
EOPNOTSUPP

The specified protocol does not support the creation of socket
pairs.

5.9 Using Sockets with Connections
The most common communication styles involve making a connection to a par-

ticular other socket, and then exchanging data with that socket over and over. Mak-
ing a connection is asymmetric; one side (the client) acts to request a connection,
while the other side (the server) makes a socket and waits for the connection re-
quest.

• Connecting (see Section 5.9.1 [Making a Connection], page 153) describes
what the client program must do to initiate a connection with a server.

• Listening (see Section 5.9.2 [Listening for Connections], page 155) and ac-
cepting connections (see Section 5.9.3 [Accepting Connections], page 155)
describe what the server program must do to wait for and act upon connection
requests from clients.

• Transferring data (see Section 5.9.5 [Transferring Data], page 157) describes
how data are transferred through the connected socket.

5.9.1 Making a Connection

In making a connection, the client makes a connection while the server waits for
and accepts the connection. Here we discuss what the client program must do with
the connect function, which is declared in ‘sys/socket.h’.

Functionint connect (int socket, struct sockaddr *addr,
socklen_t length)

The connect function initiates a connection from the socket with file descrip-
tor socket to the socket whose address is specified by the addr and length argu-

154 The GNU C Library: System & Network Applications

ments. This socket is typically on another machine, and it must be already set
up as a server. See Section 5.3 [Socket Addresses], page 127, for information
about how these arguments are interpreted.
Normally, connect waits until the server responds to the request before it re-
turns. You can set nonblocking mode on the socket socket to make connect
return immediately without waiting for the response (see Section 2.14 [File Sta-
tus Flags], page 59).
The normal return value from connect is 0. If an error occurs, connect
returns -1. The following errno error conditions are defined for this function:

EBADF The socket socket is not a valid file-descriptor.

ENOTSOCK
File descriptor socket is not a socket.

EADDRNOTAVAIL
The specified address is not available on the remote machine.

EAFNOSUPPORT
The namespace of the addr is not supported by this socket.

EISCONN The socket socket is already connected.

ETIMEDOUT
The attempt to establish the connection timed out.

ECONNREFUSED
The server has actively refused to establish the connection.

ENETUNREACH
The network of the given addr isn’t reachable from this host.

EADDRINUSE
The socket address of the given addr is already in use.

EINPROGRESS
The socket socket is nonblocking and the connection could not be
established immediately. You can determine when the connection
is completely established with select (see Section 2.8 [Waiting
for Input or Output], page 37). Another connect call on the
same socket, before the connection is completely established, will
fail with EALREADY.

EALREADY
The socket socket is nonblocking and already has a pending con-
nection in progress (see EINPROGRESS above).

This function is defined as a cancellation point in multithreaded programs, so
you have to be prepared for this and make sure that allocated resources (like
memory, files descriptors, semaphores, etc.) are freed even if the thread is can-
celed.

Chapter 5: Sockets 155

5.9.2 Listening for Connections

Now let us consider what the server process must do to accept connections on
a socket. First it must use the listen function to enable connection requests on
the socket, then it must accept each incoming connection with a call to accept
(see Section 5.9.3 [Accepting Connections], page 155). Once connection requests
are enabled on a server socket, the select function reports when the socket has
a connection ready to be accepted (see Section 2.8 [Waiting for Input or Output],
page 37).

The listen function is not allowed for sockets using connectionless commu-
nication styles.

You can write a network server that does not even start running until a connection
to it is requested (see Section 5.11.1 [inetd Servers], page 172).

In the Internet namespace, there are no special protection mechanisms for con-
trolling access to a port; any process on any machine can make a connection to
your server. If you want to restrict access to your server, make it examine the ad-
dresses associated with connection requests or implement some other handshaking
or identification protocol.

In the local namespace, the ordinary file-protection bits control who has access
to connect to the socket.

Functionint listen (int socket, unsigned int n)
The listen function enables the socket socket to accept connections, thus
making it a server socket.
The argument n specifies the length of the queue for pending connections. When
the queue fills, new clients attempting to connect fail with ECONNREFUSED
until the server calls accept to accept a connection from the queue.
The listen function returns 0 on success and -1 on failure. The following
errno error conditions are defined for this function:

EBADF The argument socket is not a valid file-descriptor.

ENOTSOCK
The argument socket is not a socket.

EOPNOTSUPP
The socket socket does not support this operation.

5.9.3 Accepting Connections

When a server receives a connection request, it can complete the connection by
accepting the request. Use the function accept to do this.

A socket that has been established as a server can accept connection requests
from multiple clients. The server’s original socket does not become part of the con-
nection; instead, accept makes a new socket that participates in the connection.
accept returns the descriptor for this socket. The server’s original socket remains
available for listening for further connection requests.

156 The GNU C Library: System & Network Applications

The number of pending connection requests on a server socket is finite. If con-
nection requests arrive from clients faster than the server can act upon them, the
queue can fill up and additional requests are refused with an ECONNREFUSED
error. You can specify the maximum length of this queue as an argument to the
listen function, although the system may also impose its own internal limit on
the length of this queue.

Functionint accept (int socket, struct sockaddr *addr,
socklen_t *length ptr)

This function is used to accept a connection request on the server socket socket.
The accept function waits if there are no connections pending, unless the
socket socket has nonblocking mode set. You can use select to wait for a
pending connection, with a nonblocking socket (see Section 2.14 [File Status
Flags], page 59, for information about nonblocking mode).
The addr and length-ptr arguments are used to return information about the
name of the client socket that initiated the connection (see Section 5.3 [Socket
Addresses], page 127, for information about the format).
Accepting a connection does not make socket part of the connection. Instead,
it creates a new socket that becomes connected. The normal return value of
accept is the file descriptor for the new socket.
After accept, the original socket socket remains open and unconnected, and
continues listening until you close it. You can accept further connections with
socket by calling accept again.
If an error occurs, accept returns -1. The following errno error conditions
are defined for this function:

EBADF The socket argument is not a valid file-descriptor.

ENOTSOCK
The descriptor socket argument is not a socket.

EOPNOTSUPP
The descriptor socket does not support this operation.

EWOULDBLOCK
socket has nonblocking mode set, and there are no pending con-
nections immediately available.

This function is defined as a cancellation point in multithreaded programs, so
you have to be prepared for this and make sure that allocated resources (like
memory, files descriptors, semaphores, etc.) are freed even if the thread is can-
celed.

The accept function is not allowed for sockets using connectionless commu-
nication styles.

Chapter 5: Sockets 157

5.9.4 Who Is Connected to Me?

Functionint getpeername (int socket, struct sockaddr *addr,
socklen_t *length-ptr)

The getpeername function returns the address of the socket that socket is
connected to; it stores the address in the memory space specified by addr and
length-ptr. It stores the length of the address in *length-ptr (see Section 5.3
[Socket Addresses], page 127, for information about the format of the address).
In some operating systems, getpeername works only for sockets in the Inter-
net domain.
The return value is 0 on success and -1 on error. The following errno error
conditions are defined for this function:

EBADF The argument socket is not a valid file-descriptor.

ENOTSOCK
The descriptor socket is not a socket.

ENOTCONN
The socket socket is not connected.

ENOBUFS There are not enough internal buffers available.

5.9.5 Transferring Data

Once a socket has been connected to a peer, you can use the ordinary read
and write operations to transfer data (see Section 2.2 [Input and Output Primi-
tives], page 20). A socket is a two-way communications channel, so read and write
operations can be performed at either end.

There are also some I/O modes that are specific to socket operations. In order
to specify these modes, you must use the recv and send functions instead of the
more generic read and write functions. The recv and send functions take an
additional argument that you can use to specify various flags to control special I/O
modes. For example, you can specify the MSG_OOB flag to read or write out-of-
band data, the MSG_PEEK flag to peek at input, or the MSG_DONTROUTE flag to
control inclusion of routing information on output.

5.9.5.1 Sending Data

The send function is declared in the header file ‘sys/socket.h’. If your
flags argument is 0, you can just as well use write instead of send (see Sec-
tion 2.2 [Input and Output Primitives], page 20). If the socket was connected but
the connection has broken, you get a SIGPIPE signal for any use of send or
write (see Section 17.2.7 [Miscellaneous Signals], page 387).

158 The GNU C Library: System & Network Applications

Functionint send (int socket, void *buffer, size_t size, int flags)

The send function is like write, but with the additional flags flags. The
possible values of flags are described in Section 5.9.5.3 [Socket Data Options],
page 159.
This function returns the number of bytes transmitted or -1 on failure. If the
socket is nonblocking, then send (like write) can return after sending just
part of the data (see Section 2.14 [File Status Flags], page 59, for information
about nonblocking mode).
Note, however, that a successful return value merely indicates that the message
has been sent without error, not necessarily that it has been received without
error.
The following errno error conditions are defined for this function:

EBADF The socket argument is not a valid file-descriptor.

EINTR The operation was interrupted by a signal before any data was sent
(see Section 17.5 [Primitives Interrupted by Signals], page 408).

ENOTSOCK
The descriptor socket is not a socket.

EMSGSIZE
The socket type requires that the message be sent atomically, but
the message is too large for this to be possible.

EWOULDBLOCK
Nonblocking mode has been set on the socket, and the write oper-
ation would block. Normally, send blocks until the operation can
be completed.

ENOBUFS There is not enough internal buffer space available.

ENOTCONN
You never connected this socket.

EPIPE This socket was connected, but the connection is now broken. In
this case, send generates a SIGPIPE signal first; if that signal is
ignored or blocked, or if its handler returns, then send fails with
EPIPE.

This function is defined as a cancellation point in multithreaded programs, so
you have to be prepared for this and make sure that allocated resources (like
memory, files descriptors, semaphores, etc.) are freed even if the thread is can-
celed.

5.9.5.2 Receiving Data

The recv function is declared in the header file ‘sys/socket.h’. If your
flags argument is 0, you can just as well use read instead of recv (see Section 2.2
[Input and Output Primitives], page 20).

Chapter 5: Sockets 159

Functionint recv (int socket, void *buffer, size_t size, int flags)

The recv function is like read, but with the additional flags flags. The pos-
sible values of flags are described in Section 5.9.5.3 [Socket Data Options],
page 159.
If nonblocking mode is set for socket, and no data are available to be read,
recv fails immediately rather than waiting (see Section 2.14 [File Status Flags],
page 59, for information about nonblocking mode).
This function returns the number of bytes received or -1 on failure. The fol-
lowing errno error conditions are defined for this function:
EBADF The socket argument is not a valid file-descriptor.
ENOTSOCK

The descriptor socket is not a socket.
EWOULDBLOCK

Nonblocking mode has been set on the socket, and the read op-
eration would block. Normally, recv blocks until there is input
available to be read.

EINTR The operation was interrupted by a signal before any data was read
(see Section 17.5 [Primitives Interrupted by Signals], page 408).

ENOTCONN
You never connected this socket.

This function is defined as a cancellation point in multithreaded programs, so
you have to be prepared for this and make sure that allocated resources (like
memory, files descriptors, semaphores, etc.) are freed even if the thread is can-
celed.

5.9.5.3 Socket Data Options

The flags argument to send and recv is a bit mask. You can bit-wise-OR the
values of the following macros together to obtain a value for this argument. All are
defined in the header file ‘sys/socket.h’.

Macroint MSG OOB
Send or receive out-of-band data (see Section 5.9.8 [Out-of-Band Data],
page 164).

Macroint MSG PEEK
Look at the data, but don’t remove it from the input queue. This is only mean-
ingful with input functions such as recv, not with send.

Macroint MSG DONTROUTE
Don’t include routing information in the message. This is only meaningful with
output operations, and is usually only of interest for diagnostic or routing pro-
grams. We don’t try to explain it here.

160 The GNU C Library: System & Network Applications

5.9.6 Byte-Stream Socket Example

Here is an example client program that makes a connection for a byte-stream
socket in the Internet namespace. It doesn’t do anything particularly interesting
once it has connected to the server; it just sends a text string to the server and exits.

This program uses init_sockaddr to set up the socket address (see Sec-
tion 5.6.7 [Internet Socket Example], page 149).

#include <stdio.h>

#include <errno.h>

#include <stdlib.h>

#include <unistd.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <netdb.h>

#define PORT 5555

#define MESSAGE "Yow!!! Are we having fun yet?!?"

#define SERVERHOST "mescaline.gnu.org"

void

write_to_server (int filedes)

{

int nbytes;

nbytes = write (filedes, MESSAGE, strlen (MESSAGE) + 1);

if (nbytes < 0)

{

perror ("write");

exit (EXIT_FAILURE);

}

}

int

main (void)

{

extern void init_sockaddr (struct sockaddr_in *name,

const char *hostname,

uint16_t port);

int sock;

struct sockaddr_in servername;

/* Create the socket. */

Chapter 5: Sockets 161

sock = socket (PF_INET, SOCK_STREAM, 0);

if (sock < 0)

{

perror ("socket (client)");

exit (EXIT_FAILURE);

}

/* Connect to the server. */

init_sockaddr (&servername, SERVERHOST, PORT);

if (0 > connect (sock,

(struct sockaddr *) &servername,

sizeof (servername)))

{

perror ("connect (client)");

exit (EXIT_FAILURE);

}

/* Send data to the server. */

write_to_server (sock);

close (sock);

exit (EXIT_SUCCESS);

}

5.9.7 Byte-Stream Connection Server Example

The server end is much more complicated. Since we want to allow multiple
clients to be connected to the server at the same time, it would be incorrect to wait
for input from a single client by simply calling read or recv. Instead, the right
thing to do is to use select to wait for input on all of the open sockets (see
Section 2.8 [Waiting for Input or Output], page 37). This also allows the server to
deal with additional connection requests.

This particular server doesn’t do anything interesting once it has gotten a mes-
sage from a client. It does close the socket for that client when it detects an end-of-
file condition (resulting from the client shutting down its end of the connection).

This program uses make_socket to set up the socket address (see Sec-
tion 5.6.7 [Internet Socket Example], page 149).

#include <stdio.h>

#include <errno.h>

#include <stdlib.h>

#include <unistd.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

162 The GNU C Library: System & Network Applications

#include <netdb.h>

#define PORT 5555

#define MAXMSG 512

int

read_from_client (int filedes)

{

char buffer[MAXMSG];

int nbytes;

nbytes = read (filedes, buffer, MAXMSG);

if (nbytes < 0)

{

/* Read error */

perror ("read");

exit (EXIT_FAILURE);

}

else if (nbytes == 0)

/* End of file */

return -1;

else

{

/* Data read */

fprintf (stderr, "Server: got message: ‘%s’\n", buffer);

return 0;

}

}

int

main (void)

{

extern int make_socket (uint16_t port);

int sock;

fd_set active_fd_set, read_fd_set;

int i;

struct sockaddr_in clientname;

size_t size;

/* Create the socket and set it up to accept connections. */

sock = make_socket (PORT);

if (listen (sock, 1) < 0)

{

perror ("listen");

Chapter 5: Sockets 163

exit (EXIT_FAILURE);

}

/* Initialize the set of active sockets. */

FD_ZERO (&active_fd_set);

FD_SET (sock, &active_fd_set);

while (1)

{

/* Block until input arrives on one or more active sockets. */

read_fd_set = active_fd_set;

if (select (FD_SETSIZE, &read_fd_set, NULL, NULL, NULL) < 0)

{

perror ("select");

exit (EXIT_FAILURE);

}

/* Service all the sockets with input pending. */

for (i = 0; i < FD_SETSIZE; ++i)

if (FD_ISSET (i, &read_fd_set))

{

if (i == sock)

{

/* Connection request on original socket */

int new;

size = sizeof (clientname);

new = accept (sock,

(struct sockaddr *) &clientname,

&size);

if (new < 0)

{

perror ("accept");

exit (EXIT_FAILURE);

}

fprintf (stderr,

"Server: connect from host %s, port %hd.\n",

inet_ntoa (clientname.sin_addr),

ntohs (clientname.sin_port));

FD_SET (new, &active_fd_set);

}

else

{

/* Data arriving on an already connected socket */

if (read_from_client (i) < 0)

164 The GNU C Library: System & Network Applications

{

close (i);

FD_CLR (i, &active_fd_set);

}

}

}

}

}

5.9.8 Out-of-Band Data

Streams with connections permit out-of-band data that is delivered with higher
priority than ordinary data. Typically, the reason for sending out-of-band data is
to send notice of an exceptional condition. To send out-of-band data, use send,
specifying the flag MSG_OOB (see Section 5.9.5.1 [Sending Data], page 157).

Out-of-band data are received with higher priority because the receiving process
need not read it in sequence; to read the next available out-of-band data, use recv
with the MSG_OOB flag (see Section 5.9.5.2 [Receiving Data], page 158). Ordinary
read operations do not read out-of-band data; they read only ordinary data.

When a socket finds that out-of-band data are on their way, it sends a SIGURG
signal to the owner process or process group of the socket. You can specify the
owner using the F_SETOWN command to the fcntl function (see Section 2.16
[Interrupt-Driven Input], page 68). You must also establish a handler for this signal,
as described in Chapter 17 [Signal Handling], page 377, in order to take appropriate
action such as reading the out-of-band data.

Alternatively, you can test for pending out-of-band data, or wait until there is out-
of-band data, using the select function; it can wait for an exceptional condition
on the socket (see Section 2.8 [Waiting for Input or Output], page 37).

Notification of out-of-band data (whether with SIGURG or with select) indi-
cates that out-of-band data are on the way; the data may not actually arrive until
later. If you try to read the out-of-band data before it arrives, recv fails with an
EWOULDBLOCK error.

Sending out-of-band data automatically places a “mark” in the stream of ordinary
data, showing where in the sequence the out-of-band data “would have been”. This
is useful when the meaning of out-of-band data is “cancel everything sent so far”.
Here is how you can test, in the receiving process, whether any ordinary data was
sent before the mark:

success = ioctl (socket, SIOCATMARK, &atmark);

The integer variable atmark is set to a nonzero value if the socket’s read
pointer has reached the “mark”.

Here’s a function to discard any ordinary data preceding the out-of-band mark:
int

discard_until_mark (int socket)

Chapter 5: Sockets 165

{

while (1)

{

/* This is not an arbitrary limit; any size will do. */

char buffer[1024];

int atmark, success;

/* If we have reached the mark, return. */

success = ioctl (socket, SIOCATMARK, &atmark);

if (success < 0)

perror ("ioctl");

if (result)

return;

/* Otherwise, read a bunch of ordinary data and discard it.

This is guaranteed not to read past the mark

if it starts before the mark. */

success = read (socket, buffer, sizeof buffer);

if (success < 0)

perror ("read");

}

}

If you don’t want to discard the ordinary data preceding the mark, you may need
to read some of it anyway, to make room in internal system buffers for the out-of-
band data. If you try to read out-of-band data and get an EWOULDBLOCK error, try
reading some ordinary data (saving it so that you can use it when you want it) and
see if that makes room. Here is an example:

struct buffer

{

char *buf;

int size;

struct buffer *next;

};

/* Read the out-of-band data from SOCKET and return it

as a ‘struct buffer’, which records the address of the data

and its size.

It may be necessary to read some ordinary data

in order to make room for the out-of-band data.

If so, the ordinary data are saved as a chain of buffers

found in the ‘next’ field of the value. */

struct buffer *

166 The GNU C Library: System & Network Applications

read_oob (int socket)

{

struct buffer *tail = 0;

struct buffer *list = 0;

while (1)

{

/* This is an arbitrary limit.

Does anyone know how to do this without a limit? */

#define BUF_SZ 1024

char *buf = (char *) xmalloc (BUF_SZ);

int success;

int atmark;

/* Try again to read the out-of-band data. */

success = recv (socket, buf, BUF_SZ, MSG_OOB);

if (success >= 0)

{

/* We got it, so return it. */

struct buffer *link

= (struct buffer *) xmalloc (sizeof (struct buffer));

link->buf = buf;

link->size = success;

link->next = list;

return link;

}

/* If we fail, see if we are at the mark. */

success = ioctl (socket, SIOCATMARK, &atmark);

if (success < 0)

perror ("ioctl");

if (atmark)

{

/* At the mark; skipping past more ordinary data cannot help.

So just wait a while. */

sleep (1);

continue;

}

/* Otherwise, read a bunch of ordinary data and save it.

This is guaranteed not to read past the mark

if it starts before the mark. */

success = read (socket, buf, BUF_SZ);

if (success < 0)

Chapter 5: Sockets 167

perror ("read");

/* Save this data in the buffer list. */

{

struct buffer *link

= (struct buffer *) xmalloc (sizeof (struct buffer));

link->buf = buf;

link->size = success;

/* Add the new link to the end of the list. */

if (tail)

tail->next = link;

else

list = link;

tail = link;

}

}

}

5.10 Datagram Socket Operations

This section describes how to use communication styles that don’t use connec-
tions (styles SOCK_DGRAM and SOCK_RDM). Using these styles, you group data
into packets, and each packet is an independent communication. You specify the
destination for each packet individually.

Datagram packets are like letters—you send each one independently with its own
destination address, and they may arrive in the wrong order or not at all.

The listen and accept functions are not allowed for sockets using connec-
tionless communication styles.

5.10.1 Sending Datagrams

The normal way of sending data on a datagram socket is by using the sendto
function, declared in ‘sys/socket.h’.

You can call connect on a datagram socket, but this only specifies a default
destination for further data transmission on the socket. When a socket has a default
destination, you can use send (see Section 5.9.5.1 [Sending Data], page 157) or
even write (see Section 2.2 [Input and Output Primitives], page 20) to send a
packet there. You can cancel the default destination by calling connect using an
address format of AF_UNSPEC in the addr argument (see Section 5.9.1 [Making a
Connection], page 153, for more information about the connect function).

168 The GNU C Library: System & Network Applications

Functionint sendto (int socket, void *buffer. size_t size, int
flags, struct sockaddr *addr, socklen_t length)

The sendto function transmits the data in the buffer through the socket socket
to the destination address specified by the addr and length arguments. The size
argument specifies the number of bytes to be transmitted.
The flags are interpreted the same way as for send (see Section 5.9.5.3 [Socket
Data Options], page 159).
The return value and error conditions are also the same as for send, but you
cannot rely on the system to detect errors and report them; the most common
error is that the packet is lost or there is no one at the specified address to receive
it, and the operating system on your machine usually does not know this.
It is also possible for one call to sendto to report an error owing to a problem
related to a previous call.
This function is defined as a cancellation point in multithreaded programs, so
you have to be prepared for this and make sure that allocated resources (like
memory, files descriptors, semaphores, etc.) are freed even if the thread is can-
celed.

5.10.2 Receiving Datagrams

The recvfrom function reads a packet from a datagram socket and also tells
you where it was sent from. This function is declared in ‘sys/socket.h’.

Functionint recvfrom (int socket, void *buffer, size_t size, int
flags, struct sockaddr *addr, socklen_t *length-ptr)

The recvfrom function reads one packet from the socket socket into the buffer
buffer. The size argument specifies the maximum number of bytes to be read.
If the packet is longer than size bytes, then you get the first size bytes of the
packet and the rest of the packet is lost. There’s no way to read the rest of the
packet. Thus, when you use a packet protocol, you must always know how long
of a packet to expect.
The addr and length-ptr arguments are used to return the address where the
packet came from (see Section 5.3 [Socket Addresses], page 127). For a socket
in the local domain, the address information won’t be meaningful, since you
can’t read the address of such a socket (see Section 5.5 [The Local Namespace],
page 132). You can specify a null pointer as the addr argument if you are not
interested in this information.
The flags are interpreted the same way as for recv (see Section 5.9.5.3 [Socket
Data Options], page 159). The return value and error conditions are also the
same as for recv.
This function is defined as a cancellation point in multithreaded programs, so
you have to be prepared for this and make sure that allocated resources (like
memory, files descriptors, semaphores, etc.) are freed even if the thread is can-
celed.

Chapter 5: Sockets 169

You can use plain recv (see Section 5.9.5.2 [Receiving Data], page 158) instead
of recvfrom if you don’t need to find out who sent the packet (either because you
know where it should come from or because you treat all possible senders alike).
Even read can be used if you don’t want to specify flags (see Section 2.2 [Input
and Output Primitives], page 20).

5.10.3 Datagram Socket Example

Here is a set of example programs that send messages over a datagram stream
in the local namespace. Both the client and server programs use the make_
named_socket function that was presented in Section 5.5.3 [Example of Local-
Namespace Sockets], page 133, to create and name their sockets.

First, here is the server program. It sits in a loop waiting for messages to arrive,
bouncing each message back to the sender. Obviously this isn’t a particularly useful
program, but it does show the general ideas involved.

#include <stdio.h>

#include <errno.h>

#include <stdlib.h>

#include <sys/socket.h>

#include <sys/un.h>

#define SERVER "/tmp/serversocket"

#define MAXMSG 512

int

main (void)

{

int sock;

char message[MAXMSG];

struct sockaddr_un name;

size_t size;

int nbytes;

/* Remove the file name first; it’s ok if the call fails */

unlink (SERVER);

/* Make the socket, then loop endlessly. */

sock = make_named_socket (SERVER);

while (1)

{

/* Wait for a datagram. */

size = sizeof (name);

nbytes = recvfrom (sock, message, MAXMSG, 0,

(struct sockaddr *) & name, &size);

170 The GNU C Library: System & Network Applications

if (nbytes < 0)

{

perror ("recfrom (server)");

exit (EXIT_FAILURE);

}

/* Give a diagnostic message. */

fprintf (stderr, "Server: got message: %s\n", message);

/* Bounce the message back to the sender. */

nbytes = sendto (sock, message, nbytes, 0,

(struct sockaddr *) & name, size);

if (nbytes < 0)

{

perror ("sendto (server)");

exit (EXIT_FAILURE);

}

}

}

5.10.4 Example of Reading Datagrams

Here is the client program corresponding to the server above.
It sends a datagram to the server and then waits for a reply. Notice that the socket

for the client (as well as for the server) in this example has to be given a name. This
is so that the server can direct a message back to the client. Since the socket has no
associated connection state, the only way the server can do this is by referencing
the name of the client.

#include <stdio.h>

#include <errno.h>

#include <unistd.h>

#include <stdlib.h>

#include <sys/socket.h>

#include <sys/un.h>

#define SERVER "/tmp/serversocket"

#define CLIENT "/tmp/mysocket"

#define MAXMSG 512

#define MESSAGE "Yow!!! Are we having fun yet?!?"

int

main (void)

{

Chapter 5: Sockets 171

extern int make_named_socket (const char *name);

int sock;

char message[MAXMSG];

struct sockaddr_un name;

size_t size;

int nbytes;

/* Make the socket. */

sock = make_named_socket (CLIENT);

/* Initialize the server socket address. */

name.sun_family = AF_LOCAL;

strcpy (name.sun_path, SERVER);

size = strlen (name.sun_path) + sizeof (name.sun_family);

/* Send the datagram. */

nbytes = sendto (sock, MESSAGE, strlen (MESSAGE) + 1, 0,

(struct sockaddr *) & name, size);

if (nbytes < 0)

{

perror ("sendto (client)");

exit (EXIT_FAILURE);

}

/* Wait for a reply. */

nbytes = recvfrom (sock, message, MAXMSG, 0, NULL, 0);

if (nbytes < 0)

{

perror ("recfrom (client)");

exit (EXIT_FAILURE);

}

/* Print a diagnostic message. */

fprintf (stderr, "Client: got message: %s\n", message);

/* Clean up. */

remove (CLIENT);

close (sock);

}

Keep in mind that datagram socket communications are unreliable. In this exam-
ple, the client program waits indefinitely if the message never reaches the server or
if the server’s response never comes back. It’s up to the user running the program
to kill and restart it if desired. A more automatic solution could be to use select

172 The GNU C Library: System & Network Applications

(see Section 2.8 [Waiting for Input or Output], page 37), to establish a time-out
period for the reply, and in case of time-out either resend the message or shut down
the socket and exit.

5.11 The inetd Daemon
We’ve explained above how to write a server program that does its own listening.

Such a server must already be running in order for anyone to connect to it.
Another way to provide a service on an Internet port is to let the daemon program

inetd do the listening. inetd is a program that runs all the time and waits (using
select) for messages on a specified set of ports. When it receives a message, it
accepts the connection (if the socket style calls for connections) and then forks a
child process to run the corresponding server program. You specify the ports and
their programs in the file ‘/etc/inetd.conf’.

5.11.1 inetd Servers

Writing a server program to be run by inetd is very simple. Each time someone
requests a connection to the appropriate port, a new server process starts. The
connection already exists at this time; the socket is available as the standard input
descriptor and as the standard output descriptor (descriptors 0 and 1) in the server
process. Thus the server program can begin reading and writing data right away.
Often the program needs only the ordinary I/O facilities; in fact, a general-purpose
filter program that knows nothing about sockets can work as a byte-stream server
run by inetd.

You can also use inetd for servers that use connectionless communication
styles. For these servers, inetd does not try to accept a connection since no con-
nection is possible. It just starts the server program, which can read the incoming
datagram packet from descriptor 0. The server program can handle one request and
then exit, or you can choose to write it to keep reading more requests until no more
arrive, and then exit. You must specify which of these two techniques the server
uses when you configure inetd.

5.11.2 Configuring inetd

The file ‘/etc/inetd.conf’ tells inetd which ports to listen to and what
server programs to run for them. Normally, each entry in the file is one line, but
you can split it onto multiple lines provided all but the first line of the entry start
with white space. Lines that start with ‘#’ are comments.

Here are two standard entries in ‘/etc/inetd.conf’:
ftp stream tcp nowait root /libexec/ftpd ftpd

talk dgram udp wait root /libexec/talkd talkd

An entry has this format:
service style protocol wait user program arguments

Chapter 5: Sockets 173

The service field says which service this program provides. It should be the
name of a service defined in ‘/etc/services’. inetd uses service to decide
which port to listen on for this entry.

The fields style and protocol specify the communication style and the protocol to
use for the listening socket. The style should be the name of a communication style,
converted to lower case and with ‘SOCK_’ deleted—for example, ‘stream’ or
‘dgram’. protocol should be one of the protocols listed in ‘/etc/protocols’.
The typical protocol names are ‘tcp’ for byte-stream connections and ‘udp’ for
unreliable datagrams.

The wait field should be either ‘wait’ or ‘nowait’. Use ‘wait’ if style is a
connectionless style and the server, once started, handles multiple requests as they
come in. Use ‘nowait’ if inetd should start a new process for each message or
request that comes in. If style uses connections, then wait must be ‘nowait’.

user is the user name that the server should run as. inetd runs as root, so it can
set the user ID of its children arbitrarily. It’s best to avoid using ‘root’ for user if
you can; but some servers, such as Telnet and FTP, read a username and password
themselves. These servers need to be root initially so they can log in as commanded
by the data coming over the network.

program together with arguments specifies the command to run to start the
server. program should be an absolute file name specifying the executable file
to run. arguments consists of any number of white-space-separated words, which
become the command-line arguments of program. The first word in arguments is
argument zero, which should by convention be the program name itself (sans direc-
tories).

If you edit ‘/etc/inetd.conf’, you can tell inetd to reread the file and
obey its new contents by sending the inetd process the SIGHUP signal. You’ll
have to use ps to determine the process ID of the inetd process, since it is not
fixed.

5.12 Socket Options

This section describes how to read or set various options that modify the behavior
of sockets and their underlying communications protocols.

When you are manipulating a socket option, you must specify which level the
option pertains to. This describes whether the option applies to the socket interface,
or to a lower-level communications protocol interface.

5.12.1 Socket Option Functions

Here are the functions for examining and modifying socket options. They are
declared in ‘sys/socket.h’.

174 The GNU C Library: System & Network Applications

Functionint getsockopt (int socket, int level, int optname, void
*optval, socklen_t *optlen-ptr)

The getsockopt function gets information about the value of option optname
at level level for socket socket.
The option value is stored in a buffer that optval points to. Before the call, you
should supply in *optlen-ptr the size of this buffer. On return, it contains the
number of bytes of information actually stored in the buffer.
Most options interpret the optval buffer as a single int value.
The actual return value of getsockopt is 0 on success and -1 on failure. The
following errno error conditions are defined:

EBADF The socket argument is not a valid file-descriptor.

ENOTSOCK
The descriptor socket is not a socket.

ENOPROTOOPT
The optname doesn’t make sense for the given level.

Functionint setsockopt (int socket, int level, int optname, void
*optval, socklen_t optlen)

This function is used to set the socket option optname at level level for socket
socket. The value of the option is passed in the buffer optval of size optlen.
The return value and error codes for setsockopt are the same as for
getsockopt.

5.12.2 Socket-Level Options

Constantint SOL SOCKET
Use this constant as the level argument to getsockopt or setsockopt to
manipulate the socket-level options described in this section.

Here is a table of socket-level option names; all are defined in the header file
‘sys/socket.h’.

SO_DEBUG
This option toggles recording of debugging information in the under-
lying protocol modules. The value has type int; a nonzero value
means “yes”.

SO_REUSEADDR
This option controls whether bind (see Section 5.3.2 [Setting the Ad-
dress of a Socket], page 129) should permit reuse of local addresses
for this socket. If you enable this option, you can actually have two
sockets with the same Internet port number; but the system won’t al-
low you to use the two identically named sockets in a way that would

Chapter 5: Sockets 175

confuse the Internet. The reason for this option is that some higher-
level Internet protocols, including FTP, require you to keep reusing
the same port number.
The value has type int; a nonzero value means “yes”.

SO_KEEPALIVE
This option controls whether the underlying protocol should period-
ically transmit messages on a connected socket. If the peer fails to
respond to these messages, the connection is considered broken. The
value has type int; a nonzero value means “yes”.

SO_DONTROUTE
This option controls whether outgoing messages bypass the normal
message routing facilities. If set, messages are sent directly to the
network interface instead. The value has type int; a nonzero value
means “yes”.

SO_LINGER
This option specifies what should happen when the socket of a type
that promises reliable delivery still has untransmitted messages when
it is closed (see Section 5.8.2 [Closing a Socket], page 152). The value
has type struct linger.

Data Typestruct linger
This structure type has the following members:

int l_onoff
This field is interpreted as a Boolean. If nonzero,
close blocks until the data are transmitted, or the
time-out period has expired.

int l_linger
This specifies the time-out period, in seconds.

SO_BROADCAST
This option controls whether datagrams may be broadcast from the
socket. The value has type int; a nonzero value means “yes”.

SO_OOBINLINE
If this option is set, out-of-band data received on the socket is placed
in the normal input queue. This permits it to be read using read or
recv without specifying the MSG_OOB flag (see Section 5.9.8 [Out-
of-Band Data], page 164). The value has type int; a nonzero value
means “yes”.

SO_SNDBUF
This option gets or sets the size of the output buffer. The value is a
size_t, which is the size in bytes.

176 The GNU C Library: System & Network Applications

SO_RCVBUF
This option gets or sets the size of the input buffer. The value is a
size_t, which is the size in bytes.

SO_STYLE
SO_TYPE This option can be used with getsockopt only. It is used to get

the socket’s communication style. SO_TYPE is the historical name,
and SO_STYLE is the preferred name in GNU. The value has type
int and its value designates a communication style (see Section 5.2
[Communication Styles], page 126).

SO_ERROR
This option can be used with getsockopt only. It is used to reset
the error status of the socket. The value is an int, which represents
the previous error status.

5.13 Networks Database
Many systems come with a database that records a list of networks known to

the system developer. This is usually kept either in the file ‘/etc/networks’ or
in an equivalent from a name server. This database is useful for routing programs
such as route, but it is not useful for programs that simply communicate over
the network. We provide functions to access this database, which are declared in
‘netdb.h’.

Data Typestruct netent
This data type is used to represent information about entries in the networks
database. It has the following members:

char *n_name
This is the “official” name of the network.

char **n_aliases
These are alternative names for the network, represented as a vec-
tor of strings. A null pointer terminates the array.

int n_addrtype
This is the type of the network number; this is always equal to
AF_INET for Internet networks.

unsigned long int n_net
This is the network number. Network numbers are returned in host
byte order (see Section 5.6.5 [Byte-Order Conversion], page 147).

Use the getnetbyname or getnetbyaddr functions to search the networks
database for information about a specific network. The information is returned in a
statically allocated structure; you must copy the information if you need to save it.

Chapter 5: Sockets 177

Functionstruct netent * getnetbyname (const char *name)
The getnetbyname function returns information about the network named
name. It returns a null pointer if there is no such network.

Functionstruct netent * getnetbyaddr (unsigned long int
net, int type)

The getnetbyaddr function returns information about the network of type
type with number net. You should specify a value of AF_INET for the type
argument for Internet networks.
getnetbyaddr returns a null pointer if there is no such network.

You can also scan the networks database using setnetent, getnetent and
endnetent. Be careful when using these functions, because they are not reen-
trant.

Functionvoid setnetent (int stayopen)
This function opens and rewinds the networks database.
If the stayopen argument is nonzero, this sets a flag so that subsequent calls to
getnetbyname or getnetbyaddr will not close the database (as they usu-
ally would). This makes for more efficiency if you call those functions several
times, by avoiding reopening the database for each call.

Functionstruct netent * getnetent (void)
This function returns the next entry in the networks database. It returns a null
pointer if there are no more entries.

Functionvoid endnetent (void)
This function closes the networks database.

178 The GNU C Library: System & Network Applications

Chapter 6: Low-Level Terminal Interface 179

6 Low-Level Terminal Interface

This chapter describes functions that are specific to terminal devices. You can
use these functions to do things like turn off input echoing; set serial-line charac-
teristics, such as line speed and flow control; and change which characters are used
for end of file, command-line editing, sending signals and similar control functions.

Most of the functions in this chapter operate on file descriptors. See Chapter 2
[Low-Level Input/Output], page 17, for more information about what a file descrip-
tor is and how to open a file descriptor for a terminal device.

6.1 Identifying Terminals
The functions described in this chapter only work on files that correspond to

terminal devices. You can find out whether a file descriptor is associated with a
terminal by using the isatty function.

Prototypes for the functions in this section are declared in the header file
‘unistd.h’.

Functionint isatty (int filedes)
This function returns 1 if filedes is a file descriptor associated with an open
terminal device and 0 otherwise.

If a file descriptor is associated with a terminal, you can get its associated file-
name using the ttyname function. See also the ctermid function, described in
Section 8.7.1 [Identifying the Controlling Terminal], page 238.

Functionchar * ttyname (int filedes)
If the file descriptor filedes is associated with a terminal device, the ttyname
function returns a pointer to a statically allocated, null-terminated string con-
taining the file name of the terminal file. The value is a null pointer if the file
descriptor isn’t associated with a terminal, or if the file name cannot be deter-
mined.

Functionint ttyname r (int filedes, char *buf, size_t len)
The ttyname_r function is similar to the ttyname function except that it
places its result into the user-specified buffer starting at buf with length len.
The normal return value from ttyname_r is 0. Otherwise, an error number is
returned to indicate the error. The following errno error conditions are defined
for this function:

EBADF The filedes argument is not a valid file-descriptor.

ENOTTY The filedes is not associated with a terminal.

ERANGE The buffer length len is too small to store the string to be returned.

180 The GNU C Library: System & Network Applications

6.2 I/O Queues
Many of the remaining functions in this section refer to the input and output

queues of a terminal device. These queues implement a form of buffering within
the kernel independent of the buffering implemented by I/O streams.1

The terminal input queue is also sometimes referred to as its typeahead buffer. It
holds the characters that have been received from the terminal but not yet read by
any process.

The size of the input queue is described by the MAX_INPUT and
_POSIX_MAX_INPUT parameters (see Section 12.6 [Limits on File-System
Capacity], page 318). You are guaranteed a queue size of at least MAX_INPUT, but
the queue might be larger, and might even dynamically change size. If input flow
control is enabled by setting the IXOFF input-mode bit (see Section 6.4.4 [Input
Modes], page 185), the terminal driver transmits STOP and START characters to
the terminal when necessary to prevent the queue from overflowing. Otherwise,
input may be lost if it comes in too fast from the terminal. In canonical mode, all
input stays in the queue until a newline character is received, so the terminal input
queue can fill up when you type a very long line (see Section 6.3 [Two Styles of
Input: Canonical or Not], page 180).

The terminal output queue is like the input queue, but for output; it contains char-
acters that have been written by processes, but not yet transmitted to the terminal. If
output flow control is enabled by setting the IXON input-mode bit (see Section 6.4.4
[Input Modes], page 185), the terminal driver obeys START and STOP characters
sent by the terminal to stop and restart transmission of output.

Clearing the terminal input queue means discarding any characters that have
been received but not yet read. Similarly, clearing the terminal output queue means
discarding any characters that have been written but not yet transmitted.

6.3 Two Styles of Input: Canonical or Not
POSIX systems support two basic modes of input: canonical and noncanonical.
In canonical-input processing mode, terminal input is processed in lines termi-

nated by newline (’\n’), EOF, or EOL characters. No input can be read until an
entire line has been typed by the user, and the read function (see Section 2.2 [In-
put and Output Primitives], page 20) returns at most a single line of input, no matter
how many bytes are requested.

In canonical-input mode, the operating system provides input-editing facilities—
some characters are interpreted specially to perform editing operations within the
current line of text, such as ERASE and KILL (see Section 6.4.9.1 [Characters for
Input Editing], page 194).

The constants _POSIX_MAX_CANON and MAX_CANON parameterize the max-
imum number of bytes that may appear in a single line of canonical input (see
Section 12.6 [Limits on File-System Capacity], page 318). You are guaranteed a

1 See Loosemore, et al., “Input/Output on Streams” (see chap. 1, n. 1).

Chapter 6: Low-Level Terminal Interface 181

maximum line length of at least MAX_CANON bytes, but the maximum might be
larger, and might even dynamically change size.

In noncanonical-input processing mode, characters are not grouped into lines,
and ERASE and KILL processing is not performed. The granularity with which
bytes are read in noncanonical input mode is controlled by the MIN and TIME
settings (see Section 6.4.10 [Noncanonical Input], page 198).

Most programs use canonical-input mode, because this gives the user a way to
edit input line by line. The usual reason to use noncanonical mode is when the
program accepts single-character commands or provides its own editing facilities.

The choice of canonical- or noncanonical- input is controlled by the ICANON
flag in the c_lflag member of struct termios (see Section 6.4.7 [Local
Modes], page 189).

6.4 Terminal Modes
This section describes the various terminal attributes that control how input and

output are done. The functions, data structures and symbolic constants are all de-
clared in the header file ‘termios.h’.

Don’t confuse terminal attributes with file attributes. A device special file that
is associated with a terminal has file attributes as described in Section 3.9 [File
Attributes], page 93. These are unrelated to the attributes of the terminal device
itself, which are discussed in this section.

6.4.1 Terminal Mode Data Types

The entire collection of attributes of a terminal is stored in a structure of type
struct termios. This structure is used with the functions tcgetattr and
tcsetattr to read and set the attributes.

Data Typestruct termios
This is a structure that records all the I/O attributes of a terminal. The structure
includes at least the following members:

tcflag_t c_iflag
This is a bit mask specifying flags for input modes (see Sec-
tion 6.4.4 [Input Modes], page 185).

tcflag_t c_oflag
This is a bit mask specifying flags for output modes (see Sec-
tion 6.4.5 [Output Modes], page 187).

tcflag_t c_cflag
This is a bit mask specifying flags for control modes (see Sec-
tion 6.4.6 [Control Modes], page 187).

tcflag_t c_lflag
This is a bit mask specifying flags for local modes (see Sec-
tion 6.4.7 [Local Modes], page 189).

182 The GNU C Library: System & Network Applications

cc_t c_cc[NCCS]
This is an array specifying which characters are associated with
various control functions (see Section 6.4.9 [Special Characters],
page 194).

The struct termios structure also contains members that encode input and
output transmission speeds, but the representation is not specified. See Sec-
tion 6.4.8 [Line Speed], page 192, for how to examine and store the speed val-
ues.

The following sections describe the details of the members of the struct
termios structure:

Data Typetcflag t
This is an unsigned integer type used to represent the various bit masks for
terminal flags.

Data Typecc t
This is an unsigned integer type used to represent characters associated with
various terminal-control functions.

Macroint NCCS
The value of this macro is the number of elements in the c_cc array.

6.4.2 Terminal Mode Functions

Functionint tcgetattr (int filedes, struct termios *termios-p)
This function is used to examine the attributes of the terminal device with file
descriptor filedes. The attributes are returned in the structure that termios-p
points to.
If successful, tcgetattr returns 0. A return value of −1 indicates an error.
The following errno error conditions are defined for this function:
EBADF The filedes argument is not a valid file-descriptor.
ENOTTY The filedes is not associated with a terminal.

Functionint tcsetattr (int filedes, int when, const struct
termios *termios-p)

This function sets the attributes of the terminal device with file descriptor filedes.
The new attributes are taken from the structure that termios-p points to.
The when argument specifies how to deal with input and output already queued.
It can be one of the following values:
TCSANOW Make the change immediately.
TCSADRAIN

Make the change after waiting until all queued output has been
written. You should usually use this option when changing param-
eters that affect output.

Chapter 6: Low-Level Terminal Interface 183

TCSAFLUSH
This is like TCSADRAIN, but also discards any queued input.

TCSASOFT
This is a flag bit that you can add to any of the above alternatives.
Its meaning is to inhibit alteration of the state of the terminal hard-
ware. It is a BSD extension; it is only supported on BSD systems
and the GNU system.
Using TCSASOFT is exactly the same as setting the CIGNORE
bit in the c_cflag member of the structure termios-p points to.
See Section 6.4.6 [Control Modes], page 187, for a description of
CIGNORE.

If this function is called from a background process on its controlling terminal,
normally all processes in the process group are sent a SIGTTOU signal, in the
same way as if the process were trying to write to the terminal. The excep-
tion is if the calling process itself is ignoring or blocking SIGTTOU signals, in
which case the operation is performed and no signal is sent (see Chapter 8 [Job
Control], page 221).
If successful, tcsetattr returns 0. A return value of −1 indicates an error.
The following errno error conditions are defined for this function:

EBADF The filedes argument is not a valid file-descriptor.

ENOTTY The filedes is not associated with a terminal.

EINVAL Either the value of the when argument is not valid, or there is
something wrong with the data in the termios-p argument.

Although tcgetattr and tcsetattr specify the terminal device with a file
descriptor, the attributes are those of the terminal device itself and not of the file
descriptor. This means that the effects of changing terminal attributes are persis-
tent; if another process opens the terminal file later on, it will see the changed
attributes, even though it doesn’t have anything to do with the open file descriptor
you originally specified in changing the attributes.

Similarly, if a single process has multiple or duplicated file descriptors for the
same terminal device, changing the terminal attributes affects input and output to
all of these file descriptors. This means, for example, that you can’t open one file
descriptor or stream to read from a terminal in the normal line-buffered, echoed
mode; and simultaneously have another file descriptor for the same terminal that
you use to read from it in single-character, nonechoed mode. Instead, you have to
explicitly switch the terminal back and forth between the two modes.

6.4.3 Setting Terminal Modes Properly

When you set terminal modes, you should call tcgetattr first to get the cur-
rent modes of the particular terminal device, modify only those modes that you are
really interested in, and store the result with tcsetattr.

184 The GNU C Library: System & Network Applications

It’s a bad idea to simply initialize a struct termios structure to a chosen set
of attributes and pass it directly to tcsetattr. Your program may be run years
from now, on systems that support members not documented in this manual. The
way to avoid setting these members to unreasonable values is to avoid changing
them.

What’s more, different terminal devices may require different mode settings in
order to function properly. So you should avoid blindly copying attributes from one
terminal device to another.

When a member contains a collection of independent flags, as the c_iflag, c_
oflag and c_cflag members do, even setting the entire member is a bad idea,
because particular operating systems have their own flags. Instead, you should start
with the current value of the member and alter only the flags whose values matter
in your program, leaving any other flags unchanged.

Here is an example of how to set one flag (ISTRIP) in the struct termios
structure while properly preserving all the other data in the structure:

int

set_istrip (int desc, int value)

{

struct termios settings;

int result;

result = tcgetattr (desc, &settings);

if (result < 0)

{

perror ("error in tcgetattr");

return 0;

}

settings.c_iflag &= ˜ISTRIP;

if (value)

settings.c_iflag |= ISTRIP;

result = tcsetattr (desc, TCSANOW, &settings);

if (result < 0)

{

perror ("error in tcsetattr");

return 0;

}

return 1;

Chapter 6: Low-Level Terminal Interface 185

}

6.4.4 Input Modes

This section describes the terminal attribute flags that control fairly low-level
aspects of input processing: handling of parity errors, break signals, flow control
and RET and LFD characters.

All of these flags are bits in the c_iflag member of the struct termios
structure. The member is an integer, and you change flags using the operators
&, | and ˆ. Don’t try to specify the entire value for c_iflag—instead, change
only specific flags and leave the rest untouched (see Section 6.4.3 [Setting Terminal
Modes Properly], page 183).

Macrotcflag_t INPCK
If this bit is set, input parity-checking is enabled. If it is not set, no checking at
all is done for parity errors on input; the characters are simply passed through
to the application.
Parity checking on input processing is independent of whether parity detec-
tion and generation on the underlying terminal hardware is enabled (see Sec-
tion 6.4.6 [Control Modes], page 187). For example, you could clear the INPCK
input-mode flag and set the PARENB control-mode flag to ignore parity errors
on input, but still generate parity on output.
If this bit is set, what happens when a parity error is detected depends on whether
the IGNPAR or PARMRK bits are set. If neither of these bits are set, a byte with
a parity error is passed to the application as a ’\0’ character.

Macrotcflag_t IGNPAR
If this bit is set, any byte with a framing or parity error is ignored. This is only
useful if INPCK is also set.

Macrotcflag_t PARMRK
If this bit is set, input bytes with parity or framing errors are marked when passed
to the program. This bit is meaningful only when INPCK is set and IGNPAR is
not set.
The way erroneous bytes are marked is with 2 preceding bytes, 377 and 0.
Thus, the program actually reads 3 bytes for 1 erroneous byte received from the
terminal.
If a valid byte has the value 0377 and ISTRIP (see below) is not set, the
program might confuse it with the prefix that marks a parity error. So a valid
byte 0377 is passed to the program as 2 bytes, 0377 0377, in this case.

Macrotcflag_t ISTRIP
If this bit is set, valid input bytes are stripped to 7 bits. Otherwise, all 8 bits are
available for programs to read.

186 The GNU C Library: System & Network Applications

Macrotcflag_t IGNBRK
If this bit is set, break conditions are ignored.
A break condition is defined in the context of asynchronous serial data trans-
mission as a series of 0-value bits longer than a single byte.

Macrotcflag_t BRKINT
If this bit is set and IGNBRK is not set, a break condition clears the terminal
input and output queues and raises a SIGINT signal for the foreground process
group associated with the terminal.
If neither BRKINT nor IGNBRK are set, a break condition is passed to the ap-
plication as a single ‘\0’ character if PARMRK is not set, or otherwise as a
three-character sequence ‘\377’, ‘\0’, ‘\0’.

Macrotcflag_t IGNCR
If this bit is set, carriage-return characters (‘\r’) are discarded on input. Dis-
carding carriage return may be useful on terminals that send both carriage return
and linefeed when you type the 〈RET〉 key.

Macrotcflag_t ICRNL
If this bit is set and IGNCR is not set, carriage-return characters (‘\r’) received
as input are passed to the application as newline characters (‘\n’).

Macrotcflag_t INLCR
If this bit is set, newline characters (‘\n’) received as input are passed to the
application as carriage-return characters (‘\r’).

Macrotcflag_t IXOFF
If this bit is set, start/stop control on input is enabled. In other words, the com-
puter sends STOP and START characters as necessary to prevent input from
coming in faster than programs are reading it. The idea is that the actual termi-
nal hardware that is generating the input data responds to a STOP character by
suspending transmission and to a START character by resuming transmission
(see Section 6.4.9.3 [Special Characters for Flow Control], page 197).

Macrotcflag_t IXON
If this bit is set, start/stop control on output is enabled. In other words, if the
computer receives a STOP character, it suspends output until a START character
is received. In this case, the STOP and START characters are never passed to the
application program. If this bit is not set, then START and STOP can be read as
ordinary characters (see Section 6.4.9.3 [Special Characters for Flow Control],
page 197).

Macrotcflag_t IXANY
If this bit is set, any input character restarts output when output has been sus-
pended with the STOP character. Otherwise, only the START character restarts
output.

Chapter 6: Low-Level Terminal Interface 187

This is a BSD extension; it exists only on BSD systems and the GNU system.

Macrotcflag_t IMAXBEL
If this bit is set, then filling up the terminal input buffer sends a BEL character
(code 007) to the terminal to ring the bell.
This is a BSD extension.

6.4.5 Output Modes

This section describes the terminal flags and fields that control how output char-
acters are translated and padded for display. All of these are contained in the c_
oflag member of the struct termios structure.

The c_oflag member itself is an integer, and you change the flags and fields
using the operators &, | and ˆ. Don’t try to specify the entire value for c_oflag—
instead, change only specific flags and leave the rest untouched (see Section 6.4.3
[Setting Terminal Modes Properly], page 183).

Macrotcflag_t OPOST
If this bit is set, output data is processed in some unspecified way so that it is
displayed appropriately on the terminal device. This typically includes mapping
newline characters (’\n’) onto carriage return and linefeed pairs.
If this bit isn’t set, the characters are transmitted as-is.

The following 3 bits are BSD features, and they exist only on BSD systems and
the GNU system. They are effective only if OPOST is set.

Macrotcflag_t ONLCR
If this bit is set, convert the newline character on output into a pair of characters,
carriage return followed by linefeed.

Macrotcflag_t OXTABS
If this bit is set, convert tab characters on output into the appropriate number of
spaces to emulate a tab stop every eight columns.

Macrotcflag_t ONOEOT
If this bit is set, discard C-d characters (code 004) on output. These characters
cause many dial-up terminals to disconnect.

6.4.6 Control Modes

This section describes the terminal flags and fields that control parameters usu-
ally associated with asynchronous serial data transmission. These flags may not
make sense for other kinds of terminal ports (such as a network connection pseu-
doterminal). All of these are contained in the c_cflag member of the struct
termios structure.

188 The GNU C Library: System & Network Applications

The c_cflag member itself is an integer, and you change the flags and fields
using the operators &, | and ˆ. Don’t try to specify the entire value for c_cflag—
instead, change only specific flags and leave the rest untouched (see Section 6.4.3
[Setting Terminal Modes Properly], page 183).

Macrotcflag_t CLOCAL
If this bit is set, it indicates that the terminal is connected “locally” and that the
modem status lines (such as carrier detect) should be ignored.
On many systems, if this bit is not set and you call open without the O_
NONBLOCK flag set, open blocks until a modem connection is established.
If this bit is not set and a modem disconnect is detected, a SIGHUP signal is
sent to the controlling process group for the terminal (if it has one). Normally,
this causes the process to exit (see Chapter 17 [Signal Handling], page 377).
Reading from the terminal after a disconnect causes an end-of-file condition,
and writing causes an EIO error to be returned. The terminal device must be
closed and reopened to clear the condition.

Macrotcflag_t HUPCL
If this bit is set, a modem disconnect is generated when all processes that have
the terminal device open have either closed the file or exited.

Macrotcflag_t CREAD
If this bit is set, input can be read from the terminal. Otherwise, input is dis-
carded when it arrives.

Macrotcflag_t CSTOPB
If this bit is set, 2 stop bits are used. Otherwise, only 1 stop bit is used.

Macrotcflag_t PARENB
If this bit is set, generation and detection of a parity bit are enabled. See Sec-
tion 6.4.4 [Input Modes], page 185, for information on how input parity errors
are handled.
If this bit is not set, no parity bit is added to output characters, and input char-
acters are not checked for correct parity.

Macrotcflag_t PARODD
This bit is only useful if PARENB is set. If PARODD is set, odd parity is used.
Otherwise, even parity is used.

The control-mode flags also include a field for the number of bits per char-
acter. You can use the CSIZE macro as a mask to extract the value, like this:
settings.c_cflag & CSIZE.

Macrotcflag_t CSIZE
This is a mask for the number of bits per character.

Chapter 6: Low-Level Terminal Interface 189

Macrotcflag_t CS5
This specifies 5 bits per byte.

Macrotcflag_t CS6
This specifies 6 bits per byte.

Macrotcflag_t CS7
This specifies 7 bits per byte.

Macrotcflag_t CS8
This specifies 8 bits per byte.

The following 4 bits are BSD extensions; this exists only on BSD systems and the
GNU system.

Macrotcflag_t CCTS OFLOW
If this bit is set, enable flow control of output based on the CTS wire (RS232
protocol).

Macrotcflag_t CRTS IFLOW
If this bit is set, enable flow control of input based on the RTS wire (RS232
protocol).

Macrotcflag_t MDMBUF
If this bit is set, enable carrier-based flow control of output.

Macrotcflag_t CIGNORE
If this bit is set, it says to ignore the control modes and line-speed values entirely.
This is only meaningful in a call to tcsetattr.
The c_cflag member and the line-speed values returned by cfgetispeed
and cfgetospeed will be unaffected by the call. CIGNORE is useful if you
want to set all the software modes in the other members, but leave the hard-
ware details in c_cflag unchanged. (This is how the TCSASOFT flag to
tcsettattr works.)
This bit is never set in the structure filled in by tcgetattr.

6.4.7 Local Modes

This section describes the flags for the c_lflag member of the struct
termios structure. These flags generally control higher-level aspects of input
processing than the input-modes flags described in Section 6.4.4 [Input Modes],
page 185, such as echoing, signals and the choice of canonical- or noncanonical-
input.

The c_lflag member itself is an integer, and you change the flags and fields
using the operators &, | and ˆ. Don’t try to specify the entire value for c_lflag—
instead, change only specific flags and leave the rest untouched (see Section 6.4.3
[Setting Terminal Modes Properly], page 183).

190 The GNU C Library: System & Network Applications

Macrotcflag_t ICANON
This bit, if set, enables canonical-input processing mode. Otherwise, input is
processed in noncanonical mode (see Section 6.3 [Two Styles of Input: Canon-
ical or Not], page 180).

Macrotcflag_t ECHO
If this bit is set, echoing of input characters back to the terminal is enabled.

Macrotcflag_t ECHOE
If this bit is set, echoing indicates erasure of input with the ERASE character
by erasing the last character in the current line from the screen. Otherwise, the
character erased is re-echoed to show what has happened (suitable for a printing
terminal).
This bit only controls the display behavior; the ICANON bit by itself controls
actual recognition of the ERASE character and erasure of input, without which
ECHOE is simply irrelevant.

Macrotcflag_t ECHOPRT
This bit is like ECHOE—it enables display of the ERASE character in a way that
is geared to a hard copy terminal. When you type the ERASE character, a ‘\’
character is printed followed by the first character erased. Typing the ERASE
character again just prints the next character erased. Then, the next time you
type a normal character, a ‘/’ character is printed before the character echoes.
This is a BSD extension, and exists only in BSD systems and the GNU system.

Macrotcflag_t ECHOK
This bit enables special display of the KILL character by moving to a new line
after echoing the KILL character normally. The behavior of ECHOKE (below)
is nicer to look at.
If this bit is not set, the KILL character echoes just as it would if it were not the
KILL character. Then it is up to the user to remember that the KILL character
has erased the preceding input; there is no indication of this on the screen.
This bit only controls the display behavior; the ICANON bit by itself controls
actual recognition of the KILL character and erasure of input, without which
ECHOK is simply irrelevant.

Macrotcflag_t ECHOKE
This bit is similar to ECHOK. It enables special display of the KILL character by
erasing on the screen the entire line that has been killed. This is a BSD extension,
and exists only in BSD systems and the GNU system.

Macrotcflag_t ECHONL
If this bit is set and the ICANON bit is also set, then the newline (’\n’) char-
acter is echoed even if the ECHO bit is not set.

Chapter 6: Low-Level Terminal Interface 191

Macrotcflag_t ECHOCTL
If this bit is set and the ECHO bit is also set, echo control characters with ‘ˆ’
followed by the corresponding text character. Thus, Control-A echoes as
‘ˆA’. This is usually the preferred mode for interactive input, because echoing
a control character back to the terminal could have some undesired effect on the
terminal.
This is a BSD extension, and exists only in BSD systems and the GNU system.

Macrotcflag_t ISIG
This bit controls whether the INTR, QUIT and SUSP characters are recognized.
The functions associated with these characters are performed if and only if this
bit is set. Being in canonical- or noncanonical- input mode has no effect on the
interpretation of these characters.
You should use caution when disabling recognition of these characters. Pro-
grams that cannot be interrupted interactively are very user-unfriendly. If you
clear this bit, your program should provide some alternate interface that allows
the user to interactively send the signals associated with these characters, or to
escape from the program (see Section 6.4.9.2 [Characters that Cause Signals],
page 196).

Macrotcflag_t IEXTEN
POSIX.1 gives IEXTEN implementation-defined meaning, so you cannot rely on
this interpretation on all systems.
On BSD systems and the GNU system, it enables the LNEXT and DISCARD
characters (see Section 6.4.9.4 [Other Special Characters], page 198).

Macrotcflag_t NOFLSH
Normally, the INTR, QUIT and SUSP characters cause input and output queues
for the terminal to be cleared. If this bit is set, the queues are not cleared.

Macrotcflag_t TOSTOP
If this bit is set and the system supports job control, then SIGTTOU signals are
generated by background processes that attempt to write to the terminal (see
Section 8.4 [Access to the Controlling Terminal], page 223).

The following bits are BSD extensions; they exist only in BSD systems and the
GNU system.

Macrotcflag_t ALTWERASE
This bit determines how far the WERASE character should erase. The
WERASE character erases back to the beginning of a word; the question is,
where do words begin?
If this bit is clear, then the beginning of a word is a non-white-space character
following a white-space character. If the bit is set, then the beginning of a word

192 The GNU C Library: System & Network Applications

is an alphanumeric character or underscore following a character which is none
of those.
See Section 6.4.9.1 [Characters for Input Editing], page 194, for more informa-
tion about the WERASE character.

Macrotcflag_t FLUSHO
This is the bit that toggles when the user types the DISCARD character. While
this bit is set, all output is discarded (see Section 6.4.9.4 [Other Special Charac-
ters], page 198).

Macrotcflag_t NOKERNINFO
Setting this bit disables handling of the STATUS character (see Section 6.4.9.4
[Other Special Characters], page 198).

Macrotcflag_t PENDIN
If this bit is set, it indicates that there is a line of input that needs to be reprinted.
Typing the REPRINT character sets this bit; the bit remains set until reprinting
is finished (see Section 6.4.9.1 [Characters for Input Editing], page 194).

6.4.8 Line Speed

The terminal line speed tells the computer how fast to read and write data on the
terminal.

If the terminal is connected to a real serial line, the terminal speed you spec-
ify actually controls the line—if it doesn’t match the terminal’s own idea of the
speed, communication does not work. Real serial ports accept only certain standard
speeds. Also, particular hardware may not support even all the standard speeds.
Specifying a speed of 0 hangs up a dial-up connection and turns off modem control
signals.

If the terminal is not a real serial line (for example, if it is a network connection),
then the line speed won’t really affect data-transmission speed, but some programs
will use it to determine the amount of padding needed. It’s best to specify a line-
speed value that matches the actual speed of the actual terminal, but you can safely
experiment with different values to vary the amount of padding.

There are actually two line speeds for each terminal—one for input and one for
output. You can set them independently, but most often terminals use the same
speed for both directions.

The speed values are stored in the struct termios structure, but don’t try to
access them in the struct termios structure directly. Instead, you should use
the following functions to read and store them:

Functionspeed_t cfgetospeed (const struct termios *termios-p)
This function returns the output line-speed stored in the structure *termios-p .

Chapter 6: Low-Level Terminal Interface 193

Functionspeed_t cfgetispeed (const struct termios *termios-p)
This function returns the input line-speed stored in the structure *termios-p .

Functionint cfsetospeed (struct termios *termios-p, speed_t
speed)

This function stores speed in *termios-p as the output speed. The normal
return value is 0; a value of −1 indicates an error. If speed is not a speed,
cfsetospeed returns −1.

Functionint cfsetispeed (struct termios *termios-p, speed_t
speed)

This function stores speed in *termios-p as the input speed. The normal re-
turn value is 0; a value of −1 indicates an error. If speed is not a speed,
cfsetospeed returns −1.

Functionint cfsetspeed (struct termios *termios-p, speed_t
speed)

This function stores speed in *termios-p as both the input and output speeds.
The normal return value is 0; a value of −1 indicates an error. If speed is not a
speed, cfsetspeed returns −1. This function is an extension in 4.4 BSD.

Data Typespeed t
The speed_t type is an unsigned-integer data type used to represent line
speeds.

The functions cfsetospeed and cfsetispeed report errors only for speed
values that the system simply cannot handle. If you specify a speed value that is
basically acceptable, then those functions will succeed. But they do not check that a
particular hardware device can actually support the specified speeds—in fact, they
don’t know which device you plan to set the speed for. If you use tcsetattr to
set the speed of a particular device to a value that it cannot handle, tcsetattr
returns −1.

Portability Note: In the GNU library, the functions above accept speeds mea-
sured in bits per second as input, and they return speed values measured in bits per
second. Other libraries require speeds to be indicated by special codes. For POSIX.1
portability, you must use one of the following symbols to represent the speed; their
precise numeric values are system dependent, but each name has a fixed meaning:
B110 stands for 110 bps, B300 for 300 bps, and so on. There is no portable way to
represent any speed but these, but these are the only speeds that typical serial lines
can support.

B0 B50 B75 B110 B134 B150 B200

B300 B600 B1200 B1800 B2400 B4800

B9600 B19200 B38400 B57600 B115200

B230400 B460800

BSD defines two additional speed symbols as aliases: EXTA is an alias for
B19200 and EXTB is an alias for B38400. These aliases are obsolete.

194 The GNU C Library: System & Network Applications

6.4.9 Special Characters

In canonical input, the terminal driver recognizes a number of special charac-
ters that perform various control functions. These include the ERASE character
(usually 〈DEL〉) for editing input, and other editing characters. The INTR character
(normally C-c) for sending a SIGINT signal, and other signal-raising characters,
may be available in either canonical- or noncanonical- input mode. All these char-
acters are described in this section.

The particular characters used are specified in the c_cc member of the struct
termios structure. This member is an array; each element specifies the character
for a particular role. Each element has a symbolic constant that stands for the index
of that element—for example, VINTR is the index of the element that specifies the
INTR character, so storing ’=’ in termios.c_cc[VINTR] specifies ‘=’ as the
INTR character.

On some systems, you can disable a particular special-character function by
specifying the value _POSIX_VDISABLE for that role. This value is unequal to
any possible character code. See Section 12.7 [Optional Features in File Support],
page 319, for more information about how to tell whether the operating system you
are using supports _POSIX_VDISABLE.

6.4.9.1 Characters for Input Editing

These special characters are active only in canonical-input mode (see Section 6.3
[Two Styles of Input: Canonical or Not], page 180).

Macroint VEOF
This is the subscript for the EOF character in the special control character array.
termios.c_cc[VEOF] holds the character itself.
The EOF character is recognized only in canonical-input mode. It acts as a line
terminator in the same way as a newline character, but if the EOF character is
typed at the beginning of a line, it causes read to return a byte count of 0,
indicating end of file. The EOF character itself is discarded.
Usually, the EOF character is C-d.

Macroint VEOL
This is the subscript for the EOL character in the special control character array.
termios.c_cc[VEOL] holds the character itself.
The EOL character is recognized only in canonical-input mode. It acts as a line
terminator, just like a newline character. The EOL character is not discarded; it
is read as the last character in the input line.
You don’t need to use the EOL character to make 〈RET〉 end a line. Just set the
ICRNL flag. In fact, this is the default state of affairs.

Chapter 6: Low-Level Terminal Interface 195

Macroint VEOL2
This is the subscript for the EOL2 character in the special control character
array. termios.c_cc[VEOL2] holds the character itself.
The EOL2 character works just like the EOL character (see above), but it can be
a different character. Thus, you can specify two characters to terminate an input
line, by setting EOL to one of them and EOL2 to the other.
The EOL2 character is a BSD extension; it exists only on BSD systems and the
GNU system.

Macroint VERASE
This is the subscript for the ERASE character in the special control character
array. termios.c_cc[VERASE] holds the character itself.
The ERASE character is recognized only in canonical-input mode. When the
user types the erase character, the previous character typed is discarded. If the
terminal generates multibyte character sequences, this may cause more than 1
byte of input to be discarded. This cannot be used to erase past the beginning of
the current line of text. The ERASE character itself is discarded.
Usually, the ERASE character is 〈DEL〉.

Macroint VWERASE
This is the subscript for the WERASE character in the special control character
array. termios.c_cc[VWERASE] holds the character itself.
The WERASE character is recognized only in canonical mode. It erases an
entire word of prior input and any white space after it; white-space characters
before the word are not erased.
The definition of a “word” depends on the setting of the ALTWERASE mode
(see Section 6.4.7 [Local Modes], page 189).
If the ALTWERASE mode is not set, a word is defined as a sequence of any
characters except space or tab.
If the ALTWERASE mode is set, a word is defined as a sequence of characters
containing only letters, numbers and underscores, optionally followed by one
character that is not a letter, number or underscore.
The WERASE character is usually C-w.
This is a BSD extension.

Macroint VKILL
This is the subscript for the KILL character in the special control character array.
termios.c_cc[VKILL] holds the character itself.
The KILL character is recognized only in canonical-input mode. When the
user types the kill character, the entire contents of the current line of input are
discarded. The kill character itself is discarded too.
The KILL character is usually C-u.

196 The GNU C Library: System & Network Applications

Macroint VREPRINT
This is the subscript for the REPRINT character in the special control character
array. termios.c_cc[VREPRINT] holds the character itself.
The REPRINT character is recognized only in canonical mode. It reprints the
current input line. If some asynchronous output has come while you are typing,
this lets you see the line you are typing clearly again.
The REPRINT character is usually C-r.
This is a BSD extension.

6.4.9.2 Characters that Cause Signals

These special characters may be active in either canonical- or noncanonical-
input mode, but only when the ISIG flag is set (see Section 6.4.7 [Local Modes],
page 189).

Macroint VINTR
This is the subscript for the INTR character in the special control character array.
termios.c_cc[VINTR] holds the character itself.
The INTR (interrupt) character raises a SIGINT signal for all processes in the
foreground job associated with the terminal. The INTR character itself is then
discarded. See Chapter 17 [Signal Handling], page 377, for more information
about signals.
Typically, the INTR character is C-c.

Macroint VQUIT
This is the subscript for the QUIT character in the special control character array.
termios.c_cc[VQUIT] holds the character itself.
The QUIT character raises a SIGQUIT signal for all processes in the foreground
job associated with the terminal. The QUIT character itself is then discarded.
See Chapter 17 [Signal Handling], page 377, for more information about sig-
nals.
Typically, the QUIT character is C-\.

Macroint VSUSP
This is the subscript for the SUSP character in the special control character
array. termios.c_cc[VSUSP] holds the character itself.
The SUSP (suspend) character is recognized only if the implementation sup-
ports job control (see Chapter 8 [Job Control], page 221). It causes a SIGTSTP
signal to be sent to all processes in the foreground job associated with the ter-
minal. The SUSP character itself is then discarded. See Chapter 17 [Signal
Handling], page 377, for more information about signals.
Typically, the SUSP character is C-z.

Chapter 6: Low-Level Terminal Interface 197

Few applications disable the normal interpretation of the SUSP character. If
your program does this, it should provide some other mechanism for the user to
stop the job. When the user invokes this mechanism, the program should send a
SIGTSTP signal to the process group of the process, not just to the process itself
(see Section 17.6.2 [Signaling Another Process], page 410).

Macroint VDSUSP
This is the subscript for the DSUSP character in the special control character
array. termios.c_cc[VDSUSP] holds the character itself.
The DSUSP (suspend) character is recognized only if the implementation sup-
ports job control (see Chapter 8 [Job Control], page 221). It sends a SIGTSTP
signal, like the SUSP character, but not right away—only when the program
tries to read it as input. Not all systems with job control support DSUSP; only
BSD-compatible systems (including the GNU system).
See Chapter 17 [Signal Handling], page 377, for more information about sig-
nals.
Typically, the DSUSP character is C-y.

6.4.9.3 Special Characters for Flow Control

These special characters may be active in either canonical- or noncanonical-input
mode, but their use is controlled by the flags IXON and IXOFF (see Section 6.4.4
[Input Modes], page 185).

Macroint VSTART
This is the subscript for the START character in the special control character
array. termios.c_cc[VSTART] holds the character itself.
The START character is used to support the IXON and IXOFF input modes.
If IXON is set, receiving a START character resumes suspended output; the
START character itself is discarded. If IXANY is set, receiving any character at
all resumes suspended output; the resuming character is not discarded unless it
is the START character. If IXOFF is set, the system may also transmit START
characters to the terminal.
The usual value for the START character is C-q. You may not be able to change
this value—the hardware may insist on using C-q regardless of what you spec-
ify.

Macroint VSTOP
This is the subscript for the STOP character in the special control character
array. termios.c_cc[VSTOP] holds the character itself.
The STOP character is used to support the IXON and IXOFF input modes. If
IXON is set, receiving a STOP character causes output to be suspended; the
STOP character itself is discarded. If IXOFF is set, the system may also trans-
mit STOP characters to the terminal, to prevent the input queue from overflow-
ing.

198 The GNU C Library: System & Network Applications

The usual value for the STOP character is C-s. You may not be able to change
this value—the hardware may insist on using C-s regardless of what you spec-
ify.

6.4.9.4 Other Special Characters

These special characters exist only in BSD systems and the GNU system.

Macroint VLNEXT
This is the subscript for the LNEXT character in the special control character
array. termios.c_cc[VLNEXT] holds the character itself.
The LNEXT character is recognized only when IEXTEN is set, but in both
canonical and noncanonical mode. It disables any special significance of the
next character the user types. Even if the character would normally perform
some editing function or generate a signal, it is read as a plain character. This is
the analog of the C-q command in Emacs. “LNEXT” stands for “literal next.”
The LNEXT character is usually C-v.

Macroint VDISCARD
This is the subscript for the DISCARD character in the special control character
array. termios.c_cc[VDISCARD] holds the character itself.
The DISCARD character is recognized only when IEXTEN is set, but in both
canonical and noncanonical mode. Its effect is to toggle the discard-output flag.
When this flag is set, all program output is discarded. Setting the flag also
discards all output currently in the output buffer. Typing any other character
resets the flag.

Macroint VSTATUS
This is the subscript for the STATUS character in the special control character
array. termios.c_cc[VSTATUS] holds the character itself.
The STATUS character’s effect is to print out a status message about how the
current process is running.
The STATUS character is recognized only in canonical mode, and only if
NOKERNINFO is not set.

6.4.10 Noncanonical Input

In noncanonical-input mode, the special editing characters such as ERASE and
KILL are ignored. The system facilities for the user to edit input are disabled in
noncanonical mode, so that all input characters (unless they are special for signal or
flow-control purposes) are passed to the application program exactly as typed. It is
up to the application program to give the user ways to edit the input, if appropriate.

Noncanonical mode offers special parameters called MIN and TIME for control-
ling whether and how long to wait for input to be available. You can even use them

Chapter 6: Low-Level Terminal Interface 199

to avoid ever waiting—to return immediately with whatever input is available, or
with no input.

The MIN and TIME are stored in elements of the c_cc array, which is a member
of the struct termios structure. Each element of this array has a particular
role, and each element has a symbolic constant that stands for the index of that
element. VMIN and VMAX are the names for the indices in the array of the MIN and
TIME slots.

Macroint VMIN
This is the subscript for the MIN slot in the c_cc array. Thus, termios.c_
cc[VMIN] is the value itself.
The MIN slot is only meaningful in noncanonical-input mode; it specifies the
minimum number of bytes that must be available in the input queue in order for
read to return.

Macroint VTIME
This is the subscript for the TIME slot in the c_cc array. Thus, termios.c_
cc[VTIME] is the value itself.
The TIME slot is only meaningful in noncanonical-input mode; it specifies how
long to wait for input before returning, in units of 0.1 seconds.

The MIN and TIME values interact to determine the criterion for when read
should return; their precise meanings depend on which of them are nonzero. There
are four possible cases:

• Both TIME and MIN are nonzero.
In this case, TIME specifies how long to wait after each input character to see
if more input arrives. After the first character received, read keeps waiting
until either MIN bytes have arrived in all, or TIME elapses with no further
input.
read always blocks until the first character arrives, even if TIME elapses first.
read can return more than MIN characters if more than MIN happen to be in
the queue.

• Both MIN and TIME are 0.
In this case, read always returns immediately with as many characters as are
available in the queue, up to the number requested. If no input is immediately
available, read returns a value of 0.

• MIN is 0 but TIME has a nonzero value.
In this case, read waits for time TIME for input to become available; the
availability of a single byte is enough to satisfy the read request and cause
read to return. When it returns, it returns as many characters as are available,
up to the number requested. If no input is available before the timer expires,
read returns a value of 0.

200 The GNU C Library: System & Network Applications

• TIME is 0 but MIN has a nonzero value.
In this case, read waits until at least MIN bytes are available in the queue. At
that time, read returns as many characters as are available, up to the number
requested. read can return more than MIN characters if more than MIN
happen to be in the queue.

What happens if MIN is 50 and you ask to read just 10 bytes? Normally, read
waits until there are 50 bytes in the buffer (or, more generally, until the wait condi-
tion described above is satisfied), and then reads 10 of them, leaving the other 40
buffered in the operating system for a subsequent call to read.

Portability Note: On some systems, the MIN and TIME slots are actually the
same as the EOF and EOL slots. This causes no serious problem because the MIN
and TIME slots are used only in noncanonical input and the EOF and EOL slots
are used only in canonical input, but it isn’t very clean. The GNU library allocates
separate slots for these uses.

Functionvoid cfmakeraw (struct termios *termios-p)
This function provides an easy way to set up *termios-p for what has tradition-
ally been called “raw mode” in BSD. This uses noncanonical input, and turns
off most processing to give an unmodified channel to the terminal.
It does exactly this:

termios-p->c_iflag &= ˜(IGNBRK|BRKINT|PARMRK|ISTRIP

|INLCR|IGNCR|ICRNL|IXON);

termios-p->c_oflag &= ˜OPOST;

termios-p->c_lflag &= ˜(ECHO|ECHONL|ICANON|ISIG|IEXTEN);

termios-p->c_cflag &= ˜(CSIZE|PARENB);

termios-p->c_cflag |= CS8;

6.5 BSD Terminal Modes
The usual way to get and set terminal modes is with the functions described in

Section 6.4 [Terminal Modes], page 181. However, on some systems you can use
the BSD-derived functions in this section to do some of the same things. On many
systems, these functions do not exist. Even with the GNU C Library, the functions
simply fail with errno = ENOSYS with many kernels, including Linux.

The symbols used in this section are declared in ‘sgtty.h’.

Data Typestruct sgttyb
This structure is an input or output parameter list for gtty and stty.

char sg_ispeed
Line speed for input

char sg_ospeed
Line speed for output

Chapter 6: Low-Level Terminal Interface 201

char sg_erase
Erase character

char sg_kill
Kill character

int sg_flags
Various flags

Functionint gtty (int filedes, struct sgttyb *attributes)
This function gets the attributes of a terminal.
gtty sets *attributes to describe the terminal attributes of the terminal that is
open with file descriptor filedes.

Functionint stty (int filedes, struct sgttyb * attributes)
This function sets the attributes of a terminal.
stty sets the terminal attributes of the terminal that is open with file descriptor
filedes to those described by *filedes.

6.6 Line Control Functions
These functions perform miscellaneous control actions on terminal devices. As

regards terminal access, they are treated like doing output: if any of these functions
is used by a background process on its controlling terminal, normally all processes
in the process group are sent a SIGTTOU signal. The exception is if the calling
process itself is ignoring or blocking SIGTTOU signals, in which case the operation
is performed and no signal is sent (see Chapter 8 [Job Control], page 221).

Functionint tcsendbreak (int filedes, int duration)
This function generates a break condition by transmitting a stream of zero bits
on the terminal associated with the file descriptor filedes. The duration of the
break is controlled by the duration argument. If zero, the duration is between
0.25 and 0.5 seconds. The meaning of a nonzero value depends on the operating
system.
This function does nothing if the terminal is not an asynchronous serial data
port.
The return value is normally 0. In the event of an error, a value of−1 is returned.
The following errno error conditions are defined for this function:

EBADF The filedes is not a valid file-descriptor.

ENOTTY The filedes is not associated with a terminal device.

Functionint tcdrain (int filedes)
The tcdrain function waits until all queued output to the terminal filedes has
been transmitted.

202 The GNU C Library: System & Network Applications

This function is a cancellation point in multithreaded programs. This is a
problem if the thread allocates some resources (like memory, file descriptors,
semaphores or whatever) at the time tcdrain is called. If the thread gets can-
celed, these resources stay allocated until the program ends. To avoid this, calls
to tcdrain should be protected using cancellation handlers.
The return value is normally 0. In the event of an error, a value of−1 is returned.
The following errno error conditions are defined for this function:

EBADF The filedes is not a valid file-descriptor.

ENOTTY The filedes is not associated with a terminal device.

EINTR The operation was interrupted by delivery of a signal (see Sec-
tion 17.5 [Primitives Interrupted by Signals], page 408).

Functionint tcflush (int filedes, int queue)
The tcflush function is used to clear the input and/or output queues associ-
ated with the terminal file filedes. The queue argument specifies which queue(s)
to clear, and can be one of the following values:

TCIFLUSH
Clear any input data received but not yet read.

TCOFLUSH
Clear any output data written but not yet transmitted.

TCIOFLUSH
Clear both queued input and output.

The return value is normally 0. In the event of an error, a value of−1 is returned.
The following errno error conditions are defined for this function:

EBADF The filedes is not a valid file-descriptor.

ENOTTY The filedes is not associated with a terminal device.

EINVAL A bad value was supplied as the queue argument.

It is unfortunate that this function is named tcflush, because the term
“flush” is normally used for quite another operation—waiting until all output
is transmitted—and using it for discarding input or output would be confusing.
Unfortunately, the name tcflush comes from POSIX and we cannot change
it.

Functionint tcflow (int filedes, int action)
The tcflow function is used to perform operations relating to XON/XOFF flow
control on the terminal file specified by filedes.
The action argument specifies what operation to perform, and can be one of the
following values:

Chapter 6: Low-Level Terminal Interface 203

TCOOFF Suspend transmission of output.

TCOON Restart transmission of output.

TCIOFF Transmit a STOP character.

TCION Transmit a START character.

For more information about the STOP and START characters, see Section 6.4.9
[Special Characters], page 194.
The return value is normally 0. In the event of an error, a value of−1 is returned.
The following errno error conditions are defined for this function:

EBADF The filedes is not a valid file-descriptor.

ENOTTY The filedes is not associated with a terminal device.

EINVAL A bad value was supplied as the action argument.

6.7 Noncanonical-Mode Example
Here is an example program that shows how you can set up a terminal device to

read single characters in noncanonical-input mode, without echo.
#include <unistd.h>

#include <stdio.h>

#include <stdlib.h>

#include <termios.h>

/* Use this variable to remember original terminal attributes. */

struct termios saved_attributes;

void

reset_input_mode (void)

{

tcsetattr (STDIN_FILENO, TCSANOW, &saved_attributes);

}

void

set_input_mode (void)

{

struct termios tattr;

char *name;

/* Make sure stdin is a terminal. */

if (!isatty (STDIN_FILENO))

{

fprintf (stderr, "Not a terminal.\n");

204 The GNU C Library: System & Network Applications

exit (EXIT_FAILURE);

}

/* Save the terminal attributes so we can restore them later. */

tcgetattr (STDIN_FILENO, &saved_attributes);

atexit (reset_input_mode);

/* Set the funny terminal modes. */

tcgetattr (STDIN_FILENO, &tattr);

tattr.c_lflag &= ˜(ICANON|ECHO); /* Clear ICANON and ECHO. */

tattr.c_cc[VMIN] = 1;

tattr.c_cc[VTIME] = 0;

tcsetattr (STDIN_FILENO, TCSAFLUSH, &tattr);

}

int

main (void)

{

char c;

set_input_mode ();

while (1)

{

read (STDIN_FILENO, &c, 1);

if (c == ’\004’) /* C-d */

break;

else

putchar (c);

}

return EXIT_SUCCESS;

}

This program is careful to restore the original terminal modes before exiting or
terminating with a signal. It uses the atexit function2 to make sure this is done
by exit.

The shell is supposed to take care of resetting the terminal modes when a process
is stopped or continued (see Chapter 8 [Job Control], page 221). But some existing

2 See Loosemore, et al., “Clean-Ups on Exit” (see chap. 1, n. 1).

Chapter 6: Low-Level Terminal Interface 205

shells do not actually do this, so you may wish to establish handlers for job control
signals that reset terminal modes. The above example does so.

6.8 Pseudoterminals
A pseudoterminal is a special interprocess-communication channel that acts like

a terminal. One end of the channel is called the master side or master pseudoter-
minal device, the other side is called the slave side. Data written to the master side
is received by the slave side as if it was the result of a user typing at an ordinary
terminal, and data written to the slave side is sent to the master side as if it was
written on an ordinary terminal.

Pseudoterminals are the way programs like xterm and emacs implement their
terminal-emulation functionality.

6.8.1 Allocating Pseudoterminals

This subsection describes functions for allocating a pseudoterminal, and for mak-
ing this pseudoterminal available for actual use. These functions are declared in the
header file ‘stdlib.h’.

Functionint getpt (void)
The getpt function returns a new file-descriptor for the next available master
pseudoterminal. The normal return value from getpt is a nonnegative-integer
file-descriptor. In the case of an error, a value of −1 is returned instead. The
following errno condition is defined for this function:

ENOENT There are no free master pseudoterminals available.

This function is a GNU extension.

Functionint grantpt (int filedes)
The grantpt function changes the ownership and access permission of the
slave pseudoterminal device corresponding to the master pseudoterminal device
associated with the file descriptor filedes. The owner is set from the real user-ID
of the calling process (see Section 10.2 [The Persona of a Process], page 253),
and the group is set to a special group (typically tty) or from the real group-ID
of the calling process. The access permission is set such that the file is both
readable and writable by the owner and only writable by the group.
On some systems, this function is implemented by invoking a special setuid
root program (see Section 10.4 [How an Application Can Change Persona],
page 254). As a consequence, installing a signal handler for the SIGCHLD
signal (see Section 17.2.5 [Job Control Signals], page 385) may interfere with a
call to grantpt.
The normal return value from grantpt is 0; a value of −1 is returned in case
of failure. The following errno error conditions are defined for this function:

EBADF The filedes argument is not a valid file-descriptor.

206 The GNU C Library: System & Network Applications

EINVAL The filedes argument is not associated with a master pseudotermi-
nal device.

EACCES The slave pseudoterminal device corresponding to the master as-
sociated with filedes could not be accessed.

Functionint unlockpt (int filedes)
The unlockpt function unlocks the slave pseudoterminal device correspond-
ing to the master pseudoterminal device associated with the file descriptor
filedes. On many systems, the slave can only be opened after unlocking, so
portable applications should always call unlockpt before trying to open the
slave.
The normal return value from unlockpt is 0; a value of−1 is returned in case
of failure. The following errno error conditions are defined for this function:

EBADF The filedes argument is not a valid file-descriptor.

EINVAL The filedes argument is not associated with a master pseudotermi-
nal device.

Functionchar * ptsname (int filedes)
If the file descriptor filedes is associated with a master pseudoterminal device,
the ptsname function returns a pointer to a statically allocated, null-terminated
string containing the file name of the associated slave pseudoterminal file. This
string might be overwritten by subsequent calls to ptsname.

Functionint ptsname r (int filedes, char *buf, size_t len)
The ptsname_r function is similar to the ptsname function, except that it
places its result into the user-specified buffer starting at buf with length len.
This function is a GNU extension.

Portability Note: On System V derived systems, the file returned by the
ptsname and ptsname_r functions may be STREAMS-based, and therefore
require additional processing after opening before it actually behaves as a pseu-
doterminal.

Typical usage of these functions is illustrated by the following example:
int

open_pty_pair (int *amaster, int *aslave)

{

int master, slave;

char *name;

master = getpt ();

if (master < 0)

return 0;

if (grantpt (master) < 0 || unlockpt (master) < 0)

Chapter 6: Low-Level Terminal Interface 207

goto close_master;

name = ptsname (master);

if (name == NULL)

goto close_master;

slave = open (name, O_RDWR);

if (slave == -1)

goto close_master;

if (isastream (slave))

{

if (ioctl (slave, I_PUSH, "ptem") < 0

|| ioctl (slave, I_PUSH, "ldterm") < 0)

goto close_slave;

}

*amaster = master;

*aslave = slave;

return 1;

close_slave:

close (slave);

close_master:

close (master);

return 0;

}

6.8.2 Opening a Pseudoterminal Pair

These functions, derived from BSD, are available in the separate ‘libutil’
library, and declared in ‘pty.h’.

Functionint openpty (int *amaster, int *aslave, char *name,
struct termios *termp, struct winsize *winp)

This function allocates and opens a pseudoterminal pair, returning the file de-
scriptor for the master in *amaster, and the file descriptor for the slave in
*aslave. If the argument name is not a null pointer, the file name of the slave
pseudoterminal device is stored in *name. If termp is not a null pointer, the
terminal attributes of the slave are set to the ones specified in the structure that
termp points to (see Section 6.4 [Terminal Modes], page 181). Likewise, if the
winp is not a null pointer, the screen size of the slave is set to the values specified
in the structure that winp points to.
The normal return value from openpty is 0; a value of −1 is returned in case
of failure. The following errno condition is defined for this function:

208 The GNU C Library: System & Network Applications

ENOENT There are no free pseudoterminal pairs available.

Warning: Using the openpty function with name not set to NULL is very dan-
gerous because it provides no protection against overflowing the string name.
You should use the ttyname function on the file descriptor returned in *slave
to find out the file name of the slave pseudoterminal device instead.

Functionint forkpty (int *amaster, char *name, struct termios
*termp, struct winsize *winp)

This function is similar to the openpty function, but in addition, it forks a new
process (see Section 7.4 [Creating a Process], page 211) and makes the newly
opened slave pseudoterminal device the controlling terminal (see Section 8.3
[Controlling Terminal of a Process], page 222) for the child process.
If the operation is successful, there are then both parent and child processes, and
both see forkpty return, but with different values—it returns a value of 0 in
the child process and returns the child’s process ID in the parent process.
If the allocation of a pseudoterminal pair or the process creation failed,
forkpty returns a value of −1 in the parent process.
Warning: The forkpty function has the same problems with respect to the
name argument as openpty.

Chapter 7: Processes 209

7 Processes

Processes are the primitive units for allocation of system resources. Each process
has its own address space and (usually) one thread of control. A process executes
a program; you can have multiple processes executing the same program, but each
process has its own copy of the program within its own address space and executes
it independently of the other copies.

Processes are organized hierarchically. Each process has a parent process that
explicitly arranged to create it. The processes created by a given parent are called
its child processes. A child inherits many of its attributes from the parent process.

This chapter describes how a program can create, terminate and control child
processes. Actually, there are three distinct operations involved: creating a new
child process, causing the new process to execute a program and coordinating the
completion of the child process with the original program.

The system function provides a simple, portable mechanism for running an-
other program; it does all three steps automatically. If you need more control over
the details of how this is done, you can use the primitive functions to do each step
individually instead.

7.1 Running a Command
The easy way to run another program is to use the system function. This func-

tion does all the work of running a subprogram, but it doesn’t give you much control
over the details: you have to wait until the subprogram terminates before you can
do anything else.

Functionint system (const char *command)
This function executes command as a shell command. In the GNU C Library, it
always uses the default shell sh to run the command. In particular, it searches
the directories in PATH to find programs to execute. The return value is -1 if
it wasn’t possible to create the shell process, and otherwise is the status of the
shell process (see Section 7.6 [Process Completion], page 215, for details on
how this status code can be interpreted).
If the command argument is a null pointer, a return value of 0 indicates that no
command processor is available.
This function is a cancellation point in multithreaded programs. This is a
problem if the thread allocates some resources (like memory, file descriptors,
semaphores, etc.) at the time system is called. If the thread gets canceled,
these resources stay allocated until the program ends. To avoid this, calls to
system should be protected using cancellation handlers.
The system function is declared in the header file ‘stdlib.h’.

Portability Note: Some C implementations may not have any notion of a com-
mand processor that can execute other programs. You can determine whether a

210 The GNU C Library: System & Network Applications

command processor exists by executing system (NULL); if the return value is
nonzero, a command processor is available.

The popen and pclose functions (see Section 4.2 [Pipe to a Subprocess],
page 121) are closely related to the system function. They allow the parent pro-
cess to communicate with the standard input and output channels of the command
being executed.

7.2 Process-Creation Concepts
This section gives an overview of processes and of the steps involved in creating

a process and making it run another program.
Each process is named by a process ID number. A unique process-ID is allocated

to each process when it is created. The lifetime of a process ends when its termi-
nation is reported to its parent process; at that time, all of the process resources,
including its process ID, are freed.

Processes are created with the fork system call (so the operation of creating a
new process is sometimes called forking a process). The child process created by
fork is a copy of the original parent process, except that it has its own process ID.

After forking a child process, both the parent and child processes continue to
execute normally. If you want your program to wait for a child process to finish
executing before continuing, you must do this explicitly after the fork operation,
by calling wait or waitpid (see Section 7.6 [Process Completion], page 215).
These functions give you limited information about why the child terminated—for
example, its exit status code.

A newly forked child process continues to execute the same program as its parent
process, at the point where the fork call returns. You can use the return value from
fork to tell whether the program is running in the parent process or the child.

Having several processes run the same program is only occasionally useful. But
the child can execute another program using one of the exec functions (see Sec-
tion 7.5 [Executing a File], page 212). The program that the process is executing
is called its process image. Starting execution of a new program causes the process
to forget all about its previous process image; when the new program exits, the
process exits too, instead of returning to the previous process image.

7.3 Process Identification
The pid_t data type represents process IDs. You can get the process ID of

a process by calling getpid. The function getppid returns the process ID of
the parent of the current process (this is also known as the parent process ID). Your
program should include the header files ‘unistd.h’ and ‘sys/types.h’ to use
these functions.

Data Typepid t
The pid_t data type is a signed-integer type that is capable of representing a
process ID. In the GNU library, this is an int.

Chapter 7: Processes 211

Functionpid_t getpid (void)
The getpid function returns the process ID of the current process.

Functionpid_t getppid (void)
The getppid function returns the process ID of the parent of the current pro-
cess.

7.4 Creating a Process
The fork function is the primitive for creating a process. It is declared in the

header file ‘unistd.h’.

Functionpid_t fork (void)
The fork function creates a new process.
If the operation is successful, there are then both parent and child processes.
Both see fork return, but with different values—it returns a value of 0 in the
child process and returns the child’s process ID in the parent process.
If process creation failed, fork returns a value of -1 in the parent process. The
following errno error conditions are defined for fork:

EAGAIN There aren’t enough system resources to create another process, or
the user already has too many processes running. This means ex-
ceeding the RLIMIT_NPROC resource limit, which can usually be
increased (see Section 14.2 [Limiting Resource Usage], page 338).

ENOMEM The process requires more space than the system can supply.

The specific attributes of the child process that differ from the parent process are
• The child process has its own unique process-ID.
• The parent process ID of the child process is the process ID of its parent pro-

cess.
• The child process gets its own copies of the parent process’s open file-

descriptors. Subsequently changing attributes of the file descriptors in the
parent process won’t affect the file descriptors in the child, and vice versa
(see Section 2.11 [Control Operations on Files], page 54). However, the file
position associated with each descriptor is shared by both processes.1

• The elapsed processor times for the child process are set to 0.2

• The child doesn’t inherit file locks set by the parent process (see Section 2.11
[Control Operations on Files], page 54).

• The child doesn’t inherit alarms set by the parent process.3

1 See Loosemore et al., “File Position” (see chap. 1, n.1).
2 Ibid., “Processor Time Inquiry”.
3 Ibid., “Setting an Alarm”.

212 The GNU C Library: System & Network Applications

• The set of pending signals (see Section 17.1.3 [How Signals Are Delivered],
page 378) for the child process is cleared. The child process inherits its mask
of blocked signals and signal actions from the parent process.

Functionpid_t vfork (void)
The vfork function is similar to fork, but on some systems it is more effi-
cient. However, there are restrictions you must follow to use it safely.
While fork makes a complete copy of the calling process’s address space and
allows both the parent and child to execute independently, vfork does not
make this copy. Instead, the child process created with vfork shares its par-
ent’s address space until it calls _exit or one of the exec functions. In the
meantime, the parent process suspends execution.
You must be very careful not to allow the child process created with vfork
to modify any global data or even local variables shared with the parent. Fur-
thermore, the child process cannot return from (or do a long jump out of) the
function that called vfork! This would leave the parent process’s control in-
formation very confused. If in doubt, use fork instead.
Some operating systems don’t really implement vfork. The GNU C Library
permits you to use vfork on all systems, but actually executes fork if vfork
isn’t available. If you follow the proper precautions for using vfork, your
program will still work even if the system uses fork instead.

7.5 Executing a File
This section describes the exec family of functions, for executing a file as a

process image. You can use these functions to make a child process execute a new
program after it has been forked.4

The functions in this family differ in how you specify the arguments, but other-
wise they all do the same thing. They are declared in the header file ‘unistd.h’.

Functionint execv (const char *filename, char *const argv[])
The execv function executes the file named by filename as a new process im-
age.
The argv argument is an array of null-terminated strings that is used to provide
a value for the argv argument to the main function of the program to be exe-
cuted. The last element of this array must be a null pointer. By convention, the
first element of this array is the file name of the program sans directory names.5

The environment for the new process image is taken from the environ variable
of the current process image.6

4 To see the effects of exec from the point of view of the called program, see Loosemore et al.,
“The Basic Program/System Interface”.

5 For full details on how programs can access these arguments, see Loosemore et al., “Program
Arguments”.

6 Ibid., “Environment Variables”.

Chapter 7: Processes 213

Functionint execl (const char *filename, const char *arg0, ...)
This is similar to execv, but the argv strings are specified individually instead
of as an array. A null pointer must be passed as the last such argument.

Functionint execve (const char *filename, char *const argv[],
char *const env[])

This is similar to execv, but it permits you to specify the environment for the
new program explicitly as the env argument. This should be an array of strings
in the same format as for the environ variable.7

Functionint execle (const char *filename, const char *arg0,
char *const env[], ...)

This is similar to execl, but it permits you to specify the environment for the
new program explicitly. The environment argument is passed following the null
pointer that marks the last argv argument, and should be an array of strings in
the same format as for the environ variable.

Functionint execvp (const char *filename, char *const argv[])
The execvp function is similar to execv, except that it searches the directo-
ries listed in the PATH environment variable8 to find the full file-name of a file
from filename if filenambe does not contain a slash.
This function is useful for executing system utility programs, because it looks
for them in the places that the user has chosen. Shells use it to run the commands
that users type.

Functionint execlp (const char *filename, const char *arg0, ...)

This function is like execl, except that it performs the same file-name search-
ing as the execvp function.

The size of the argument list and environment list taken together must not
be greater than ARG_MAX bytes (see Section 12.1 [General Capacity-Limits],
page 303). In the GNU system, the size (which compares against ARG_MAX) in-
cludes, for each string, the number of characters in the string, plus the size of a
char *, plus 1, rounded up to a multiple of the size of a char *. Other systems
may have somewhat different rules for counting.

These functions normally don’t return, since execution of a new program causes
the currently executing program to go away completely. A value of -1 is returned
in the event of a failure. In addition to the usual file-name errors, the following
errno error conditions are defined for these functions:9

7 Ibid., “Environment Access”.
8 Ibid., “Standard Environment Variables”.
9 Ibid., “File-Name Errors”.

214 The GNU C Library: System & Network Applications

E2BIG The combined size of the new program’s argument list and environ-
ment list is larger than ARG_MAX bytes. The GNU system has no
specific limit on the argument list size, so this error code cannot re-
sult, but you may get ENOMEM instead if the arguments are too big for
available memory.

ENOEXEC The specified file can’t be executed, because it isn’t in the right format.

ENOMEM Executing the specified file requires more storage than is available.

If execution of the new file succeeds, it updates the access-time field of the file
as if the file had been read (see Section 3.9.9 [File Times], page 108).

The point at which the file is closed again is not specified, but is at some point
before the process exits or before another process image is executed.

Executing a new process image completely changes the contents of memory,
copying only the argument and environment strings to new locations. But many
other attributes of the process are unchanged:

• The process ID and the parent process-ID (see Section 7.2 [Process-Creation
Concepts], page 210)

• Session and process group membership (see Section 8.1 [Concepts of Job Con-
trol], page 221)

• Real user-ID and group-ID, and supplementary group IDs (see Section 10.2
[The Persona of a Process], page 253)

• Pending alarms10

• Current working directory and root directory (see Section 3.1 [Working Direc-
tory], page 71)11

• File mode creation mask (see Section 3.9.7 [Assigning File Permissions],
page 104)

• Process signal-mask (see Section 17.7.3 [Process Signal-Mask], page 416)
• Pending signals (see Section 17.7 [Blocking Signals], page 414)
• Elapsed processor time associated with the process12

If the set-user-ID and set-group-ID mode bits of the process-image file are set,
this affects the effective user ID and effective group-ID, respectively, of the process.
These concepts are discussed in detail in Section 10.2 [The Persona of a Process],
page 253.

Signals that are set to be ignored in the existing process image are also set to be
ignored in the new process image. All other signals are set to the default action in
the new process image. For more information about signals, see Chapter 17 [Signal
Handling], page 377.

10 Ibid., “Setting an Alarm”.
11 In the GNU system, the root directory is not copied when executing a setuid program; instead, the

system default root directory is used for the new program.
12 Ibid., “Processor Time Inquiry”.

Chapter 7: Processes 215

File descriptors open in the existing process image remain open in the new pro-
cess image, unless they have the FD_CLOEXEC (close-on-exec) flag set. The files
that remain open inherit all attributes of the open file description from the exist-
ing process image, including file locks. File descriptors are discussed in Chapter 2
[Low-Level Input/Output], page 17.

Streams, by contrast, cannot survive through exec functions, because they are
located in the memory of the process itself. The new process image has no streams
except those it creates afresh. Each of the streams in the pre-exec process image
has a descriptor inside it, and these descriptors do survive through exec (provided
that they do not have FD_CLOEXEC set). The new process image can reconnect
these to new streams using fdopen (see Section 2.4 [Descriptors and Streams],
page 28).

7.6 Process Completion
The functions described in this section are used to wait for a child process to

terminate or stop, and determine its status. These functions are declared in the
header file ‘sys/wait.h’.

Functionpid_t waitpid (pid_t pid, int *status-ptr, int options)
The waitpid function is used to request status information from a child pro-
cess whose process ID is pid. Normally, the calling process is suspended until
the child process makes status information available by terminating.
Other values for the pid argument have special interpretations. A value of -1
or WAIT_ANY requests status information for any child process; a value of 0
or WAIT_MYPGRP requests information for any child process in the same pro-
cess group as the calling process; and any other negative value—pgid requests
information for any child process whose process group ID is pgid.
If status information for a child process is available immediately, this function
returns immediately without waiting. If more than one eligible child process has
status information available, one of them is chosen randomly, and its status is
returned immediately. To get the status from the other eligible child processes,
you need to call waitpid again.
The options argument is a bit mask. Its value should be the bit-wise OR (that is,
the ‘|’ operator) of zero or more of the WNOHANG and WUNTRACED flags. You
can use the WNOHANG flag to indicate that the parent process shouldn’t wait;
and the WUNTRACED flag to request status information from stopped processes
as well as processes that have terminated.
The status information from the child process is stored in the object that status-
ptr points to, unless status-ptr is a null pointer.
This function is a cancellation point in multithreaded programs. This is a
problem if the thread allocates some resources (like memory, file descriptors,
semaphores, etc.) at the time waitpid is called. If the thread gets canceled,
these resources stay allocated until the program ends. To avoid this, calls to
waitpid should be protected using cancellation handlers.

216 The GNU C Library: System & Network Applications

The return value is normally the process ID of the child process whose status
is reported. If there are child processes but none of them is waiting to be no-
ticed, waitpid will block until one is. However, if the WNOHANG option was
specified, waitpid will return 0 instead of blocking.
If a specific PID to wait for was given to waitpid, it will ignore all other
children (if any). Therefore if there are children waiting to be noticed but the
child whose PID was specified is not one of them, waitpidwill block or return
0 as described above.
A value of -1 is returned in case of error. The following errno error conditions
are defined for this function:

EINTR The function was interrupted by delivery of a signal to the call-
ing process (see Section 17.5 [Primitives Interrupted by Signals],
page 408).

ECHILD There are no child processes to wait for, or the specified pid is not
a child of the calling process.

EINVAL An invalid value was provided for the options argument.

These symbolic constants are defined as values for the pid argument to the
waitpid function.

WAIT_ANY
This constant macro (whose value is -1) specifies that waitpid
should return status information about any child process.

WAIT_MYPGRP
This constant (with value 0) specifies that waitpid should return
status information about any child process in the same process group
as the calling process.

These symbolic constants are defined as flags for the options argument to the
waitpid function. You can bit-wise-OR the flags together to obtain a value to
use as the argument.

WNOHANG

This flag specifies that waitpid should return immediately instead
of waiting, if there is no child process ready to be noticed.

WUNTRACED
This flag specifies that waitpid should report the status of any child
processes that have been stopped as well as those that have terminated.

Functionpid_t wait (int *status-ptr)
This is a simplified version of waitpid, and is used to wait until any one child
process terminates. The call:

wait (&status)

is exactly equivalent to:

Chapter 7: Processes 217

waitpid (-1, &status, 0)

This function is a cancellation point in multithreaded programs. This is a
problem if the thread allocates some resources (like memory, file descriptors,
semaphores, etc.) at the time wait is called. If the thread gets canceled, these
resources stay allocated until the program ends. To avoid this, calls to wait
should be protected using cancellation handlers.

Functionpid_t wait4 (pid_t pid, int *status-ptr, int options,
struct rusage *usage)

If usage is a null pointer, wait4 is equivalent to waitpid (pid, status-ptr,
options).

If usage is not null, wait4 stores usage figures for the child process in *rusage
(but only if the child has terminated, not if it has stopped) (see Section 14.1
[Resource Usage], page 335).

This function is a BSD extension.

Here’s an example of how to use waitpid to get the status from all child pro-
cesses that have terminated, without ever waiting. This function is designed to be
a handler for SIGCHLD, the signal that indicates that at least one child process has
terminated.

void

sigchld_handler (int signum)

{

int pid, status, serrno;

serrno = errno;

while (1)

{

pid = waitpid (WAIT_ANY, &status, WNOHANG);

if (pid < 0)

{

perror ("waitpid");

break;

}

if (pid == 0)

break;

notice_termination (pid, status);

}

errno = serrno;

}

218 The GNU C Library: System & Network Applications

7.7 Process-Completion Status
If the exit status value13 of the child process is 0, then the status value reported by

waitpid or wait is also 0. You can test for other kinds of information encoded
in the returned status value using the following macros. These macros are defined
in the header file ‘sys/wait.h’.

Macroint WIFEXITED (int status)
This macro returns a nonzero value if the child process terminated normally
with exit or _exit.

Macroint WEXITSTATUS (int status)
If WIFEXITED is true of status, this macro returns the low-order 8 bits of the
exit-status value from the child process.14

Macroint WIFSIGNALED (int status)
This macro returns a nonzero value if the child process terminated because
it received a signal that was not handled (see Chapter 17 [Signal Handling],
page 377).

Macroint WTERMSIG (int status)
If WIFSIGNALED is true of status, this macro returns the signal number of the
signal that terminated the child process.

Macroint WCOREDUMP (int status)
This macro returns a nonzero value if the child process terminated and produced
a core dump.

Macroint WIFSTOPPED (int status)
This macro returns a nonzero value if the child process is stopped.

Macroint WSTOPSIG (int status)
If WIFSTOPPED is true of status, this macro returns the signal number of the
signal that caused the child process to stop.

7.8 BSD Process Wait Functions
The GNU library also provides these related facilities for compatibility with BSD

Unix. BSD uses the union wait data type to represent status values rather than
an int. The two representations are actually interchangeable; they describe the
same bit patterns. The GNU C Library defines macros such as WEXITSTATUS so
that they will work on either kind of object, and the wait function is defined to
accept either type of pointer as its status-ptr argument.

These functions are declared in ‘sys/wait.h’.
13 Ibid., “Program Termination”.
14 Ibid., “Exit Status”.

Chapter 7: Processes 219

Data Typeunion wait
This data type represents program-termination status values. It has the following
members:

int w_termsig
The value of this member is the same as that of the WTERMSIG
macro.

int w_coredump
The value of this member is the same as that of the WCOREDUMP
macro.

int w_retcode
The value of this member is the same as that of the
WEXITSTATUS macro.

int w_stopsig
The value of this member is the same as that of the WSTOPSIG
macro.

Instead of accessing these members directly, you should use the equivalent
macros.

The wait3 function is the predecessor to wait4, which is more flexible.
wait3 is now obsolete.

Functionpid_t wait3 (union wait *status-ptr, int options, struct
rusage *usage)

If usage is a null pointer, wait3 is equivalent to waitpid (-1, status-ptr,
options).
If usage is not null, wait3 stores usage figures for the child process in *rusage
(but only if the child has terminated, not if it has stopped) (see Section 14.1
[Resource Usage], page 335).

7.9 Process-Creation Example
Here is an example program showing how you might write a function similar to

the built-in system. It executes its command argument using the equivalent of
‘sh -c command ’.

#include <stddef.h>

#include <stdlib.h>

#include <unistd.h>

#include <sys/types.h>

#include <sys/wait.h>

/* Execute the command using this shell program. */

#define SHELL "/bin/sh"

220 The GNU C Library: System & Network Applications

int

my_system (const char *command)

{

int status;

pid_t pid;

pid = fork ();

if (pid == 0)

{

/* This is the child process. Execute the shell command. */

execl (SHELL, SHELL, "-c", command, NULL);

_exit (EXIT_FAILURE);

}

else if (pid < 0)

/* The fork failed. Report failure. */

status = -1;

else

/* This is the parent process. Wait for the child to complete. */

if (waitpid (pid, &status, 0) != pid)

status = -1;

return status;

}

There are a couple of things you should pay attention to in this example.
Remember that the first argv argument supplied to the program represents the

name of the program being executed. That is why, in the call to execl, SHELL is
supplied once to name the program to execute and a second time to supply a value
for argv[0].

The execl call in the child process doesn’t return if it is successful. If it fails,
you must do something to make the child process terminate. Just returning a bad
status code with return would leave two processes running the original program.
Instead, the right behavior is for the child process to report failure to its parent
process.

Call _exit to accomplish this. The reason for using _exit instead of exit
is to avoid flushing fully buffered streams such as stdout. The buffers of these
streams probably contain data that was copied from the parent process by the fork,
data that will be output eventually by the parent process. Calling exit in the child
would output the data twice.15

15 Ibid., “Termination Internals”.

Chapter 8: Job Control 221

8 Job Control
Job control refers to the protocol for allowing a user to move between multiple

process groups (or jobs) within a single login session. The job control facilities are
set up so that appropriate behavior for most programs happens automatically and
they need not do anything special about job control. So you can probably ignore
the material in this chapter unless you are writing a shell or login program.

You need to be familiar with concepts relating to process creation (see Sec-
tion 7.2 [Process-Creation Concepts], page 210) and signal handling (see Chap-
ter 17 [Signal Handling], page 377) in order to understand the material presented
in this chapter.

8.1 Concepts of Job Control
The fundamental purpose of an interactive shell is to read commands from the

user’s terminal and create processes to execute the programs specified by those
commands. It can do this using the fork (see Section 7.4 [Creating a Process],
page 211) and exec (see Section 7.5 [Executing a File], page 212) functions.

A single command may run just one process—but often one command uses sev-
eral processes. If you use the ‘|’ operator in a shell command, you explicitly
request several programs in their own processes. But even if you run just one pro-
gram, it can use multiple processes internally. For example, a single compilation
command such as ‘cc -c foo.c’ typically uses four processes (though normally
only two at any given time). If you run make, its job is to run other programs in
separate processes.

The processes belonging to a single command are called a process group or job.
This is so that you can operate on all of them at once. For example, typing C-c
sends the signal SIGINT to terminate all the processes in the foreground process
group.

A session is a larger group of processes. Normally, all the processes that stem
from a single login belong to the same session.

Every process belongs to a process group. When a process is created, it becomes
a member of the same process group and session as its parent process. You can
put it in another process group using the setpgid function, provided the process
group belongs to the same session.

The only way to put a process in a different session is to make it the initial process
of a new session, or a session leader, using the setsid function. This also puts the
session leader into a new process group, and you can’t move it out of that process
group again.

Usually, new sessions are created by the system login program, and the session
leader is the process running the user’s login shell.

A shell that supports job control must arrange to control which job can use the
terminal at any particular time. Otherwise, there might be multiple jobs trying to
read from the terminal at once and confusion about which process should receive

222 The GNU C Library: System & Network Applications

the input typed by the user. To prevent this, the shell must cooperate with the
terminal driver using the protocol described in this chapter.

The shell can give unlimited access to the controlling terminal to only one pro-
cess group at a time. This is called the foreground job on that controlling terminal.
Other process groups managed by the shell that are executing without such access
to the terminal are called background jobs.

If a background job needs to read from its controlling terminal, it is stopped by
the terminal driver; if the TOSTOP mode is set, likewise for writing. The user can
stop a foreground job by typing the SUSP character (see Section 6.4.9 [Special
Characters], page 194) and a program can stop any job by sending it a SIGSTOP
signal. It’s the responsibility of the shell to notice when jobs stop, to notify the
user about them, and to provide mechanisms for allowing the user to interactively
continue stopped jobs and switch jobs between foreground and background.

See Section 8.4 [Access to the Controlling Terminal], page 223, for more infor-
mation about I/O to the controlling terminal,

8.2 Job Control Is Optional

Not all operating systems support job control. The GNU system does support job
control, but if you are using the GNU library on some other system, that system may
not support job control itself.

You can use the _POSIX_JOB_CONTROL macro to test at compile-time
whether the system supports job control (see Section 12.2 [Overall System
Options], page 305).

If job control is not supported, then there can be only one process group per
session, which behaves as if it were always in the foreground. The functions for
creating additional process groups simply fail with the error code ENOSYS.

The macros naming the various job-control signals (see Section 17.2.5 [Job Con-
trol Signals], page 385) are defined even if job control is not supported. However,
the system never generates these signals, and attempts to send a job-control signal
or examine or specify their actions report errors or do nothing.

8.3 Controlling Terminal of a Process

One of the attributes of a process is its controlling terminal. Child processes
created with fork inherit the controlling terminal from their parent process. In this
way, all the processes in a session inherit the controlling terminal from the session
leader. A session leader that has control of a terminal is called the controlling
process of that terminal.

You generally do not need to worry about the exact mechanism used to allocate
a controlling terminal to a session, since it is done for you by the system when you
log in.

Chapter 8: Job Control 223

An individual process disconnects from its controlling terminal when it calls
setsid to become the leader of a new session (see Section 8.7.2 [Process-Group
Functions], page 239).

8.4 Access to the Controlling Terminal

Processes in the foreground job of a controlling terminal have unrestricted access
to that terminal; background processes do not. This section describes in more detail
what happens when a process in a background job tries to access its controlling
terminal.

When a process in a background job tries to read from its controlling terminal,
the process group is usually sent a SIGTTIN signal. This normally causes all of
the processes in that group to stop (unless they handle the signal and don’t stop
themselves). However, if the reading process is ignoring or blocking this signal,
then read fails with an EIO error instead.

Similarly, when a process in a background job tries to write to its controlling
terminal, the default behavior is to send a SIGTTOU signal to the process group.
However, the behavior is modified by the TOSTOP bit of the local-modes flags (see
Section 6.4.7 [Local Modes], page 189). If this bit is not set (which is the default),
then writing to the controlling terminal is always permitted without sending a sig-
nal. Writing is also permitted if the SIGTTOU signal is being ignored or blocked
by the writing process.

Most other terminal operations that a program can do are treated as reading or as
writing. The description of each operation should say which.

For more information about the primitive read and write functions, see Sec-
tion 2.2 [Input and Output Primitives], page 20.

8.5 Orphaned Process-Groups

When a controlling process terminates, its terminal becomes free and a new ses-
sion can be established on it. (In fact, another user could log in on the terminal.)
This could cause a problem if any processes from the old session are still trying to
use that terminal.

To prevent problems, process groups that continue running even after the session
leader has terminated are marked as orphaned process-groups.

When a process group becomes an orphan, its processes are sent a SIGHUP
signal. Ordinarily, this causes the processes to terminate. However, if a program
ignores this signal or establishes a handler for it (see Chapter 17 [Signal Handling],
page 377), it can continue running as in the orphan process group even after its
controlling process terminates; but it still cannot access the terminal any more.

224 The GNU C Library: System & Network Applications

8.6 Implementing a Job-Control Shell
This section describes what a shell must do to implement job control, by present-

ing an extensive sample program to illustrate the concepts involved.
• Section 8.6.1 [Data Structures for the Shell], page 224, introduces the example

and presents its primary data structures.
• Section 8.6.2 [Initializing the Shell], page 226, discusses actions that the shell

must perform to prepare for job control.
• Section 8.6.3 [Launching Jobs], page 228, includes information about how to

create jobs to execute commands.
• Section 8.6.4 [Foreground and Background], page 232, discusses what the

shell should do differently when launching a job in the foreground as opposed
to a background job.

• Section 8.6.5 [Stopped and Terminated Jobs], page 233, discusses reporting of
job status back to the shell.

• Section 8.6.6 [Continuing Stopped Jobs], page 237, tells you how to continue
jobs that have been stopped.

• Section 8.6.7 [The Missing Pieces], page 238, discusses other parts of the
shell.

8.6.1 Data Structures for the Shell

All of the program examples included in this chapter are part of a simple shell
program. This section presents data structures and utility functions that are used
throughout the example.

The sample shell deals mainly with two data structures. The job type contains
information about a job, which is a set of subprocesses linked together with pipes.
The process type holds information about a single subprocess. Here are the
relevant data-structure declarations:

/* A process is a single process. */

typedef struct process

{

struct process *next; /* next process in pipeline */

char **argv; /* for exec */

pid_t pid; /* process ID */

char completed; /* true if process has completed */

char stopped; /* true if process has stopped */

int status; /* reported status value */

} process;

/* A job is a pipeline of processes. */

Chapter 8: Job Control 225

typedef struct job

{

struct job *next; /* next active job */

char *command; /* command line, used for messages */

process *first_process; /* list of processes in this job */

pid_t pgid; /* process-group ID */

char notified; /* true if user told about stopped job */

struct termios tmodes; /* saved terminal modes */

int stdin, stdout, stderr; /* standard i/o channels */

} job;

/* The active jobs are linked into a list. This is its head. */

job *first_job = NULL;

Here are some utility functions that are used for operating on job objects:

/* Find the active job with the indicated pgid. */

job *

find_job (pid_t pgid)

{

job *j;

for (j = first_job; j; j = j->next)

if (j->pgid == pgid)

return j;

return NULL;

}

/* Return true if all processes in the job have stopped or completed. */

int

job_is_stopped (job *j)

{

process *p;

for (p = j->first_process; p; p = p->next)

if (!p->completed && !p->stopped)

return 0;

return 1;

}

226 The GNU C Library: System & Network Applications

/* Return true if all processes in the job have completed. */

int

job_is_completed (job *j)

{

process *p;

for (p = j->first_process; p; p = p->next)

if (!p->completed)

return 0;

return 1;

}

8.6.2 Initializing the Shell

When a shell program that normally performs job control is started, it has to be
careful, in case it has been invoked from another shell that is already doing its own
job control.

A subshell that runs interactively has to ensure that it has been placed in the
foreground by its parent shell before it can enable job control itself. It does this by
getting its initial process-group ID with the getpgrp function, and comparing it
to the process-group ID of the current foreground job associated with its controlling
terminal (which can be retrieved using the tcgetpgrp function).

If the subshell is not running as a foreground job, it must stop itself by sending
a SIGTTIN signal to its own process group. It may not arbitrarily put itself into
the foreground; it must wait for the user to tell the parent shell to do this. If the
subshell is continued again, it should repeat the check and stop itself again if it is
still not in the foreground.

Once the subshell has been placed into the foreground by its parent shell, it can
enable its own job control. It does this by calling setpgid to put itself into its
own process group, and then calling tcsetpgrp to place this process group into
the foreground.

When a shell enables job control, it should set itself to ignore all the job control
stop signals so that it doesn’t accidentally stop itself. You can do this by setting the
action for all the stop signals to SIG_IGN.

A subshell that runs noninteractively cannot and should not support job control.
It must leave all processes it creates in the same process group as the shell itself;
this allows the noninteractive shell and its child processes to be treated as a single
job by the parent shell. This is easy to do—just don’t use any of the job-control
primitives—but you must remember to make the shell do it.

Here is the initialization code for the sample shell that shows how to do all of
this:

/* Keep track of attributes of the shell. */

Chapter 8: Job Control 227

#include <sys/types.h>

#include <termios.h>

#include <unistd.h>

pid_t shell_pgid;

struct termios shell_tmodes;

int shell_terminal;

int shell_is_interactive;

/* Make sure the shell is running interactively as the foreground job

before proceeding. */

void

init_shell ()

{

/* See if we are running interactively. */

shell_terminal = STDIN_FILENO;

shell_is_interactive = isatty (shell_terminal);

if (shell_is_interactive)

{

/* Loop until we are in the foreground. */

while (tcgetpgrp (shell_terminal) != (shell_pgid = getpgrp ()))

kill (- shell_pgid, SIGTTIN);

/* Ignore interactive and job-control signals. */

signal (SIGINT, SIG_IGN);

signal (SIGQUIT, SIG_IGN);

signal (SIGTSTP, SIG_IGN);

signal (SIGTTIN, SIG_IGN);

signal (SIGTTOU, SIG_IGN);

signal (SIGCHLD, SIG_IGN);

/* Put ourselves in our own process group. */

shell_pgid = getpid ();

if (setpgid (shell_pgid, shell_pgid) < 0)

{

perror ("Couldn’t put the shell in its own process group");

exit (1);

}

/* Grab control of the terminal. */

228 The GNU C Library: System & Network Applications

tcsetpgrp (shell_terminal, shell_pgid);

/* Save default terminal attributes for the shell. */

tcgetattr (shell_terminal, &shell_tmodes);

}

}

8.6.3 Launching Jobs

Once the shell has taken responsibility for performing job control on its control-
ling terminal, it can launch jobs in response to commands typed by the user.

To create the processes in a process group, you use the same fork and exec
functions described in Section 7.2 [Process-Creation Concepts], page 210. Since
there are multiple child processes involved, though, things are a little more compli-
cated and you must be careful to do things in the right order. Otherwise, nasty race
conditions can result.

You have two choices for how to structure the tree of parent-child relationships
among the processes. You can either make all the processes in the process group be
children of the shell process, or you can make one process in a group be the ancestor
of all the other processes in that group. The sample shell program presented in this
chapter uses the first approach because it makes bookkeeping somewhat simpler.

As each process is forked, it should put itself in the new process group by calling
setpgid (see Section 8.7.2 [Process-Group Functions], page 239). The first pro-
cess in the new group becomes its process group leader, and its process ID becomes
the process group ID for the group.

The shell should also call setpgid to put each of its child processes into the
new process group. This is because there is a potential timing problem: each child
process must be put in the process group before it begins executing a new program,
and the shell depends on having all the child processes in the group before it contin-
ues executing. If both the child processes and the shell call setpgid, this ensures
that the right things happen no matter which process gets to it first.

If the job is being launched as a foreground job, the new process group also
needs to be put into the foreground on the controlling terminal using tcsetpgrp.
Again, this should be done by the shell as well as by each of its child processes, to
avoid race conditions.

The next thing each child process should do is to reset its signal actions.
During initialization, the shell process set itself to ignore job-control signals (see

Section 8.6.2 [Initializing the Shell], page 226). As a result, any child processes it
creates also ignore these signals by inheritance. This is definitely undesirable, so
each child process should explicitly set the actions for these signals back to SIG_
DFL just after it is forked.

Since shells follow this convention, applications can assume that they inherit the
correct handling of these signals from the parent process. But every application
has a responsibility not to mess up the handling of stop signals. Applications that

Chapter 8: Job Control 229

disable the normal interpretation of the SUSP character should provide some other
mechanism for the user to stop the job. When the user invokes this mechanism, the
program should send a SIGTSTP signal to the process group of the process, not
just to the process itself (see Section 17.6.2 [Signaling Another Process], page 410).

Finally, each child process should call exec in the normal way. This is also
the point at which redirection of the standard input and output channels should be
handled (see Section 2.12 [Duplicating Descriptors], page 55).

Here is the function from the sample shell program that is responsible for launch-
ing a program. The function is executed by each child process immediately after it
has been forked by the shell, and never returns.

void

launch_process (process *p, pid_t pgid,

int infile, int outfile, int errfile,

int foreground)

{

pid_t pid;

if (shell_is_interactive)

{

/* Put the process into the process group and give the process group

the terminal, if appropriate.

This has to be done both by the shell and in the individual

child processes because of potential race conditions. */

pid = getpid ();

if (pgid == 0) pgid = pid;

setpgid (pid, pgid);

if (foreground)

tcsetpgrp (shell_terminal, pgid);

/* Set the handling for job control signals back to the default. */

signal (SIGINT, SIG_DFL);

signal (SIGQUIT, SIG_DFL);

signal (SIGTSTP, SIG_DFL);

signal (SIGTTIN, SIG_DFL);

signal (SIGTTOU, SIG_DFL);

signal (SIGCHLD, SIG_DFL);

}

/* Set the standard input/output channels of the new process. */

if (infile != STDIN_FILENO)

{

dup2 (infile, STDIN_FILENO);

close (infile);

}

230 The GNU C Library: System & Network Applications

if (outfile != STDOUT_FILENO)

{

dup2 (outfile, STDOUT_FILENO);

close (outfile);

}

if (errfile != STDERR_FILENO)

{

dup2 (errfile, STDERR_FILENO);

close (errfile);

}

/* Exec the new process. Make sure we exit. */

execvp (p->argv[0], p->argv);

perror ("execvp");

exit (1);

}

If the shell is not running interactively, this function does not do anything with
process groups or signals. Remember that a shell not performing job control must
keep all of its subprocesses in the same process group as the shell itself.

Next, here is the function that actually launches a complete job. After creat-
ing the child processes, this function calls some other functions to put the newly
created job into the foreground or background (see Section 8.6.4 [Foreground and
Background], page 232).

void

launch_job (job *j, int foreground)

{

process *p;

pid_t pid;

int mypipe[2], infile, outfile;

infile = j->stdin;

for (p = j->first_process; p; p = p->next)

{

/* Set up pipes, if necessary. */

if (p->next)

{

if (pipe (mypipe) < 0)

{

perror ("pipe");

exit (1);

}

outfile = mypipe[1];

}

else

Chapter 8: Job Control 231

outfile = j->stdout;

/* Fork the child processes. */

pid = fork ();

if (pid == 0)

/* This is the child process. */

launch_process (p, j->pgid, infile,

outfile, j->stderr, foreground);

else if (pid < 0)

{

/* The fork failed. */

perror ("fork");

exit (1);

}

else

{

/* This is the parent process. */

p->pid = pid;

if (shell_is_interactive)

{

if (!j->pgid)

j->pgid = pid;

setpgid (pid, j->pgid);

}

}

/* Clean up after pipes. */

if (infile != j->stdin)

close (infile);

if (outfile != j->stdout)

close (outfile);

infile = mypipe[0];

}

format_job_info (j, "launched");

if (!shell_is_interactive)

wait_for_job (j);

else if (foreground)

put_job_in_foreground (j, 0);

else

put_job_in_background (j, 0);

}

232 The GNU C Library: System & Network Applications

8.6.4 Foreground and Background

Now let’s consider what actions must be taken by the shell when it launches
a job into the foreground, and how this differs from what must be done when a
background job is launched.

When a foreground job is launched, the shell must first give it access to the con-
trolling terminal by calling tcsetpgrp. Then, the shell should wait for processes
in that process group to terminate or stop (see Section 8.6.5 [Stopped and Termi-
nated Jobs], page 233).

When all of the processes in the group have either completed or stopped, the
shell should regain control of the terminal for its own process group by calling
tcsetpgrp again. Since stop signals caused by I/O from a background process
or a SUSP character typed by the user are sent to the process group, normally all
the processes in the job stop together.

The foreground job may have left the terminal in a strange state, so the shell
should restore its own saved terminal modes before continuing. In case the job is
merely stopped, the shell should first save the current terminal modes so that it can
restore them later if the job is continued. The functions for dealing with termi-
nal modes are tcgetattr and tcsetattr (see Section 6.4 [Terminal Modes],
page 181).

Here is the sample shell’s function for doing all of this:

/* Put job j in the foreground. If cont is nonzero,

restore the saved terminal modes and send the process group a

SIGCONT signal to wake it up before we block. */

void

put_job_in_foreground (job *j, int cont)

{

/* Put the job into the foreground. */

tcsetpgrp (shell_terminal, j->pgid);

/* Send the job a continue signal, if necessary. */

if (cont)

{

tcsetattr (shell_terminal, TCSADRAIN, &j->tmodes);

if (kill (- j->pgid, SIGCONT) < 0)

perror ("kill (SIGCONT)");

}

/* Wait for it to report. */

Chapter 8: Job Control 233

wait_for_job (j);

/* Put the shell back in the foreground. */

tcsetpgrp (shell_terminal, shell_pgid);

/* Restore the shell’s terminal modes. */

tcgetattr (shell_terminal, &j->tmodes);

tcsetattr (shell_terminal, TCSADRAIN, &shell_tmodes);

}

If the process group is launched as a background job, the shell should remain in
the foreground itself and continue to read commands from the terminal.

In the sample shell, there is not much that needs to be done to put a job into the
background. Here is the function it uses:

/* Put a job in the background. If the cont argument is true, send

the process group a SIGCONT signal to wake it up. */

void

put_job_in_background (job *j, int cont)

{

/* Send the job a continue signal, if necessary. */

if (cont)

if (kill (-j->pgid, SIGCONT) < 0)

perror ("kill (SIGCONT)");

}

8.6.5 Stopped and Terminated Jobs

When a foreground process is launched, the shell must block until all of the
processes in that job have either terminated or stopped. It can do this by calling
the waitpid function (see Section 7.6 [Process Completion], page 215). Use the
WUNTRACED option so that status is reported for processes that stop as well as
processes that terminate.

The shell must also check on the status of background jobs so that it can report
terminated and stopped jobs to the user; this can be done by calling waitpid
with the WNOHANG option. A good place to put a such a check for terminated and
stopped jobs is just before prompting for a new command.

The shell can also receive asynchronous notification that there is status informa-
tion available for a child process by establishing a handler for SIGCHLD signals
(see Chapter 17 [Signal Handling], page 377).

In the sample shell program, the SIGCHLD signal is normally ignored. This is
to avoid reentrancy problems involving the global data structures the shell manipu-
lates. But at specific times when the shell is not using these data structures—such

234 The GNU C Library: System & Network Applications

as when it is waiting for input on the terminal—it makes sense to enable a han-
dler for SIGCHLD. The same function that is used to do the synchronous status
checks (do_job_notification, in this case) can also be called from within
this handler.

Here are the parts of the sample shell program that deal with checking the status
of jobs and reporting the information to the user:

/* Store the status of the process pid that was returned by waitpid.

Return 0 if all went well, nonzero otherwise. */

int

mark_process_status (pid_t pid, int status)

{

job *j;

process *p;

if (pid > 0)

{

/* Update the record for the process. */

for (j = first_job; j; j = j->next)

for (p = j->first_process; p; p = p->next)

if (p->pid == pid)

{

p->status = status;

if (WIFSTOPPED (status))

p->stopped = 1;

else

{

p->completed = 1;

if (WIFSIGNALED (status))

fprintf (stderr, "%d: Terminated by signal %d.\n",

(int) pid, WTERMSIG (p->status));

}

return 0;

}

fprintf (stderr, "No child process %d.\n", pid);

return -1;

}

else if (pid == 0 || errno == ECHILD)

/* No processes ready to report */

Chapter 8: Job Control 235

return -1;

else {

/* Other weird errors */

perror ("waitpid");

return -1;

}

}

/* Check for processes that have status information available,

without blocking. */

void

update_status (void)

{

int status;

pid_t pid;

do

pid = waitpid (WAIT_ANY, &status, WUNTRACED|WNOHANG);

while (!mark_process_status (pid, status));

}

/* Check for processes that have status information available,

blocking until all processes in the given job have reported. */

void

wait_for_job (job *j)

{

int status;

pid_t pid;

do

pid = waitpid (WAIT_ANY, &status, WUNTRACED);

while (!mark_process_status (pid, status)

&& !job_is_stopped (j)

&& !job_is_completed (j));

}

236 The GNU C Library: System & Network Applications

/* Format information about job status for the user to look at. */

void

format_job_info (job *j, const char *status)

{

fprintf (stderr, "%ld (%s): %s\n", (long)j->pgid, status, j->command);

}

/* Notify the user about stopped or terminated jobs.

Delete terminated jobs from the active job list. */

void

do_job_notification (void)

{

job *j, *jlast, *jnext;

process *p;

/* Update status information for child processes. */

update_status ();

jlast = NULL;

for (j = first_job; j; j = jnext)

{

jnext = j->next;

/* If all processes have completed, tell the user the job has

completed and delete it from the list of active jobs. */

if (job_is_completed (j)) {

format_job_info (j, "completed");

if (jlast)

jlast->next = jnext;

else

first_job = jnext;

free_job (j);

}

/* Notify the user about stopped jobs,

marking them so that we won’t do this more than once. */

else if (job_is_stopped (j) && !j->notified) {

format_job_info (j, "stopped");

j->notified = 1;

jlast = j;

Chapter 8: Job Control 237

}

/* Don’t say anything about jobs that are still running. */

else

jlast = j;

}

}

8.6.6 Continuing Stopped Jobs

The shell can continue a stopped job by sending a SIGCONT signal to its process
group. If the job is being continued in the foreground, the shell should first invoke
tcsetpgrp to give the job access to the terminal, and restore the saved terminal
settings. After continuing a job in the foreground, the shell should wait for the job
to stop or complete, as if the job had just been launched in the foreground.

The sample shell program handles both newly created and continued
jobs with the same pair of functions, put_job_in_foreground and
put_job_in_background. The definitions of these functions were given
in Section 8.6.4 [Foreground and Background], page 232. When continuing a
stopped job, a nonzero value is passed as the cont argument to ensure that the
SIGCONT signal is sent and the terminal modes reset, as appropriate.

This leaves only a function for updating the shell’s internal bookkeeping about
the job being continued:

/* Mark a stopped job J as running again. */

void

mark_job_as_running (job *j)

{

Process *p;

for (p = j->first_process; p; p = p->next)

p->stopped = 0;

j->notified = 0;

}

/* Continue the job J. */

void

continue_job (job *j, int foreground)

{

238 The GNU C Library: System & Network Applications

mark_job_as_running (j);

if (foreground)

put_job_in_foreground (j, 1);

else

put_job_in_background (j, 1);

}

8.6.7 The Missing Pieces

The code extracts for the sample shell included in this chapter are only a part of
the entire shell program. In particular, nothing at all has been said about how job
and program data structures are allocated and initialized.

Most real shells provide a complex user interface that has support for a command
language—variables, abbreviations, substitutions, pattern matching on file names,
etc. All of this is far too complicated to explain here! Instead, we have concentrated
on showing how to implement the core process-creation and job-control functions
that can be called from such a shell.

Here is a table summarizing the major entry points we have presented:
void init_shell (void)

Initialize the shell’s internal state (see Section 8.6.2 [Initializing the
Shell], page 226).

void launch_job (job *j, int foreground)
Launch the job j as either a foreground or background job (see Sec-
tion 8.6.3 [Launching Jobs], page 228).

void do_job_notification (void)
Check for and report any jobs that have terminated or stopped. It can
be called synchronously or within a handler for SIGCHLD signals (see
Section 8.6.5 [Stopped and Terminated Jobs], page 233).

void continue_job (job *j, int foreground)
Continue the job j (see Section 8.6.6 [Continuing Stopped Jobs],
page 237).

Of course, a real shell would also want to provide other functions for managing
jobs. For example, it would be useful to have commands to list all active jobs or to
send a signal (such as SIGKILL) to a job.

8.7 Functions for Job Control
This section contains detailed descriptions of the functions relating to job control.

8.7.1 Identifying the Controlling Terminal

You can use the ctermid function to get a file name that you can use to open
the controlling terminal. In the GNU library, it returns the same string all the time:

Chapter 8: Job Control 239

‘/dev/tty’. That is a special “magic” file-name that refers to the controlling
terminal of the current process (if it has one). To find the name of the specific
terminal device, use ttyname (see Section 6.1 [Identifying Terminals], page 179).

The function ctermid is declared in the header file ‘stdio.h’.

Functionchar * ctermid (char *string)
The ctermid function returns a string containing the file name of the control-
ling terminal for the current process. If string is not a null pointer, it should
be an array that can hold at least L_ctermid characters; the string is returned
in this array. Otherwise, a pointer to a string in a static area is returned, which
might get overwritten on subsequent calls to this function.
An empty string is returned if the file name cannot be determined for any reason.
Even if a file name is returned, access to the file it represents is not guaranteed.

Macroint L ctermid
The value of this macro is an integer constant expression that represents the size
of a string large enough to hold the file name returned by ctermid.

See also the isatty and ttyname functions, in Section 6.1 [Identifying Ter-
minals], page 179.

8.7.2 Process-Group Functions

Here are descriptions of the functions for manipulating process groups. Your
program should include the header files ‘sys/types.h’ and ‘unistd.h’ to
use these functions.

Functionpid_t setsid (void)
The setsid function creates a new session. The calling process becomes the
session leader, and is put in a new process group whose process-group ID is the
same as the process ID of that process. There are initially no other processes in
the new process group, and no other process groups in the new session.
This function also makes the calling process have no controlling terminal.
The setsid function returns the new process-group ID of the calling process
if successful. A return value of -1 indicates an error. The following errno
error condition is defined for this function:

EPERM The calling process is already a process group leader, or there is
already another process group around that has the same process-
group ID.

Functionpid_t getsid (pid_t pid)
The getsid function returns the process-group ID of the session leader of the
specified process. If a pid is 0, the process-group ID of the session leader of the
current process is returned.

240 The GNU C Library: System & Network Applications

In case of error, -1 is returned and errno is set. The following errno error
conditions are defined for this function:

ESRCH There is no process with the given process ID pid.

EPERM The calling process and the process specified by pid are in differ-
ent sessions, and the implementation doesn’t allow access to the
process-group ID of the session leader of the process with ID pid
from the calling process.

The getpgrp function has two definitions: one derived from BSD Unix, and
one from the POSIX.1 standard. The feature-test macros you have selected (see
Section 1.3.4 [Feature-Test Macros], page 8) determine which definition you get.
Specifically, you get the BSD version if you define _BSD_SOURCE; otherwise,
you get the POSIX version if you define _POSIX_SOURCE or _GNU_SOURCE.
Programs written for old BSD systems will not include ‘unistd.h’, which defines
getpgrp specially under _BSD_SOURCE. You must link such programs with the
-lbsd-compat option to get the BSD definition.

POSIX.1 Functionpid_t getpgrp (void)
The POSIX.1 definition of getpgrp returns the process-group ID of the calling
process.

BSD Functionpid_t getpgrp (pid_t pid)
The BSD definition of getpgrp returns the process-group ID of the process
pid. You can supply a value of 0 for the pid argument to get information about
the calling process.

System V Functionint getpgid (pid_t pid)
getpgid is the same as the BSD function getpgrp. It returns the process-
group ID of the process pid. You can supply a value of 0 for the pid argument
to get information about the calling process.
In case of error, -1 is returned and errno is set. The following errno error
condition is defined for this function:

ESRCH There is no process with the given process ID pid. The calling
process and the process specified by pid are in different sessions,
and the implementation doesn’t allow access to the process-group
ID of the process with ID pid from the calling process.

Functionint setpgid (pid_t pid, pid_t pgid)
The setpgid function puts the process pid into the process group pgid. As a
special case, either pid or pgid can be 0 to indicate the process ID of the calling
process.
This function fails on a system that does not support job control (see Section 8.2
[Job Control Is Optional], page 222).
If the operation is successful, setpgid returns 0. Otherwise, it returns -1.
The following errno error conditions are defined for this function:

Chapter 8: Job Control 241

EACCES The child process named by pid has executed an exec function
since it was forked.

EINVAL The value of the pgid is not valid.

ENOSYS The system doesn’t support job control.

EPERM The process indicated by the pid argument is a session leader, or
is not in the same session as the calling process, or the value of
the pgid argument doesn’t match a process-group ID in the same
session as the calling process.

ESRCH The process indicated by the pid argument is not the calling pro-
cess or a child of the calling process.

Functionint setpgrp (pid_t pid, pid_t pgid)
This is the BSD Unix name for setpgid. Both functions do exactly the same
thing.

8.7.3 Functions for Controlling-Terminal Access

These are the functions for reading or setting the foreground process group of a
terminal. You should include the header files ‘sys/types.h’ and ‘unistd.h’
in your application to use these functions.

Although these functions take a file-descriptor argument to specify the termi-
nal device, the foreground job is associated with the terminal file itself and not a
particular open file-descriptor.

Functionpid_t tcgetpgrp (int filedes)
This function returns the process-group ID of the foreground process group as-
sociated with the terminal open on descriptor filedes.
If there is no foreground process group, the return value is a number greater than
1 that does not match the process group ID of any existing process group. This
can happen if all of the processes in the job that was formerly the foreground
job have terminated and no other job has yet been moved into the foreground.
In case of an error, a value of -1 is returned. The following errno error
conditions are defined for this function:

EBADF The filedes argument is not a valid file-descriptor.

ENOSYS The system doesn’t support job control.

ENOTTY The terminal file associated with the filedes argument isn’t the con-
trolling terminal of the calling process.

Functionint tcsetpgrp (int filedes, pid_t pgid)
This function is used to set a terminal’s foreground process-group ID. The argu-
ment filedes is a descriptor that specifies the terminal; pgid specifies the process

242 The GNU C Library: System & Network Applications

group. The calling process must be a member of the same session as pgid and
must have the same controlling terminal.
For terminal-access purposes, this function is treated as output. If it is called
from a background process on its controlling terminal, normally all processes
in the process group are sent a SIGTTOU signal. The exception is if the call-
ing process itself is ignoring or blocking SIGTTOU signals, in which case the
operation is performed and no signal is sent.
If successful, tcsetpgrp returns 0. A return value of -1 indicates an error.
The following errno error conditions are defined for this function:

EBADF The filedes argument is not a valid file-descriptor.

EINVAL The pgid argument is not valid.

ENOSYS The system doesn’t support job control.

ENOTTY The filedes isn’t the controlling terminal of the calling process.

EPERM The pgid isn’t a process group in the same session as the calling
process.

Functionpid_t tcgetsid (int fildes)
This function is used to obtain the process-group ID of the session for which the
terminal specified by fildes is the controlling terminal. If the call is successful,
the group ID is returned. Otherwise, the return value is (pid_t) -1 and the
global variable errno is set to one of the following values:

EBADF The filedes argument is not a valid file-descriptor.

ENOTTY The calling process does not have a controlling terminal, or the file
is not the controlling terminal.

Chapter 9: System Databases and Name-Service Switch 243

9 System Databases and Name-Service Switch

Various functions in the C library need to be configured to work correctly
in the local environment. Traditionally, this was done by using files (e.g.,
‘/etc/passwd’), but other name services (like the Network Information Service
(NIS) and the Domain Name Service (DNS)) became popular, and were hacked
into the C library, usually with a fixed search order.1

The GNU C Library contains a cleaner solution to this problem. It is designed
after a method used by Sun Microsystems in the C library of Solaris 2. GNU C
Library follows their name and calls this scheme Name Service Switch (NSS).

Though the interface might be similar to Sun’s version, there is no common
code. The developers never saw any source code of Sun’s implementation, and so
the internal interface is incompatible. This also manifests in the file names we use
as we will see later.

9.1 NSS Basics
The basic idea is to put the implementation of the different services offered to

access the databases in separate modules. This has some advantages:
1. Contributors can add new services without adding them to GNU C Library.
2. The modules can be updated separately.
3. The C library image is smaller.

To fulfill the first goal above, the ABI of the modules will be described below. For
getting the implementation of a new service right, it is important to understand how
the functions in the modules get called. They are in no way designed to be used by
the programmer directly. Instead, the programmer should only use the documented
and standardized functions to access the databases.
The databases available in the NSS are

aliases Mail aliases

ethers Ethernet numbers

group Groups of users (see Section 10.14 [Group Database], page 277)

hosts Host names and numbers (see Section 5.6.2.4 [Host Names],
page 141)

netgroup
Network-wide list of host and users (see Section 10.16 [Netgroup
Database], page 281)

1 The Jargon File, version 4.4.7. “frobnicate” (December 29, 2003), http:// www.catb.org/
˜esr/ jargon/ html/ F/ frobnicate.html.

http:// www.catb.org/ ~esr/ jargon/ html/ F/ frobnicate.html
http:// www.catb.org/ ~esr/ jargon/ html/ F/ frobnicate.html

244 The GNU C Library: System & Network Applications

networks
Network names and numbers (see Section 5.13 [Networks Database],
page 176)

protocols
Network protocols (see Section 5.6.6 [Protocols Database], page 147)

passwd User passwords (see Section 10.13 [User Database], page 274)

rpc Remote procedure call names and numbers

services
Network services, see Section 5.6.4 [The Services Database],
page 145

shadow Shadow user-passwords

There will be some more added later (automount, bootparams, netmasks
and publickey).

9.2 The NSS Configuration File
Somehow the NSS code must be told about the wishes of the user. For this reason,

there is the file ‘/etc/nsswitch.conf’. For each database, this file contains a
specification for how the lookup process should work. The file could look like this:

/etc/nsswitch.conf

#

Name Service Switch configuration file.

#

passwd: db files nis

shadow: files

group: db files nis

hosts: files nisplus nis dns

networks: nisplus [NOTFOUND=return] files

ethers: nisplus [NOTFOUND=return] db files

protocols: nisplus [NOTFOUND=return] db files

rpc: nisplus [NOTFOUND=return] db files

services: nisplus [NOTFOUND=return] db files

The first column is the database, as you can guess from the table above. The
rest of the line specifies how the lookup process works. You specify the way it
works for each database individually. This cannot be done with the old way of a
monolithic implementation.

The configuration specification for each database can contain two different items:

Chapter 9: System Databases and Name-Service Switch 245

• The service specification like files, db or nis
• The reaction on lookup result like [NOTFOUND=return]

9.2.1 Services in the NSS Configuration File

The above example file mentions four different services: files, db, nis and
nisplus. This does not mean these services are available on all sites, nor does it
mean these are all the services that will ever be available.

In fact, these names are simply strings that the NSS code uses to find the implic-
itly addressed functions. The internal interface will be described later. Visible to
the user are the modules that implement an individual service.

Assume the service name will be used for a lookup. The code for this ser-
vice is implemented in a module called ‘libnss_name’. On a system support-
ing shared libraries, this is in fact a shared library with the name (for example)
‘libnss_name.so.2’. The number at the end is the currently used version of
the interface, which will not change frequently. Normally the user should not have
to be cognizant of these files, since they should be placed in a directory where they
are found automatically. Only the names of all available services are important.

9.2.2 Actions in the NSS Configuration

The second item in the specification gives the user much finer control on the
lookup process. Action items are placed between two service names and are written
within brackets. The general form is

[(!? status = action)+]
where:

status ⇒ success | notfound | unavail | tryagain

action ⇒ return | continue

The case of the keywords is insignificant. The status values are the results of a
call to a lookup function of a specific service. They mean:

‘success’
No error occurred and the wanted entry is returned. The default action
for this is return.

‘notfound’
The lookup process worked ok, but the needed value was not found.
The default action is continue.

‘unavail’
The service is permanently unavailable. This can either mean the
needed file is not available, or, for DNS, the server is not available
or does not allow queries. The default action is continue.

246 The GNU C Library: System & Network Applications

‘tryagain’
The service is temporarily unavailable. This could mean a file is
locked or a server currently cannot accept more connections. The
default action is continue.

If we have a line like:
ethers: nisplus [NOTFOUND=return] db files

this is equivalent to:
ethers: nisplus [SUCCESS=return NOTFOUND=return UNAVAIL=continue

TRYAGAIN=continue]

db [SUCCESS=return NOTFOUND=continue UNAVAIL=continue

TRYAGAIN=continue]

files

(except that it would have to be written on one line). The default value for the
actions are normally what you want, and only need to be changed in exceptional
cases.

If the optional ‘!’ is placed before the status, this means the following action is
used for all statuses but status itself. In other words, ‘!’ is negation, as it is in the
C language (and others).

Obviously, it makes no sense to add another action item after the files service.
Since there is no other service following, the action always is return.

Now, why is this [NOTFOUND=return] action useful? To understand this,
we should know that the nisplus service is often complete; i.e., if an entry is
not available in the NIS+ tables, it is not available anywhere else. This is what is
expressed by this action item—it is useless to examine further services, since they
will not give us a result.

The situation would be different if the NIS+ service were not available because
the machine is booting. In this case, the return value of the lookup function is not
notfound but instead unavail. And as you can see in the complete form above,
in this situation the db and files services are used. The system administrator
need not pay special attention to the times when the system is not completely ready
to work (during booting, shutdown or network problems).

9.2.3 Notes on the NSS Configuration File

The NSS implementation is not completely helpless if
‘/etc/nsswitch.conf’ does not exist. For all supported databases
there is a default value, so it should normally be possible to get the system running
even if the file is corrupted or missing.

For the hosts and networks databases, the default value is dns
[!UNAVAIL=return] files. The system is prepared for the DNS service not
to be available, but if it is available the answer it returns is definitive.

The passwd, group and shadow databases are traditionally handled in a spe-
cial way. The appropriate files in the ‘/etc’ directory are read, but if an entry with

Chapter 9: System Databases and Name-Service Switch 247

a name starting with a + character is found, NIS is used. This kind of lookup re-
mains possible by using the special lookup-service compat, and the default value
for the three databases above is compat [NOTFOUND=return] files.

For all other databases, the default value is nis [NOTFOUND=return]
files. This solution has the best chance to be correct, since NIS and file based
lookup is used.

The user should try to optimize the lookup process. The different services have
different response times. A simple file lookup on a local file could be fast, but if
the file is long and the needed entry is near the end of the file, this may take quite
some time. In this case, it might be better to use the db service, which allows fast
local access to large data sets.

Often, some global information like NIS must be used, so it is unavoidable to use
service entries like nis. But you should avoid slow services like this if possible.

9.3 NSS Module Internals
The functions contained in a module are identified by their names—there is no

jump table. How this is done is of no interest here; those interested in this topic
should research dynamic linking.

9.3.1 The Naming Scheme of the NSS Modules

The name of each function consist of various parts:
nss service function

service corresponds to the name of the module this function is found in.2 The
function part is derived from the interface function in the C library itself. If the user
calls the function gethostbyname and the service used is files, the function:

_nss_files_gethostbyname_r

in the module:
libnss_files.so.2

is used. Actually, the NSS modules only contain reentrant versions of the lookup
functions—if the user would call the gethostbyname_r function, this also
would end in the above function. For all user interface functions, the C library
maps this call to a call to the reentrant function. For reentrant functions, this is triv-
ial since the interface is (nearly) the same. For the nonreentrant version, the library
keeps internal buffers that are used to replace the user-supplied buffer.

In other words, the reentrant functions can have counterparts. No service module
is forced to have functions for all databases and all kinds to access them. If a func-
tion is not available, it is simply treated as if the function would return unavail
(see Section 9.2.2 [Actions in the NSS Configuration], page 245).

2 This information is duplicated because we want to make it possible to link directly with these
shared objects.

248 The GNU C Library: System & Network Applications

The file name ‘libnss_files.so.2’ would, on a Solaris 2 system, be
‘nss_files.so.2’. This is the difference mentioned above. Sun’s NSS modules
are usable only as modules that get indirectly loaded.

The NSS modules in the GNU C Library are prepared to be used as normal li-
braries themselves. This is not true at the moment, though. However, the organi-
zation of the name space in the modules does not make it impossible like it is for
Solaris. Now you can see why the modules are still libraries.

9.3.2 The Interface of the Function in NSS Modules

Now we know about the functions contained in the modules. It is now time to
describe the types. Because of the reentrant versions of the functions mentioned
above, there are some additional arguments (compared with the standard, nonreen-
trant version). The prototypes for the nonreentrant and reentrant versions of our
function above are

struct hostent *gethostbyname (const char *name)

int gethostbyname_r (const char *name, struct hostent *result_buf,

char *buf, size_t buflen, struct hostent **result,

int *h_errnop)

The actual prototype of the function in the NSS modules in this case is
enum nss_status _nss_files_gethostbyname_r (const char *name,

struct hostent *result_buf,

char *buf, size_t buflen,

int *errnop, int *h_errnop)

The interface function is in fact the reentrant function with the change of the
return value and the omission of the result parameter. While the user-level func-
tion returns a pointer to the result, the reentrant function returns an enum nss_
status value:

NSS_STATUS_TRYAGAIN
Numeric value -2

NSS_STATUS_UNAVAIL
Numeric value -1

NSS_STATUS_NOTFOUND
Numeric value 0

NSS_STATUS_SUCCESS
Numeric value 1

Now you see where the action items of the ‘/etc/nsswitch.conf’ file are
used.

If you study the source code, you will find there is a fifth value, NSS_STATUS_
RETURN. This is an internal-use-only value, used by a few functions in places

Chapter 9: System Databases and Name-Service Switch 249

where none of the above values can be used. If necessary, the source code should
be examined to learn about the details.

In case the interface function has to return an error, it is important that the correct
error code is stored in *errnop . Some return status values have only one associated
error code, others have more.
NSS_STATUS_
TRYAGAIN

EAGAIN One of the functions used ran tem-
porarily out of resources, or a service
is currently not available.

ERANGE The provided buffer is not large
enough. The function should be called
again with a larger buffer.

NSS_STATUS_
UNAVAIL

ENOENT A necessary input file cannot be found.

NSS_STATUS_
NOTFOUND

ENOENT The requested entry is not available.

These are proposed values. There can be other error codes, and the described
error codes can have different meaning. There is one exception: when return-
ing NSS_STATUS_TRYAGAIN, the error code ERANGE must mean that the user-
provided buffer is too small. Everything is noncritical.

The above function has something special that is missing from almost all the
other module functions—there is an argument h errnop. This points to a vari-
able that will be filled with the error code if the execution of the function fails
for some reason. The reentrant function cannot use the global variable h errno;
gethostbyname calls gethostbyname_r with the last argument set to &h_
errno.

The getXXXbyYYY functions are the most important functions in the NSS
modules. But there are others that implement the different ways to access sys-
tem databases. For the password database, for example, there is setpwent,
getpwent and endpwent). These will be described in more detail later. Here
we give a general way to determine the signature of the module function:

• The return value is int.
• The name is as explained in Section 9.3.1 [The Naming Scheme of the NSS

Modules], page 247.
• The first arguments are identical to the arguments of the nonreentrant function.
• The next three arguments are

STRUCT_TYPE *result_buf
This is a pointer to the buffer where the result is stored.
STRUCT_TYPE is normally a struct that corresponds to the
database.

char *buffer
This is a pointer to a buffer where the function can store addi-
tional data for the result.

size_t buflen
This is the length of the buffer pointed to by buffer.

250 The GNU C Library: System & Network Applications

• There could also be a last argument, h errnop, for the host name and network-
name lookup functions.

This table is correct for all functions except the set...ent and end...ent func-
tions.

9.4 Extending NSS

One of the advantages of NSS mentioned above is that it can be extended quite
easily. There are two ways in which the extension can happen: adding another
database or adding another service. The former is normally done only by the
C library developers. It is here only important to remember that adding another
database is independent from adding another service, because a service need not
support all databases or lookup functions.

A designer/implementor of a new service is therefore free to choose the databases
she is interested in and leave the rest for later (or completely aside).

9.4.1 Adding Another Service to NSS

The sources for a new service need not (and should not) be part of the GNU
C Library itself. The developer retains complete control over the sources and its
development. The links between the C library and the new service module consist
solely of the interface functions.

Each module is designed following a certain interface specification. For now,
the version is 2 (the interface in version 1 was not adequate), and this manifests in
the version number of the shared library object of the NSS modules—they have the
extension .2. If the interface changes again in an incompatible way, this number
will be increased. Modules using the old interface will still be usable.

Developers of a new service will have to make sure that their module is created
using the correct interface number. This means the file itself must have the correct
name and on ELF systems the soname (Shared Object Name) must also have this
number. Building a module from a bunch of object files on an ELF system using
GNU CC could be done like this:

gcc -shared -o libnss_NAME.so.2 -Wl,-soname,libnss_NAME.so.2 OBJECTS

noindent See Richard M. Stallman and the GCC Developer Community, “Op-
tions for Linking” in Using GCC: The GNU Compiler Collection Reference
Manual (Boston, MA: GNU Press, October 2003), http:// gcc.gnu.org/
onlinedocs/ gcc-3.3.2/ gcc/, to learn more about this command line.

To use the new module, the library must be able to find it. This can be achieved
by using options for the dynamic linker so that it will search the directory where
the binary is placed. For an ELF system, this could be done by adding the wanted
directory to the value of LD_LIBRARY_PATH.

But this is not always possible since some programs (those that run under IDs
that do not belong to the user) ignore this variable. Therefore, the stable version of
the module should be placed into a directory that is searched by the dynamic linker.

http:// gcc.gnu.org/ onlinedocs/ gcc-3.3.2/ gcc/
http:// gcc.gnu.org/ onlinedocs/ gcc-3.3.2/ gcc/

Chapter 9: System Databases and Name-Service Switch 251

Normally, this should be the directory ‘$prefix/lib’, where ‘$prefix’ cor-
responds to the value given to configure using the --prefix option. But be
careful—this should only be done if it is clear the module does not cause any harm.
System administrators should be careful.

9.4.2 Internals of the NSS Module Functions

Until now we only provided the syntactic interface for the functions in the NSS
module. In fact there is not much more we can say, since the implementation
obviously is different for each function. But a few general rules must be followed
by all functions.

There are four kinds of different functions that may appear in the interface. All
derive from the traditional ones for system databases. db in the following table is
normally an abbreviation for the database (e.g., it is pw for the password database).

enum nss_status _nss_database_setdbent (void)
This function prepares the service for operations that will follow.. For
a simple file-based lookup, this means files could be opened. For other
services, this function is simply a no-op.
One special case for this function is that it takes an additional ar-
gument for some databases (i.e., the interface is int setdbent
(int)). See Section 5.6.2.4 [Host Names], page 141, which de-
scribes the sethostent function.
The return value should be NSS STATUS SUCCESS, or according to
the table above in case of an error (see Section 9.3.2 [The Interface of
the Function in NSS Modules], page 248).

enum nss_status _nss_database_enddbent (void)
This function simply closes all files that are still open or removes
buffer caches. If there are no files or buffers to remove, this is again a
simple noop.
There normally is no return value other than
NSS STATUS SUCCESS.

enum nss_status _nss_database_getdbent_r (STRUCTURE
*result, char *buffer, size_t buflen, int *errnop)

Since this function will be called several times in a row to retrieve
one entry after the other, it must keep some kind of state. But this
also means the functions are not really reentrant. They are reentrant
only in that simultaneous calls to this function will not try to write the
retrieved data in the same place (as would be the case for the nonreen-
trant functions); instead, they write to the structure pointed to by the
result parameter. But the calls share a common state, and in the case
of a file access this means they return neighboring entries in the file.
The buffer of length buflen pointed to by buffer can be used for storing
some additional data for the result. It is not guaranteed that the same

252 The GNU C Library: System & Network Applications

buffer will be passed for the next call of this function, so you must
not misuse this buffer to save some state information from one call to
another.
Before the function returns, the implementation should store the value
of the local errno variable in the variable pointed to be errnop. This
is important to guarantee the module working in statically linked pro-
grams.
As explained above, this function could also have an additional last
argument. This depends on the database used; it happens only for
host and networks.
The function shall return NSS_STATUS_SUCCESS as long as there
are more entries. When the last entry was read, it should return NSS_
STATUS_NOTFOUND. When the buffer given as an argument is too
small for the data to be returned, NSS_STATUS_TRYAGAIN should
be returned. When the service was not formerly initialized by a call to
_nss_DATABASE_setdbent, any return values allowed for this
function can also be returned here.

enum nss_status _nss_DATABASE_getdbbyXX_r (PARAMS,
STRUCTURE *result, char *buffer, size_t buflen, int
*errnop)

This function will return the entry from the database that is addressed
by the PARAMS. The type and number of these arguments vary. It
must be individually determined by looking to the user-level interface
functions. All arguments given to the nonreentrant version are here
described by PARAMS.
The result must be stored in the structure pointed to by result. If there
is additional data to return (such as strings, where the result structure
only contains pointers), the function must use the buffer or length
buflen. There must not be any references to nonconstant global data.
The implementation of this function should honor the stayopen flag
set by the setDBent function whenever this makes sense.
Before the function returns, the implementation should store the value
of the local errno variable in the variable pointed to by errnop. This
is important to guarantee that the module work in statically linked
programs.
Again, this function takes an additional last argument for the host
and networks database.
The return value should, as always, follow the rules given above
(see Section 9.3.2 [The Interface of the Function in NSS Modules],
page 248).

Chapter 10: Users and Groups 253

10 Users and Groups

Every user who can log in on the system is identified by a unique number called
the user ID. Each process has an effective user-ID that says which user’s access-
permissions it has.

Users are classified into groups for access-control purposes. Each process has
one or more group-ID values that say which groups the process can use for access
to files.

The effective user and group-IDs of a process collectively form its persona. This
determines which files the process can access. Normally, a process inherits its
persona from the parent process, but under special circumstances a process can
change its persona, and thus change its access permissions.

Each file in the system also has a user ID and a group ID. Access control works
by comparing the user- and group-IDs of the file with those of the running process.

The system keeps a database of all the registered users, and another database of
all the defined groups. There are library functions you can use to examine these
databases.

10.1 User- and Group-IDs
Each user account on a computer system is identified by a user name (or lo-

gin name) and user ID. Normally, each user name has a unique user-ID, but it is
possible for several login names to have the same user-ID. The user names and
corresponding user-IDs are stored in a database that you can access as described in
Section 10.13 [User Database], page 274.

Users are classified in groups. Each user name belongs to one default group and
may also belong to any number of supplementary groups. Users who are members
of the same group can share resources (such as files) that are not accessible to users
who are not a member of that group. Each group has a group name and group ID.
See Section 10.14 [Group Database], page 277, for how to find information about
a group ID or group name.

10.2 The Persona of a Process
At any time, each process has an effective user ID, an effective group ID, and a

set of supplementary group IDs. These IDs determine the privileges of the process.
They are collectively called the persona of the process, because they determine
“who it is” for purposes of access control.

Your login shell starts out with a persona that consists of your user ID, your
default group-ID and your supplementary group-IDs (if you are in more than one
group). In normal circumstances, all your other processes inherit these values.

A process also has a real user-ID, which identifies the user who created the pro-
cess, and a real group-ID, which identifies that user’s default group. These values

254 The GNU C Library: System & Network Applications

do not play a role in access control, so we do not consider them part of the persona.
But they are also important.

Both the real and effective user-ID can be changed during the lifetime of a process
(see Section 10.3 [Why Change the Persona of a Process?], page 254).

For details on how a process’s effective user-ID and group-IDs affect its permis-
sion to access files, see Section 3.9.6 [How Your Access to a File is Decided],
page 104.

The effective user-ID of a process also controls permissions for sending sig-
nals using the kill function (see Section 17.6.2 [Signaling Another Process],
page 410).

Finally, there are many operations that can only be performed by a process whose
effective user-ID is 0. A process with this user ID is a privileged process. Com-
monly, the user name root is associated with user ID 0, but there may be other
user names with this ID.

10.3 Why Change the Persona of a Process?

The most obvious situation where it is necessary for a process to change its user-
and/or group-IDs is the login program. When login starts running, its user ID
is root. Its job is to start a shell whose user- and group-IDs are those of the user
who is logging in. (To accomplish this fully, login must set the real user- and
group-IDs as well as its persona. But this is a special case.)

The more common case of changing persona is when an ordinary user program
needs access to a resource that wouldn’t ordinarily be accessible to the user actually
running it.

For example, you may have a file that is controlled by your program but that
shouldn’t be read or modified directly by other users, either because it implements
some kind of locking protocol, or because you want to preserve the integrity or
privacy of the information it contains. This kind of restricted access can be imple-
mented by having the program change its effective user or group ID to match that
of the resource.

Thus, imagine a game program that saves scores in a file. The game program
itself needs to be able to update this file no matter who is running it, but if users
can write the file without going through the game, they can give themselves any
scores they like. Some people consider this undesirable, or even reprehensible. It
can be prevented by creating a new user-ID and login name (say, games) to own
the scores file, and making the file writable only by this user. Then, when the game
program wants to update this file, it can change its effective user-ID to be that for
games. In effect, the program must adopt the persona of games so it can write
the scores file.

Chapter 10: Users and Groups 255

10.4 How an Application Can Change Persona
The ability to change the persona of a process can be a source of unintentional

privacy violations, or even intentional abuse. Because of the potential for problems,
changing persona is restricted to special circumstances.

You can’t arbitrarily set your user ID or group ID to anything you want; only
privileged processes can do that. Instead, the normal way for a program to change
its persona is that it has been set up in advance to change to a particular user or
group. This is the function of the setuid and setgid bits of a file’s access mode (see
Section 3.9.5 [The Mode Bits for Access Permission], page 102).

When the setuid bit of an executable file is on, executing that file gives the pro-
cess a third user-ID—the file user-ID. This ID is set to the owner ID of the file. The
system then changes the effective user-ID to the file user-ID. The real user-ID re-
mains as it was. Likewise, if the setgid bit is on, the process is given a file group
ID equal to the group ID of the file, and its effective group-ID is changed to the file
group-ID.

If a process has a file ID (user or group), then it can at any time change its effec-
tive ID to its real ID and back to its file ID. Programs use this feature to relinquish
their special privileges except when they actually need them. This makes it less
likely that they can be tricked into doing something inappropriate with their privi-
leges.

Portability Note: Older systems do not have file IDs. To determine if a system
has this feature, you can test the compiler define _POSIX_SAVED_IDS. (In the
POSIX standard, file IDs are known as saved IDs.)

See Section 3.9 [File Attributes], page 93, for a more general discussion of file
modes and accessibility.

10.5 Reading the Persona of a Process
Here are detailed descriptions of the functions for reading the user- and group-

IDs of a process, both real and effective. To use these facilities, you must include
the header files ‘sys/types.h’ and ‘unistd.h’.

Data Typeuid t
This is an integer data type used to represent user IDs. In the GNU library, this
is an alias for unsigned int.

Data Typegid t
This is an integer data type used to represent group IDs. In the GNU library, this
is an alias for unsigned int.

Functionuid_t getuid (void)
The getuid function returns the real user-ID of the process.

256 The GNU C Library: System & Network Applications

Functiongid_t getgid (void)
The getgid function returns the real group-ID of the process.

Functionuid_t geteuid (void)
The geteuid function returns the effective user-ID of the process.

Functiongid_t getegid (void)
The getegid function returns the effective group-ID of the process.

Functionint getgroups (int count, gid_t *groups)
The getgroups function is used to inquire about the supplementary group-
IDs of the process. Up to count of these group IDs are stored in the array
groups; the return value from the function is the number of group IDs actually
stored. If count is smaller than the total number of supplementary group-IDs,
then getgroups returns a value of -1, and errno is set to EINVAL.
If count is 0, then getgroups just returns the total number of supplemen-
tary group-IDs. On systems that do not support supplementary groups, this will
always be 0.
Here’s how to use getgroups to read all the supplementary group IDs:

gid_t *

read_all_groups (void)

{

int ngroups = getgroups (0, NULL);

gid_t *groups

= (gid_t *) xmalloc (ngroups * sizeof (gid_t));

int val = getgroups (ngroups, groups);

if (val < 0)

{

free (groups);

return NULL;

}

return groups;

}

10.6 Setting the User ID

This section describes the functions for altering the user ID, real and/or ef-
fective, of a process. To use these facilities, you must include the header files
‘sys/types.h’ and ‘unistd.h’.

Functionint seteuid (uid_t neweuid)
This function sets the effective user-ID of a process to newuid, provided that the
process is allowed to change its effective user-ID. A privileged process (effective

Chapter 10: Users and Groups 257

user-ID zero) can change its effective user-ID to any legal value. An unprivileged
process with a file user-ID can change its effective user-ID to its real user-ID or
to its file user-ID. Otherwise, a process may not change its effective user-ID at
all.
The seteuid function returns a value of 0 to indicate successful completion,
and a value of -1 to indicate an error. The following errno error conditions
are defined for this function:

EINVAL The value of the newuid argument is invalid.

EPERM The process may not change to the specified ID.

Older systems (those without the _POSIX_SAVED_IDS feature) do not have
this function.

Functionint setuid (uid_t newuid)
If the calling process is privileged, this function sets both the real and effective
user-ID of the process to newuid. It also deletes the file user-ID of the process, if
any. newuid may be any legal value. Once this has been done, there is no way
to recover the old effective user-ID.
If the process is not privileged, and the system supports the _POSIX_SAVED_
IDS feature, then this function behaves like seteuid.
The return values and error conditions are the same as for seteuid.

Functionint setreuid (uid_t ruid, uid_t euid)
This function sets the real user-ID of the process to ruid and the effective user-ID
to euid. If ruid is -1, it means not to change the real user-ID; likewise if euid is
-1, it means not to change the effective user-ID.
The setreuid function exists for compatibility with 4.3 BSD Unix, which
does not support file IDs. You can use this function to swap the effective and real
user-IDs of the process. (Privileged processes are not limited to this particular
usage.) If file IDs are supported, you should use that feature instead of this
function (see Section 10.8 [Enabling and Disabling Setuid Access], page 260).
The return value is 0 on success and -1 on failure. The following errno error
condition is defined for this function:

EPERM The process does not have the appropriate privileges; you do not
have permission to change to the specified ID.

10.7 Setting the Group IDs
This section describes the functions for altering the group IDs, real and ef-

fective, of a process. To use these facilities, you must include the header files
‘sys/types.h’ and ‘unistd.h’.

258 The GNU C Library: System & Network Applications

Functionint setegid (gid_t newgid)
This function sets the effective group-ID of the process to newgid, provided that
the process is allowed to change its group ID. Just as with seteuid, if the
process is privileged, it may change its effective group-ID to any value. If it
isn’t, but it has a file group-ID, then it may change to its real group-ID or file
group-ID. Otherwise, it may not change its effective group-ID.
A process is only privileged if its effective user-ID is zero. The effective group-
ID only affects access permissions.
The return values and error conditions for setegid are the same as those for
seteuid.
This function is only present if _POSIX_SAVED_IDS is defined.

Functionint setgid (gid_t newgid)
This function sets both the real and effective group-ID of the process to newgid,
provided that the process is privileged. It also deletes the file group-ID, if any.
If the process is not privileged, then setgid behaves like setegid.
The return values and error conditions for setgid are the same as those for
seteuid.

Functionint setregid (gid_t rgid, gid_t egid)
This function sets the real group-ID of the process to rgid and the effective
group-ID to egid. If rgid is -1, it means not to change the real group-ID; like-
wise if egid is -1, it means not to change the effective group-ID.
The setregid function is provided for compatibility with 4.3 BSD Unix,
which does not support file IDs. You can use this function to swap the effec-
tive and real group-IDs of the process. (Privileged processes are not limited
to this usage.) If file IDs are supported, you should use that feature instead of
using this function (see Section 10.8 [Enabling and Disabling Setuid Access],
page 260).
The return values and error conditions for setregid are the same as those for
setreuid.

setuid and setgid behave differently depending on whether the effective
user-ID at the time is zero. If it is not zero, they behave like seteuid and
setegid. If it is, they change both effective and real IDs and delete the file ID.
To avoid confusion, we recommend you always use seteuid and setegid ex-
cept when you know the effective user-ID is zero, and your intent is to change the
persona permanently. This case is rare—most of the programs that need it, such as
login and su, have already been written.

If your program is setuid to some user other than root, there is no way to drop
privileges permanently.

The system also lets privileged processes change their supplementary group-IDs.
To use setgroups or initgroups, your programs should include the header
file ‘grp.h’.

Chapter 10: Users and Groups 259

Functionint setgroups (size_t count, gid_t *groups)
This function sets the process’s supplementary group-IDs. It can only be called
from privileged processes. The count argument specifies the number of group
IDs in the array groups.
This function returns 0 if successful and -1 on error. The following errno
error condition is defined for this function:

EPERM The calling process is not privileged.

Functionint initgroups (const char *user, gid_t group)
The initgroups function sets the process’s supplementary group IDs to be
the normal default for the user name user. The group group is automatically
included.
This function works by scanning the group database for all the groups user be-
longs to. It then calls setgroups with the list it has constructed.
The return values and error conditions are the same as for setgroups.

If you are interested in the groups a particular user belongs to, but do not want to
change the process’s supplementary group-IDs, you can use getgrouplist. To
use getgrouplist, your programs should include the header file ‘grp.h’.

Functionint getgrouplist (const char *user, gid_t group, gid_t
*groups, int *ngroups)

The getgrouplist function scans the group database for all the groups user
belongs to. Up to *ngroups group IDs corresponding to these groups are stored
in the array groups; the return value from the function is the number of group IDs
actually stored. If *ngroups is smaller than the total number of groups found,
then getgrouplist returns a value of -1 and stores the actual number of
groups in *ngroups. The group group is automatically included in the list of
groups returned by getgrouplist.
Here’s how to use getgrouplist to read all supplementary groups for user:

gid_t *

supplementary_groups (char *user)

{

int ngroups = 16;

gid_t *groups

= (gid_t *) xmalloc (ngroups * sizeof (gid_t));

struct passwd *pw = getpwnam (user);

if (pw == NULL)

return NULL;

if (getgrouplist (pw->pw_name, pw->pw_gid, groups, &ngroups) < 0)

{

260 The GNU C Library: System & Network Applications

groups = xrealloc (ngroups * sizeof (gid_t));

getgrouplist (pw->pw_name, pw->pw_gid, groups, &ngroups);

}

return groups;

}

10.8 Enabling and Disabling Setuid Access
A typical setuid program does not need its special access all of the time. It’s a

good idea to turn off this access when it isn’t needed, to avoid giving unintended
access.

If the system supports the _POSIX_SAVED_IDS feature, you can accomplish
this with seteuid. When the game program starts, its real user-ID is jdoe, its
effective user-ID is games, and its saved user-ID is also games. The program
should record both user ID values once at the beginning, like this:

user_user_id = getuid ();

game_user_id = geteuid ();

Then it can turn off game file access with
seteuid (user_user_id);

and turn it on with
seteuid (game_user_id);

Throughout this process, the real user-ID remains jdoe and the file user-ID remains
games, so the program can always set its effective user-ID to either one.

On other systems that don’t support file user-IDs, you can turn setuid access on
and off by using setreuid to swap the real and effective user-IDs of the process,
as follows:

setreuid (geteuid (), getuid ());

This special case is always allowed—it cannot fail.
Why does this have the effect of toggling the setuid access? Suppose a game

program has just started, and its real user-ID is jdoe while its effective user-ID is
games. In this state, the game can write the scores file. If it swaps the two uids,
the real becomes games and the effective becomes jdoe; now the program has
only jdoe access. Another swap brings games back to the effective user-ID and
restores access to the scores file.

In order to handle both kinds of systems, test for the saved user-ID feature with
a preprocessor conditional, like this:

#ifdef _POSIX_SAVED_IDS

seteuid (user_user_id);

#else

setreuid (geteuid (), getuid ());

#endif

Chapter 10: Users and Groups 261

10.9 Setuid Program Example
Here’s an example showing how to set up a program that changes its effective

user-ID.
This is part of a game program called caber-toss that manipulates a file

‘scores’ that should be writable only by the game program itself. The program
assumes that its executable file will be installed with the setuid bit set and owned
by the same user as the ‘scores’ file. Typically, a system administrator will set
up an account like games for this purpose.

The executable file is given mode 4755, so that doing an ‘ls -l’ on it produces
output like:

-rwsr-xr-x 1 games 184422 Jul 30 15:17 caber-toss

The setuid bit shows up in the file modes as the ‘s’.
The scores file is given mode 644, and doing an ‘ls -l’ on it shows:

-rw-r--r-- 1 games 0 Jul 31 15:33 scores

Here are the parts of the program that show how to set up the changed user-ID.
This program is conditionalized so that it makes use of the file IDs feature if it is
supported, and otherwise uses setreuid to swap the effective and real user-IDs.

#include <stdio.h>

#include <sys/types.h>

#include <unistd.h>

#include <stdlib.h>

/* Remember the effective and real UIDs. */

static uid_t euid, ruid;

/* Restore the effective UID to its original value. */

void

do_setuid (void)

{

int status;

#ifdef _POSIX_SAVED_IDS

status = seteuid (euid);

#else

status = setreuid (ruid, euid);

#endif

if (status < 0) {

fprintf (stderr, "Couldn’t set uid.\n");

262 The GNU C Library: System & Network Applications

exit (status);

}

}

/* Set the effective UID to the real UID. */

void

undo_setuid (void)

{

int status;

#ifdef _POSIX_SAVED_IDS

status = seteuid (ruid);

#else

status = setreuid (euid, ruid);

#endif

if (status < 0) {

fprintf (stderr, "Couldn’t set uid.\n");

exit (status);

}

}

/* Main program. */

int

main (void)

{

/* Remember the real and effective user-IDs. */

ruid = getuid ();

euid = geteuid ();

undo_setuid ();

/* Do the game and record the score. */

...

}

Notice that the first thing the main function does is set the effective user-ID
back to the real user-ID. This is so that any other file accesses that are performed
while the user is playing the game use the real user-ID for determining permissions.
Only when the program needs to open the scores file does it switch back to the file
user-ID, like this:

/* Record the score. */

Chapter 10: Users and Groups 263

int

record_score (int score)

{

FILE *stream;

char *myname;

/* Open the scores file. */

do_setuid ();

stream = fopen (SCORES_FILE, "a");

undo_setuid ();

/* Write the score to the file. */

if (stream)

{

myname = cuserid (NULL);

if (score < 0)

fprintf (stream, "%10s: Couldn’t lift the caber.\n", myname);

else

fprintf (stream, "%10s: %d feet.\n", myname, score);

fclose (stream);

return 0;

}

else

return -1;

}

10.10 Tips for Writing Setuid Programs
It is easy for setuid programs to give the user access that isn’t intended—in fact,

if you want to avoid this, you need to be careful. Here are some guidelines for
preventing unintended access and minimizing its consequences when it does occur:

• Don’t have setuid programs with privileged user-IDs such as root unless it
is absolutely necessary. If the resource is specific to your particular program,
it’s better to define a new, nonprivileged user-ID or group ID just to manage
that resource. It’s better if you can write your program to use a special group
rather than a special user.

• Be cautious about using the exec functions in combination with changing the
effective user-ID. Don’t let users of your program execute arbitrary programs
under a changed user-ID. Executing a shell is especially bad news. Less ob-
viously, the execlp and execvp functions are a potential risk (since the
program they execute depends on the user’s PATH environment variable).

264 The GNU C Library: System & Network Applications

If you must exec another program under a changed ID, specify an absolute
file-name1 for the executable, and make sure that the protections on that ex-
ecutable and all containing directories are such that ordinary users cannot re-
place it with some other program.
You should also check the arguments passed to the program to make sure they
do not have unexpected effects. Likewise, you should examine the environ-
ment variables. Decide which arguments and variables are safe, and reject all
others.
You should never use system in a privileged program, because it invokes a
shell.

• Only use the user ID controlling the resource in the part of the program that
actually uses that resource. When you’re finished with it, restore the effec-
tive user-ID back to the actual user’s user-ID (see Section 10.8 [Enabling and
Disabling Setuid Access], page 260).

• If the setuid part of your program needs to access other files besides the
controlled resource, it should verify that the real user would ordinarily have
permission to access those files. You can use the access function (see Sec-
tion 3.9.6 [How Your Access to a File is Decided], page 104) to check this; it
uses the real user- and group-IDs, rather than the effective IDs.

10.11 Identifying Who Is Logged In
You can use the functions listed in this section to determine the login name of

the user who is running a process, and the name of the user who is logged in in
the current session. See also the function getuid and friends (see Section 10.5
[Reading the Persona of a Process], page 255). How this information is collected by
the system and how to control, add and remove information from the background
storage is described in Section 10.12 [The User-Accounting Database], page 265.

The getlogin function is declared in ‘unistd.h’, while cuserid and L_
cuserid are declared in ‘stdio.h’.

Functionchar * getlogin (void)
The getlogin function returns a pointer to a string containing the name of the
user logged in on the controlling terminal of the process, or a null pointer if this
information cannot be determined. The string is statically allocated and might
be overwritten on subsequent calls to this function or to cuserid.

Functionchar * cuserid (char *string)
The cuserid function returns a pointer to a string containing a user name
associated with the effective ID of the process. If string is not a null pointer, it
should be an array that can hold at least L_cuserid characters; the string is
returned in this array. Otherwise, a pointer to a string in a static area is returned.

1 See Loosemore et al., “File-Name Resolution” (see chap. 1, n. 1).

Chapter 10: Users and Groups 265

This string is statically allocated and might be overwritten on subsequent calls
to this function or to getlogin.
The use of this function is deprecated since it is marked to be withdrawn in XPG
4.2 and has already been removed from newer revisions of POSIX.1.

Macroint L cuserid
An integer constant that indicates how long an array you might need to store a
user name.

These functions let your program identify positively the user who is running or
the user who is logged in in this session. These can differ when setuid programs are
involved (see Section 10.2 [The Persona of a Process], page 253). The user cannot
do anything to fool these functions.

For most purposes, it is more useful to use the environment variable LOGNAME
to find out who the user is. This is more flexible precisely because the user can set
LOGNAME arbitrarily.2

10.12 The User-Accounting Database
Most Unix-like operating systems keep track of logged-in users by maintaining a

user-accounting database. This user-accounting database stores for each terminal,
who has logged on, at what time, the process ID of the user’s login shell, etc., but
it also stores information about the run level of the system, the time of the last
system reboot, and possibly more. The user-accounting database typically lives
in ‘/etc/utmp’, ‘/var/adm/utmp’ or ‘/var/run/utmp’. However, these
files should never be accessed directly. For reading information from and writing
information to the user-accounting database, the functions described in this section
should be used.

10.12.1 Manipulating the User-Accounting Database

These functions and the corresponding data structures are declared in the header
file ‘utmp.h’.

Data Typestruct exit status
The exit_status data structure is used to hold information about the
exit status of processes marked as DEAD_PROCESS in the user-accounting
database.

short int e_termination
This is the exit status of the process.

short int e_exit
This is the exit status of the process.

2 Ibid., “Standard Environment Variables”.

266 The GNU C Library: System & Network Applications

Data Typestruct utmp
The utmp data structure is used to hold information about entries in the user-
accounting database. On the GNU system, it has the following members:

short int ut_type
This specifies the type of login; one of EMPTY, RUN_LVL,
BOOT_TIME, OLD_TIME, NEW_TIME, INIT_PROCESS,
LOGIN_PROCESS, USER_PROCESS, DEAD_PROCESS or
ACCOUNTING.

pid_t ut_pid
This is the process ID-number of the login process.

char ut_line[]
This is the device name of the tty (without ‘/dev/’).

char ut_id[]
This is the inittab ID of the process.

char ut_user[]
This is the user’s login name.

char ut_host[]
This is the name of the host from which the user logged in.

struct exit_status ut_exit
This is the exit status of a process marked as DEAD_PROCESS.

long ut_session
This is the session ID, used for windowing.

struct timeval ut_tv
This is the time the entry was made. For entries of type OLD_
TIME, this is the time when the system clock changed. For entries
of type NEW_TIME, this is the time the system clock was set to.

int32_t ut_addr_v6[4]
This is the Internet address of a remote host.

The ut_type, ut_pid, ut_id, ut_tv and ut_host fields are not available
on all systems. Portable applications therefore should be prepared for these situa-
tions. To help in this, the ‘utmp.h’ header provides macros _HAVE_UT_TYPE, _
HAVE_UT_PID, _HAVE_UT_ID, _HAVE_UT_TV and _HAVE_UT_HOST if the
respective fields are available. The programmer can handle the situations by using
#ifdef in the program code.

The following macros are defined for use as values for the ut_type member of
the utmp structure. The values are integer constants.

EMPTY This macro is used to indicate that the entry contains no valid user-
accounting information.

RUN_LVL This macro is used to identify the system’s runlevel.

Chapter 10: Users and Groups 267

BOOT_TIME
This macro is used to identify the time of system boot.

OLD_TIME
This macro is used to identify the time when the system clock
changed.

NEW_TIME
This macro is used to identify the time after the system changed.

INIT_PROCESS
This macro is used to identify a process spawned by the init process.

LOGIN_PROCESS
This macro is used to identify the session leader of a logged-in user.

USER_PROCESS
This macro is used to identify a user process.

DEAD_PROCESS
This macro is used to identify a terminated process.

ACCOUNTING
???

The size of the ut_line, ut_id, ut_user and ut_host arrays can be
found using the sizeof operator.

Many older systems have, instead of an ut_tv member, an ut_time member,
usually of type time_t, for representing the time associated with the entry. There-
fore, for backward compatibility only, ‘utmp.h’ defines ut_time as an alias for
ut_tv.tv_sec.

Functionvoid setutent (void)
This function opens the user-accounting database to begin scanning it. You
can then call getutent, getutid or getutline to read entries and
pututline to write entries.
If the database is already open, it resets the input to the beginning of the
database.

Functionstruct utmp * getutent (void)
The getutent function reads the next entry from the user-accounting
database. It returns a pointer to the entry, which is statically allocated and
may be overwritten by subsequent calls to getutent. You must copy the
contents of the structure if you wish to save the information, or you can use the
getutent_r function, which stores the data in a user-provided buffer.
A null pointer is returned if no further entry is available.

Functionvoid endutent (void)
This function closes the user-accounting database.

268 The GNU C Library: System & Network Applications

Functionstruct utmp * getutid (const struct utmp *id)
This function searches forward from the current point in the database for an
entry that matches id. If the ut_type member of the id structure is one of
RUN_LVL, BOOT_TIME, OLD_TIME or NEW_TIME, the entries match if the
ut_type members are identical. If the ut_type member of the id struc-
ture is INIT_PROCESS, LOGIN_PROCESS, USER_PROCESS or DEAD_
PROCESS, the entries match if the ut_typemember of the entry read from the
database is one of these four and the ut_id members match. However, if the
ut_id member of either the id structure or the entry read from the database
is empty, it checks if the ut_line members match instead. If a matching
entry is found, getutid returns a pointer to the entry, which is statically allo-
cated, and may be overwritten by a subsequent call to getutent, getutid
or getutline. You must copy the contents of the structure if you wish to save
the information.
A null pointer is returned if the end of the database is reached without a match.
The getutid function may cache the last read entry. Therefore, if you are
using getutid to search for multiple occurrences, it is necessary to zero out
the static data after each call. Otherwise, getutid could just return a pointer
to the same entry over and over again.

Functionstruct utmp * getutline (const struct utmp *line)
This function searches forward from the current point in the database un-
til it finds an entry whose ut_type value is LOGIN_PROCESS or USER_
PROCESS, and whose ut_line member matches the ut_line member of
the line structure. If it finds such an entry, it returns a pointer to the entry that is
statically allocated, and may be overwritten by a subsequent call to getutent,
getutid or getutline. You must copy the contents of the structure if you
wish to save the information.
A null pointer is returned if the end of the database is reached without a match.
The getutline function may cache the last read entry. Therefore, if you are
using getutline to search for multiple occurrences, it is necessary to zero
out the static data after each call. Otherwise, getutline could just return a
pointer to the same entry over and over again.

Functionstruct utmp * pututline (const struct utmp *utmp)
The pututline function inserts the entry *utmp at the appropriate place in
the user-accounting database. If it finds that it is not already at the correct place
in the database, it uses getutid to search for the position to insert the en-
try. However, this will not modify the static structure returned by getutent,
getutid and getutline. If this search fails, the entry is appended to the
database.
The pututline function returns a pointer to a copy of the entry inserted in
the user-accounting database, or a null pointer if the entry could not be added.
The following errno error condition is defined for this function:

Chapter 10: Users and Groups 269

EPERM The process does not have the appropriate privileges—you cannot
modify the user-accounting database.

All the get* functions mentioned before store the information they return in
a static buffer. This can be a problem in multithreaded programs, since the data
returned for the request is overwritten by the return-value data in another thread.
Therefore, the GNU C Library provides as extensions three more functions that
return the data in a user-provided buffer.

Functionint getutent r (struct utmp *buffer, struct utmp
**result)

The getutent_r is equivalent to the getutent function. It returns the next
entry from the database. But instead of storing the information in a static buffer,
it stores it in the buffer pointed to by the parameter buffer.
If the call was successful, the function returns 0 and the pointer variable pointed
to by the parameter result contains a pointer to the buffer that contains the re-
sult (probably the same value as buffer). If something went wrong during the
execution of getutent_r, the function returns -1.
This function is a GNU extension.

Functionint getutid r (const struct utmp *id, struct utmp
*buffer, struct utmp **result)

This function retrieves, just like getutid, the next entry matching the informa-
tion stored in id. But the result is stored in the buffer pointed to by the parameter
buffer.
If successful, the function returns 0 and the pointer variable pointed to by the
parameter result contains a pointer to the buffer with the result (probably the
same as result). If not successful, the function returns -1.
This function is a GNU extension.

Functionint getutline r (const struct utmp *line, struct utmp
*buffer, struct utmp **result)

This function retrieves, just like getutline, the next entry matching the in-
formation stored in line. But the result is stored in the buffer pointed to by the
parameter buffer.
If successful, the function returns 0 and the pointer variable pointed to by the
parameter result contains a pointer to the buffer with the result (probably the
same as result). If not successful, the function returns -1.
This function is a GNU extension.

In addition to the user-accounting database, most systems keep a number of sim-
ilar databases. For example, most systems keep a log file with all previous logins
(usually in ‘/etc/wtmp’ or ‘/var/log/wtmp’).

For specifying which database to examine, the following function should be
used:

270 The GNU C Library: System & Network Applications

Functionint utmpname (const char *file)
The utmpname function changes the name of the database to be examined
to file, and closes any previously opened database. By default, getutent,
getutid, getutline and pututline read from and write to the user-
accounting database.
The following macros are defined for use as the file argument:

Macrochar * PATH UTMP
This macro is used to specify the user-accounting database.

Macrochar * PATH WTMP
This macro is used to specify the user-accounting log file.

The utmpname function returns a value of 0 if the new name was successfully
stored, and a value of -1 to indicate an error. utmpname does not try to open
the database, and therefore the return value does not say anything about whether
the database can be successfully opened.

For maintaining log-like databases, the GNU C Library provides the following
function:

Functionvoid updwtmp (const char *wtmp file, const struct
utmp *utmp)

The updwtmp function appends the entry *utmp to the database specified by
wtmp file. For possible values for the wtmp file argument, see the utmpname
function.

Portability Note: Although many operating systems provide a subset of these
functions, they are not standardized. There are often subtle differences in the re-
turn types, and there are considerable differences between the various definitions
of struct utmp. When programming for the GNU system, it is probably best to
stick with the functions described in this section. If however, you want your pro-
gram to be portable, consider using the XPG functions described in Section 10.12.2
[XPG User-Accounting Database Functions], page 270, or take a look at the BSD-
compatible functions in Section 10.12.3 [Logging In and Out], page 273.

10.12.2 XPG User-Accounting Database Functions

These functions, described in the X/Open Portability Guide, are declared in the
header file ‘utmpx.h’.3

Data Typestruct utmpx
The utmpx data structure contains at least the following members:

3 X/Open Company, X/Open Portability Guide, Issue 4 (Reading, UK: X/Open Company, Ltd.,
1992).

Chapter 10: Users and Groups 271

short int ut_type
This specifies the type of login; one of EMPTY, RUN_LVL,
BOOT_TIME, OLD_TIME, NEW_TIME, INIT_PROCESS,
LOGIN_PROCESS, USER_PROCESS or DEAD_PROCESS.

pid_t ut_pid
This is the process-ID number of the login process.

char ut_line[]
This is the device name of the tty (without ‘/dev/’).

char ut_id[]
This is the inittab ID of the process.

char ut_user[]
This is the user’s login name.

struct timeval ut_tv
This is the time the entry was made. For entries of type OLD_
TIME, this is the time when the system clock changed. For entries
of type NEW_TIME, this is the time the system clock was set to.

On the GNU system, struct utmpx is identical to struct utmp, except
that including ‘utmpx.h’ does not make visible the declaration of struct
exit_status.

The following macros are defined for use as values for the ut_type member of
the utmpx structure. The values are integer constants and are, on the GNU system,
identical to the definitions in ‘utmp.h’.

EMPTY This macro is used to indicate that the entry contains no valid user-
accounting information.

RUN_LVL This macro is used to identify the system’s runlevel.

BOOT_TIME
This macro is used to identify the time of system boot.

OLD_TIME
This macro is used to identify the time when the system clock
changed.

NEW_TIME
This macro is used to identify the time after the system changed.

INIT_PROCESS
This macro is used to identify a process spawned by the init process.

LOGIN_PROCESS
This macro is used to identify the session leader of a logged-in user.

USER_PROCESS
This macro is used to identify a user process.

272 The GNU C Library: System & Network Applications

DEAD_PROCESS
This macro is used to identify a terminated process.

The size of the ut_line, ut_id and ut_user arrays can be found using the
sizeof operator.

Functionvoid setutxent (void)
This function is similar to setutent. On the GNU system, it is simply an alias
for setutent.

Functionstruct utmpx * getutxent (void)
The getutxent function is similar to getutent, but returns a pointer to a
struct utmpx instead of struct utmp. On the GNU system, it simply is
an alias for getutent.

Functionvoid endutxent (void)
This function is similar to endutent. On the GNU system, it is simply an alias
for endutent.

Functionstruct utmpx * getutxid (const struct utmpx *id)
This function is similar to getutid, but uses struct utmpx instead of
struct utmp. On the GNU system, it is simply an alias for getutid.

Functionstruct utmpx * getutxline (const struct utmpx *line)
This function is similar to getutid, but uses struct utmpx instead of
struct utmp. On the GNU system, it is simply an alias for getutline.

Functionstruct utmpx * pututxline (const struct utmpx *utmp)

The pututxline function is functionally identical to pututline, but
uses struct utmpx instead of struct utmp. On the GNU system,
pututxline is simply an alias for pututline.

Functionint utmpxname (const char *file)
The utmpxname function is functionally identical to utmpname. On the GNU
system, utmpxname is simply an alias for utmpname.

You can translate between a traditional struct utmp and an XPG struct
utmpx with the following functions. On the GNU system, these functions are
merely copies, since the two structures are identical.

Functionint getutmp (const struct utmpx *utmpx, struct
utmp *utmp)

getutmp copies the information, insofar as the structures are compatible, from
utmpx to utmp.

Chapter 10: Users and Groups 273

Functionint getutmpx (const struct utmp *utmp, struct
utmpx *utmpx)

getutmpx copies the information, insofar as the structures are compatible,
from utmp to utmpx.

10.12.3 Logging In and Out

These functions, derived from BSD, are available in the separate ‘libutil’
library, and are declared in ‘utmp.h’.

The ut_user member of struct utmp is called ut_name in BSD. There-
fore, ut_name is defined as an alias for ut_user in ‘utmp.h’.

Functionint login tty (int filedes)
This function makes filedes the controlling terminal of the current process, redi-
rects standard input, standard output and standard error output to this terminal,
and closes filedes.
This function returns 0 on successful completion and -1 on error.

Functionvoid login (const struct utmp *entry)
The login functions inserts an entry into the user-accounting database. The
ut_line member is set to the name of the terminal on standard input. If
standard input is not a terminal, login uses standard output or standard error
output to determine the name of the terminal. If struct utmp has a ut_
type member, login sets it to USER_PROCESS, and if there is an ut_pid
member, it will be set to the process ID of the current process. The remaining
entries are copied from entry.
A copy of the entry is written to the user-accounting log file.

Functionint logout (const char *ut line)
This function modifies the user-accounting database to indicate that the user on
ut line has logged out.
The logout function returns 1 if the entry was successfully written to the
database and 0 on error.

Functionvoid logwtmp (const char *ut line, const char
*ut name, const char *ut host)

The logwtmp function appends an entry to the user-accounting log file, for the
current time and the information provided in the ut line, ut name and ut host
arguments.

Portability Note: The BSD struct utmp only has the ut_line, ut_name,
ut_host and ut_timemembers. Older systems do not even have the ut_host
member.

274 The GNU C Library: System & Network Applications

10.13 User Database
This section describes how to search and scan the database of registered users.

The database itself is kept in the file ‘/etc/passwd’ on most systems, but on
some systems a special network server gives access to it.

10.13.1 The Data Structure That Describes a User

The functions and data structures for accessing the system user-database are de-
clared in the header file ‘pwd.h’.

Data Typestruct passwd
The passwd data-structure is used to hold information about entries in the
system user-database. It has at least the following members:
char *pw_name

This is the user’s login name.
char *pw_passwd.

This is the encrypted password string.
uid_t pw_uid

This is the user ID number.
gid_t pw_gid

This is the user’s default group-ID number.
char *pw_gecos

This is a string typically containing the user’s real name and pos-
sibly other information, such as a phone number.

char *pw_dir
This is the user’s home directory, or initial working directory. This
might be a null pointer, in which case the interpretation is system
dependent.

char *pw_shell
This is the user’s default shell, or the initial program run when the
user logs in. This might be a null pointer, indicating that the system
default should be used.

10.13.2 Looking Up One User

You can search the system user-database for information about a specific user
using getpwuid or getpwnam. These functions are declared in ‘pwd.h’.

Functionstruct passwd * getpwuid (uid_t uid)
This function returns a pointer to a statically allocated structure containing in-
formation about the user whose user ID is uid. This structure may be overwritten
on subsequent calls to getpwuid.
A null pointer value indicates there is no user in the database with user ID uid.

Chapter 10: Users and Groups 275

Functionint getpwuid r (uid_t uid, struct passwd *result buf,
char *buffer, size_t buflen, struct passwd **result)

This function is similar to getpwuid in that it returns information about the
user whose user ID is uid. However, it fills the user-supplied structure pointed
to by result buf with the information instead of using a static buffer. The first
buflen bytes of the additional buffer pointed to by buffer are used to contain
additional information, normally strings which are pointed to by the elements
of the result structure.
If a user with ID uid is found, the pointer returned in result points to the record
that contains the wanted data (i.e., result contains the value result buf). If no
user is found or if an error occurred, the pointer returned in result is a null
pointer. The function returns 0 or an error code. If the buffer buffer is too small
to contain all the needed information, the error code ERANGE is returned and
errno is set to ERANGE.

Functionstruct passwd * getpwnam (const char *name)
This function returns a pointer to a statically allocated structure containing in-
formation about the user whose user name is name. This structure may be over-
written on subsequent calls to getpwnam.
A null pointer return indicates there is no user named name.

Functionint getpwnam r (const char *name, struct passwd
*result buf, char *buffer, size_t buflen, struct passwd
**result)

This function is similar to getpwnam in that is returns information about the
user whose user name is name. However, like getpwuid_r, it fills the user-
supplied buffers in result buf and buffer with the information instead of using a
static buffer.
The return values are the same as for getpwuid_r.

10.13.3 Scanning the List of All Users

This section explains how a program can read the list of all users in the system,
one user at a time. The functions described here are declared in ‘pwd.h’.

You can use the fgetpwent function to read user entries from a particular file.

Functionstruct passwd * fgetpwent (FILE *stream)
This function reads the next user entry from stream and returns a pointer to the
entry. The structure is statically allocated and is rewritten on subsequent calls to
fgetpwent. You must copy the contents of the structure if you wish to save
the information.
The stream must correspond to a file in the same format as the standard password
database file.

276 The GNU C Library: System & Network Applications

Functionint fgetpwent r (FILE *stream, struct passwd
*result buf, char *buffer, size_t buflen, struct passwd
**result)

This function is similar to fgetpwent in that it reads the next user entry from
stream, but the result is returned in the structure pointed to by result buf. The
first buflen bytes of the additional buffer pointed to by buffer are used to contain
additional information, normally strings that are pointed to by the elements of
the result structure.
The stream must correspond to a file in the same format as the standard
password-database file.
If the function returns 0, result points to the structure with the wanted data
(normally this is in result buf). If errors occurred, the return value is nonzero
and result contains a null pointer.

The way to scan all the entries in the user database is with setpwent,
getpwent and endpwent.

Functionvoid setpwent (void)
This function initializes a stream that getpwent and getpwent_r use to
read the user database.

Functionstruct passwd * getpwent (void)
The getpwent function reads the next entry from the stream initialized by
setpwent. It returns a pointer to the entry. The structure is statically allocated
and is rewritten on subsequent calls to getpwent. You must copy the contents
of the structure if you wish to save the information.
A null pointer is returned when no more entries are available.

Functionint getpwent r (struct passwd *result buf, char *buffer,
int buflen, struct passwd **result)

This function is similar to getpwent in that it returns the next entry from
the stream initialized by setpwent. Like fgetpwent_r, it uses the user-
supplied buffers in result buf and buffer to return the information requested.
The return values are the same as for fgetpwent_r.

Functionvoid endpwent (void)
This function closes the internal stream used by getpwent or getpwent_r.

10.13.4 Writing a User Entry

Functionint putpwent (const struct passwd *p, FILE *stream)
This function writes the user entry *p to the stream stream, in the format used
for the standard user-database file. The return value is 0 on success and nonzero
on failure.

Chapter 10: Users and Groups 277

This function exists for compatibility with SVID. We recommend that you
avoid using it, because it makes sense only on the assumption that the struct
passwd structure has no members except the standard ones; on a system that
merges the traditional Unix database with other extended information about
users, adding an entry using this function would inevitably leave out much of
the important information.
The function putpwent is declared in ‘pwd.h’.

10.14 Group Database
This section describes how to search and scan the database of registered groups.

The database itself is kept in the file ‘/etc/group’ on most systems, but on some
systems a special network service provides access to it.

10.14.1 The Data Structure for a Group

The functions and data structures for accessing the system group-database are
declared in the header file ‘grp.h’.

Data Typestruct group
The group structure is used to hold information about an entry in the system
group-database. It has at least the following members:

char *gr_name
This is the name of the group.

gid_t gr_gid
This is the group ID of the group.

char **gr_mem
This is a vector of pointers to the names of users in the group.
Each user name is a null-terminated string, and the vector itself is
terminated by a null pointer.

10.14.2 Looking Up One Group

You can search the group database for information about a specific group using
getgrgid or getgrnam. These functions are declared in ‘grp.h’.

Functionstruct group * getgrgid (gid_t gid)
This function returns a pointer to a statically allocated structure containing infor-
mation about the group whose group ID is gid. This structure may be overwritten
by subsequent calls to getgrgid.
A null pointer indicates there is no group with ID gid.

278 The GNU C Library: System & Network Applications

Functionint getgrgid r (gid_t gid, struct group *result buf,
char *buffer, size_t buflen, struct group **result)

This function is similar to getgrgid in that it returns information about the
group whose group ID is gid. However, it fills the user-supplied structure pointed
to by result buf with the information instead of using a static buffer. The first
buflen bytes of the additional buffer pointed to by buffer are used to contain
additional information, normally strings that are pointed to by the elements of
the result structure.
If a group with ID gid is found, the pointer returned in result points to the record
that contains the wanted data (i.e., result contains the value result buf). If no
group is found or if an error occurred, the pointer returned in result is a null
pointer. The function returns 0 or an error code. If the buffer buffer is too small
to contain all the needed information, the error code ERANGE is returned and
errno is set to ERANGE.

Functionstruct group * getgrnam (const char *name)
This function returns a pointer to a statically allocated structure containing in-
formation about the group whose group name is name. This structure may be
overwritten by subsequent calls to getgrnam.
A null pointer indicates there is no group named name.

Functionint getgrnam r (const char *name, struct group
*result buf, char *buffer, size_t buflen, struct group
**result)

This function is similar to getgrnam in that is returns information about the
group whose group name is name. Like getgrgid_r, it uses the user-supplied
buffers in result buf and buffer, not a static buffer.
The return values are the same as for getgrgid_r ERANGE.

10.14.3 Scanning the List of All Groups

This section explains how a program can read the list of all groups in the system,
one group at a time. The functions described here are declared in ‘grp.h’.

You can use the fgetgrent function to read group entries from a particular
file.

Functionstruct group * fgetgrent (FILE *stream)
The fgetgrent function reads the next entry from stream. It returns a pointer
to the entry. The structure is statically allocated and is overwritten on subsequent
calls to fgetgrent. You must copy the contents of the structure if you wish
to save the information.
The stream must correspond to a file in the same format as the standard group-
database file.

Chapter 10: Users and Groups 279

Functionint fgetgrent r (FILE *stream, struct group *result buf,
char *buffer, size_t buflen, struct group **result)

This function is similar to fgetgrent in that it reads the next user entry from
stream, but the result is returned in the structure pointed to by result buf. The
first buflen bytes of the additional buffer pointed to by buffer are used to contain
additional information, normally strings that are pointed to by the elements of
the result structure.
This stream must correspond to a file in the same format as the standard group-
database file.
If the function returns 0, result points to the structure with the wanted data
(normally this is in result buf). If errors occurred, the return value is nonzero
and result contains a null pointer.

The way to scan all the entries in the group database is with setgrent,
getgrent and endgrent.

Functionvoid setgrent (void)
This function initializes a stream for reading from the group database. You use
this stream by calling getgrent or getgrent_r.

Functionstruct group * getgrent (void)
The getgrent function reads the next entry from the stream initialized by
setgrent. It returns a pointer to the entry. The structure is statically allo-
cated and is overwritten on subsequent calls to getgrent. You must copy the
contents of the structure if you wish to save the information.

Functionint getgrent r (struct group *result buf, char *buffer,
size_t buflen, struct group **result)

This function is similar to getgrent in that it returns the next entry from the
stream initialized by setgrent. Like fgetgrent_r, it places the result in
user-supplied buffers pointed to result buf and buffer.
If the function returns 0, result contains a pointer to the data (normally equal to
result buf). If errors occurred, the return value is nonzero and result contains a
null pointer.

Functionvoid endgrent (void)
This function closes the internal stream used by getgrent or getgrent_r.

10.15 User- and Group- Database Example
Here is an example program showing the use of the system database-inquiry

functions. The program prints some information about the user running the pro-
gram.

280 The GNU C Library: System & Network Applications

#include <grp.h>

#include <pwd.h>

#include <sys/types.h>

#include <unistd.h>

#include <stdlib.h>

int

main (void)

{

uid_t me;

struct passwd *my_passwd;

struct group *my_group;

char **members;

/* Get information about the user ID. */

me = getuid ();

my_passwd = getpwuid (me);

if (!my_passwd)

{

printf ("Couldn’t find out about user %d.\n", (int) me);

exit (EXIT_FAILURE);

}

/* Print the information. */

printf ("I am %s.\n", my_passwd->pw_gecos);

printf ("My login name is %s.\n", my_passwd->pw_name);

printf ("My uid is %d.\n", (int) (my_passwd->pw_uid));

printf ("My home directory is %s.\n", my_passwd->pw_dir);

printf ("My default shell is %s.\n", my_passwd->pw_shell);

/* Get information about the default group ID. */

my_group = getgrgid (my_passwd->pw_gid);

if (!my_group)

{

printf ("Couldn’t find out about group %d.\n",

(int) my_passwd->pw_gid);

exit (EXIT_FAILURE);

}

/* Print the information. */

printf ("My default group is %s (%d).\n",

my_group->gr_name, (int) (my_passwd->pw_gid));

printf ("The members of this group are:\n");

members = my_group->gr_mem;

Chapter 10: Users and Groups 281

while (*members)

{

printf (" %s\n", *(members));

members++;

}

return EXIT_SUCCESS;

}

Here is some output from this program:
I am Throckmorton Snurd.

My login name is snurd.

My uid is 31093.

My home directory is /home/fsg/snurd.

My default shell is /bin/sh.

My default group is guest (12).

The members of this group are:

friedman

tami

10.16 Netgroup Database

10.16.1 Netgroup Data

Sometimes it is useful to group users according to other criteria (see Sec-
tion 10.14 [Group Database], page 277). It is useful to associate a certain group
of users with a certain machine. But grouping of host names is not yet supported.

In Sun Microsystems SunOS, a new kind of database appeared—the netgroup
database. It allows grouping hosts, users and domains freely, giving them individual
names. To be more concrete, a netgroup is a list of triples consisting of a host name,
a user name, and a domain name where any of the entries can be a wild-card entry
matching all inputs. A last possibility is that names of other netgroups can also be
given in the list specifying a netgroup. So you can construct arbitrary hierarchies
without loops.

Sun’s implementation allows netgroups only for the nis or nisplus service
(see Section 9.2.1 [Services in the NSS Configuration File], page 245). The imple-
mentation in the GNU C Library has no such restriction. An entry in either of the
input services must have the following form:

groupname (groupname | (hostname,username,domainname))+

Any of the fields in the triple can be empty, which means anything matches.
While describing the functions, we will see that the opposite case is useful as well—
there may be entries that will not match any input. For entries like this, a name
consisting of the single character ‘-’ will be used.

282 The GNU C Library: System & Network Applications

10.16.2 Looking Up One Netgroup

The lookup functions for netgroups are a bit different from all other system
database-handling functions. Since a single netgroup can contain many entries,
a two-step process is needed. First you select a single netgroup, and then you can
iterate over all entries in this netgroup. These functions are declared in ‘netdb.h’.

Functionint setnetgrent (const char *netgroup)
A call to this function initializes the internal state of the library to allow calls
of the getnetgrent to iterate over all entries in the netgroup with name net-
group.
When the call is successful (when a netgroup with this name exists) the return
value is 1. When the return value is 0, no netgroup of this name is known or
some other error occurred.

It is important to remember that there is only one single state for iterating the net-
groups. Even if the programmer uses the getnetgrent_r function, the result is
not really reentrant, since only one single netgroup at a time can ever be processed.
If the program needs to process more than one netgroup simultaneously, the pro-
grammer must protect this by using external locking. This problem was introduced
in the original netgroups implementation in SunOS, and since the GNU C Library
must stay compatible, it is not possible to change this.

Some other functions also use the netgroups state. Currently, these are the
innetgr function and parts of the implementation of the compat service part
of the NSS implementation.

Functionint getnetgrent (char **hostp, char **userp, char
**domainp)

This function returns the next unprocessed entry of the currently selected net-
group. The string pointers, in which addresses are passed in the arguments
hostp, userp and domainp, will contain after a successful call pointers to ap-
propriate strings. If the string in the next entry is empty, the pointer has the
value NULL. The returned string-pointers are only valid if none of the netgroup-
related functions are called.
The return value is 1 if the next entry was successfully read. A value of 0 means
no further entries exist or internal errors occurred.

Functionint getnetgrent r (char **hostp, char **userp, char
**domainp, char *buffer, int buflen)

This function is similar to getnetgrentwith only one exception—the strings
the three string pointers hostp, userp and domainp point to are placed in the
buffer of buflen bytes starting at buffer. This means the returned values are
valid even after other netgroup-related functions are called.
The return value is 1 if the next entry was successfully read and the buffer
contains enough room to place the strings in it. 0 is returned in case no more
entries are found, the buffer is too small or internal errors occurred.

Chapter 10: Users and Groups 283

This function is a GNU extension. The original implementation in the SunOS
libc does not provide this function.

Functionvoid endnetgrent (void)
This function frees all buffers that were allocated to process the last selected
netgroup. As a result, all string pointers returned by calls to getnetgrent
are invalid afterward.

10.16.3 Testing for Netgroup Membership

It is often not necessary to scan the whole netgroup, since often the only inter-
esting question is whether a given entry is part of the selected netgroup.

Functionint innetgr (const char *netgroup, const char *host,
const char *user, const char *domain)

This function tests whether the triple specified by the parameters hostp, userp
and domainp is part of the netgroup netgroup. Using this function has these two
advantages:

1. No other netgroup function can use the global netgroup state since internal
locking is used.

2. The function is implemented more efficiently than successive calls to the
other set/get/endnetgrent functions.

Any of the pointers hostp, userp or domainp can be NULL, which means any
value is accepted in this position. This is also true for the name ‘-’ which should
not match any other string otherwise.
The return value is 1 if an entry matching the given triple is found in the net-
group. The return value is 0 if the netgroup itself is not found, the netgroup
does not contain the triple or internal errors occurred.

284 The GNU C Library: System & Network Applications

Chapter 11: System Management 285

11 System Management
This chapter describes facilities for controlling the system that underlies a pro-

cess, including the operating system and hardware, and for getting information
about it. Anyone can generally use the informational facilities, but usually only a
properly privileged process can make changes.

To get information on parameters of the system that are built into the system,
such as the maximum length of a file name, Chapter 12 [System-Configuration
Parameters], page 303.

11.1 Host Identification
This section explains how to identify the particular system on which your pro-

gram is running. First, let’s review the various ways computer systems are named,
which is a little complicated because of the history of the development of the Inter-
net.

Every Unix system (also known as a host) has a host name, whether it’s con-
nected to a network or not. In its simplest form, as used before computer networks
were an issue, it’s just a word like ‘chicken’.

But any system attached to the Internet or any network like it conforms to a more
rigorous naming convention as part of the Domain Name System (DNS). In DNS,
every host name is composed of both a hostname and a domain name:

You will note that “hostname” looks a lot like “host name”, but it is not the same
thing. People often incorrectly refer to entire host names as “domain names.”

In DNS, the full host name is properly called the FQDN (Fully Qualified Do-
main Name) and consists of the hostname, then a period, then the domain name.
The domain name itself usually has multiple components separated by peri-
ods. So for example, a system’s hostname may be ‘chicken’ and its do-
main name might be ‘ai.mit.edu’, so its FQDN (which is its host name) is
‘chicken.ai.mit.edu’.

Adding to the confusion, though, is that DNS is not the only namespace in which
a computer needs to be known. Another namespace is the NIS (aka YP) namespace.
For NIS purposes, there is another domain name, which is called the NIS domain
name or the YP domain name. It need not have anything to do with the DNS domain
name.

Confusing things even more is the fact that in DNS, it is possible for multiple
FQDNs to refer to the same system. However, there is always exactly one of them
that is the true host name, and it is called the canonical FQDN.

In some contexts, the host name is called a “node name.”
For more information on DNS host naming, see Section 5.6.2.4 [Host Names],

page 141.
Prototypes for these functions appear in ‘unistd.h’.
The programs hostname, hostid and domainname work by calling these

functions.

286 The GNU C Library: System & Network Applications

Functionint gethostname (char *name, size_t size)
This function returns the host name of the system on which it is called, in the
array name. The size argument specifies the size of this array, in bytes. This is
not the DNS hostname. If the system participates in DNS, this is the FQDN (see
above).
The return value is 0 on success and -1 on failure. In the GNU C Library,
gethostname fails if size is not large enough; then you can try again with a
larger array. The following errno error condition is defined for this function:

ENAMETOOLONG
The size argument is less than the size of the host name plus 1.

On some systems, there is a symbol for the maximum possible host name length,
MAXHOSTNAMELEN. It is defined in ‘sys/param.h’. But you can’t count on
this to exist, so it is cleaner to handle failure and try again.
gethostname stores the beginning of the host name in name even if the host
name won’t entirely fit. For some purposes, a truncated host name is good
enough. If it is, you can ignore the error code.

Functionint sethostname (const char *name, size_t length)
The sethostname function sets the host name of the system that calls it to
name, a string with length length. Only privileged processes are permitted to do
this.
Usually sethostname gets called just once, at system boot time. Often, the
program that calls it sets it to the value it finds in the file /etc/hostname.
Be sure to set the host name to the full host name, not just the DNS hostname
(see above).
The return value is 0 on success and -1 on failure. The following errno error
condition is defined for this function:

EPERM This process cannot set the host name because it is not privileged.

Functionint getdomainnname (char *name, size_t length)
getdomainname returns the NIS (aka YP) domain name of the system on
which it is called. This is not the more popular DNS domain name. Get that with
gethostname.
The specifics of this function are analogous to gethostname, above.

Functionint setdomainname (const char *name, size_t length)
getdomainname sets the NIS (aka YP) domain name of the system on which
it is called. This is not the more popular DNS domain name. Set that with
sethostname.
The specifics of this function are analogous to sethostname, above.

Chapter 11: System Management 287

Functionlong int gethostid (void)
This function returns the “host ID” of the machine the program is running on.
By convention, this is usually the primary Internet IP address of that machine,
converted to a long int. However, on some systems it is a meaningless but
unique number that is hard coded for each machine.
This is not widely used. It arose in BSD 4.2, but was dropped in BSD 4.4. It is
not required by POSIX.
The proper way to query the IP address is to use gethostbyname on the
results of gethostname. For more information on IP addresses, see Sec-
tion 5.6.2 [Host Addresses], page 136.

Functionint sethostid (long int id)
The sethostid function sets the “host ID” of the host machine to id. Only
privileged processes are permitted to do this. Usually it happens just once, at
system boot time.
The proper way to establish the primary IP address of a system is to configure
the IP address resolver to associate that IP address with the system’s host name
as returned by gethostname. For example, put a record for the system in
‘/etc/hosts’.
See gethostid above for more information on host ids.
The return value is 0 on success and -1 on failure. The following errno error
conditions are defined for this function:

EPERM This process cannot set the host name because it is not privileged.

ENOSYS The operating system does not support setting the host ID. On
some systems, the host ID is a meaningless but unique number
hard coded for each machine.

11.2 Platform-Type Identification
You can use the uname function to find out some information about the type of

computer your program is running on. This function and the associated data type
are declared in the header file ‘sys/utsname.h’.

As a bonus, uname also gives some information identifying the particular sys-
tem your program is running on. This is the same information that you can get with
functions targetted to this purpose described in Section 11.1 [Host Identification],
page 285.

Data Typestruct utsname
The utsname structure is used to hold information returned by the uname
function. It has the following members:

char sysname[]
This is the name of the operating system in use.

288 The GNU C Library: System & Network Applications

char release[]
This is the current release level of the operating system implemen-
tation.

char version[]
This is the current version level within the release of the operating
system.

char machine[]
This is a description of the type of hardware that is in use.
Some systems provide a mechanism to interrogate the kernel di-
rectly for this information. On systems without such a mechanism,
the GNU C library fills in this field based on the configuration name
that was specified when building and installing the library.
GNU uses a three-part name to describe a system configuration;
the three parts are cpu, manufacturer and system-type, and they are
separated with dashes. Any possible combination of three names is
potentially meaningful, but most such combinations are meaning-
less in practice and even the meaningful ones are not necessarily
supported by any particular GNU program.
Since the value in machine is supposed to describe just the hard-
ware, it consists of the first two parts of the configuration name:
‘cpu-manufacturer’. For example, it might be one of these:

"sparc-sun", "i386-anything", "m68k-hp",
"m68k-sony", "m68k-sun", "mips-dec"

char nodename[]
This is the host name of this particular computer. In the GNU C
library, the value is the same as that returned by gethostname
(see Section 11.1 [Host Identification], page 285).
gethostname() is implemented with a call to uname().

char domainname[]
This is the NIS or YP domain name. It is the same value re-
turned by getdomainname (see Section 11.1 [Host Identifica-
tion], page 285). This element is a relatively recent invention and
use of it is not as portable as use of the rest of the structure.

Functionint uname (struct utsname *info)
The uname function fills in the structure pointed to by info with information
about the operating system and host machine. A nonnegative value indicates
that the data was successfully stored.
-1 as the value indicates an error. The only error possible is EFAULT, which
we normally don’t mention as it is always a possibility.

Chapter 11: System Management 289

11.3 Controlling and Querying Mounts
All files are in file systems, and before you can access any file, its file system

must be mounted. Because of Unix’s concept of Everything is a file, mounting of
file systems is central to doing almost anything. This section explains how to find
out what file systems are currently mounted, what file systems are available for
mounting and how to change what is mounted.

The classic file-system is the contents of a disk drive. The concept is consider-
ably more abstract, though, and lots of things other than disk drives can be mounted.

Some block devices don’t correspond to traditional devices like disk drives. For
example, a loop device is a block device whose driver uses a regular file in another
file-system as its medium. So if that regular file contains appropriate data for a file
system, you can essentially mount a regular file by mounting the loop device.

Some file systems aren’t based on a device of any kind. The “proc” file-system,
for example, contains files whose data is made up by the file-system driver on the
fly whenever you ask for it. And when you write to it, the data you write causes
changes in the system. No data gets stored.

11.3.1 Mount Information

For some programs, it is desirable and necessary to access information about
whether a certain file-system is mounted and, if it is, where, or simply to get lists
of all the available file-systems. The GNU libc provides some functions to retrieve
this information portably.

Traditionally, Unix systems have a file named ‘/etc/fstab’ that describes
all possibly mounted file-systems. The mount program uses this file to mount
at start-up time of the system all the necessary file-systems. The information
about all the file systems actually mounted is normally kept in a file named ei-
ther ‘/var/run/mtab’ or ‘/etc/mtab’. Both files share the same syntax and
it is crucial that this syntax is followed all the time. Therefore it is best to never
directly write the files. The functions described in this section can do this, and they
also provide the functionality to convert the external textual representation to the
internal representation.

The ‘fstab’ and ‘mtab’ files are maintained on a system by convention. It is
possible for the files not to exist or not to be consistent with what is really mounted
or available to mount, if the system’s administration policy allows it. But programs
that mount and unmount file systems typically maintain and use these files as de-
scribed herein.

The filenames given above should never be used directly. The portable way to
handle these files is to use the macro _PATH_FSTAB, defined in ‘fstab.h’, or
_PATH_MNTTAB, defined in ‘mntent.h’ and ‘paths.h’, for ‘fstab’; and
the macro _PATH_MOUNTED, also defined in ‘mntent.h’ and ‘paths.h’, for
‘mtab’. The alternate macro names FSTAB, MNTTAB and MOUNTED are also
defined, but these names are deprecated and kept only for backward compatibility.
The names _PATH_MNTTAB and _PATH_MOUNTED should always be used.

290 The GNU C Library: System & Network Applications

11.3.1.1 The ‘fstab’ File

The internal representation for entries of the file is struct fstab, defined in
‘fstab.h’.

Data Typestruct fstab
This structure is used with the getfsent, getfsspec, and getfsfile
functions.

char *fs_spec
This element describes the device from which the file system is
mounted. Normally, this is the name of a special device, such as
a hard-disk partition, but it could also be a more or less generic
string. For NFS it would be a hostname and directory-name com-
bination.
Even though the element is not declared const, it shouldn’t be
modified. The missing const has historic reasons, since this
function predates ISO C. The same is true for the other string ele-
ments of this structure.

char *fs_file
This describes the mount point on the local system. Accessing any
file in this file system has this string implicitly or explicitly as a
prefix.

char *fs_vfstype
This is the type of the file system. Depending on what the under-
lying kernel understands, it can be any string.

char *fs_mntops
This is a string containing options passed to the kernel with the
mount call. Again, this can be almost anything. There can be
more than one option, separated from the others by a comma. Each
option consists of a name and an optional value part, introduced by
an ‘=’ character.
If the value of this element must be processed it should ideally be
done using the getsubopt function.1

const char *fs_type
This name is poorly chosen. This element points to a string (pos-
sibly in the fs_mntops string) that describes the modes with
which the file system is mounted. ‘fstab’ defines five macros
to describe the possible values:

FSTAB_RW
The file system gets mounted with read and write en-
abled.

1 See Loosemore et al., “Parsing of Suboptions” (see chap. 1, n. 1).

Chapter 11: System Management 291

FSTAB_RQ
The file system gets mounted with read and write en-
abled. Write access is restricted by quotas.

FSTAB_RO
The file system gets mounted read-only.

FSTAB_SW
This is not a real file-system, it is a swap device.

FSTAB_XX
This entry from the ‘fstab’ file is totally ignored.

Testing for equality with these values must happen using strcmp,
since these are all strings. Comparing the pointer will probably
always fail.

int fs_freq
This element describes the dump frequency in days.

int fs_passno
This element describes the pass number on parallel dumps. It is
closely related to the dump utility used on Unix systems.

To read the entire content of the of the ‘fstab’ file, the GNU libc contains a set
of three functions which are designed in the usual way.

Functionint setfsent (void)
This function makes sure that the internal read pointer for the ‘fstab’ file is at
the beginning of the file. This is done by either opening the file or resetting the
read pointer.
Since the file handle is internal to the libc, this function is not threadsafe.
This function returns a nonzero value if the operation was successful and the
getfs* functions can be used to read the entries of the file.

Functionvoid endfsent (void)
This function makes sure that all resources acquired by a prior call to
setfsent (explicitly or implicitly by calling getfsent) are freed.

Functionstruct fstab * getfsent (void)
This function returns the next entry of the ‘fstab’ file. If this is the first call
to any of the functions handling ‘fstab’ since program start or the last call of
endfsent, the file will be opened.
The function returns a pointer to a variable of type struct fstab. This vari-
able is shared by all threads, and therefore this function is not threadsafe. If an
error occurred, getfsent returns a NULL pointer.

292 The GNU C Library: System & Network Applications

Functionstruct fstab * getfsspec (const char *name)
This function returns the next entry of the ‘fstab’ file that has a string equal
to name pointed to by the fs_spec element. Since there is normally exactly
one entry for each special device, it makes no sense to call this function more
than once for the same argument. If this is the first call to any of the functions
handling ‘fstab’ since program start or the last call of endfsent, the file
will be opened.
The function returns a pointer to a variable of type struct fstab. This vari-
able is shared by all threads, and therefore this function is not threadsafe. If an
error occurred, getfsent returns a NULL pointer.

Functionstruct fstab * getfsfile (const char *name)
This function returns the next entry of the ‘fstab’ file that has a string equal
to name pointed to by the fs_file element. Since there is normally exactly
one entry for each mount point, it makes no sense to call this function more
than once for the same argument. If this is the first call to any of the functions
handling ‘fstab’ since program start or the last call of endfsent, the file
will be opened.
The function returns a pointer to a variable of type struct fstab. This vari-
able is shared by all threads, and therefore this function is not threadsafe. If an
error occurred, getfsent returns a NULL pointer.

11.3.1.2 The ‘mtab’ File

The following functions and data structure access the ‘mtab’ file.

Data Typestruct mntent
This structure is used with the getmntent, getmntent_t, addmntent
and hasmntopt functions.

char *mnt_fsname
This element contains a pointer to a string describing the name
of the special device from which the file system is mounted. It
corresponds to the fs_spec element in struct fstab.

char *mnt_dir
This element points to a string describing the mount point of the
file system. It corresponds to the fs_file element in struct
fstab.

char *mnt_type
mnt_type describes the file-system type, and is therefore equiv-
alent to fs_vfstype in struct fstab. ‘mntent.h’ defines
a few symbolic names for some of the values this string can have.
But since the kernel can support arbitrary file-systems, it does not
make much sense to give them symbolic names. If you know the
symbol name, you also know the file-system name. Nevertheless,
here is the list of the symbols provided in ‘mntent.h’:

Chapter 11: System Management 293

MNTTYPE_IGNORE
This symbol expands to "ignore". The value is
sometime used in ‘fstab’ files to make sure entries
are not used without removing them.

MNTTYPE_NFS
This symbol expands to "nfs". Using this macro
sometimes could make sense since it names the de-
fault NFS implementation, in case both version 2 and
3 are supported.

MNTTYPE_SWAP
This symbol expands to "swap". It names the spe-
cial ‘fstab’ entry that names one of the possibly
multiple swap partitions.

char *mnt_opts
The element contains a string describing the options used
while mounting the file system. As for the equivalent element
fs_mntops of struct fstab, it is best to use the function
getsubopt to access the parts of this string.2

The ‘mntent.h’ file defines a number of macros with string val-
ues that correspond to some of the options understood by the ker-
nel. There might be many more possible options, so it doesn’t
make much sense to rely on these macros, but to be consistent here
is the list:

MNTOPT_DEFAULTS
This symbol expands to "defaults". This option
should be used alone since it indicates all values for
the customizable values are chosen to be the default.

MNTOPT_RO
This symbol expands to "ro". See the FSTAB_RO
value; it means the file system is mounted read-only.

MNTOPT_RW
This symbol expands to "rw". See the FSTAB_RW
value; it means the file system is mounted with read
and write permissions.

MNTOPT_SUID
This symbol expands to "suid". This means that
the SUID bit (see Section 10.4 [How an Application
Can Change Persona], page 254) is respected when a
program from the file system is started.

2 Ibid., “Parsing of Suboptions”.

294 The GNU C Library: System & Network Applications

MNTOPT_NOSUID
This symbol expands to "nosuid". This is the op-
posite of MNTOPT_SUID. The SUID bit for all files
from the file system is ignored.

MNTOPT_NOAUTO
This symbol expands to "noauto". At start-up
time, the mount program will ignore this entry if it
is started with the -a option to mount all file-systems
mentioned in the ‘fstab’ file.

As for the FSTAB_* entries introduced above, it is important to
use strcmp to check for equality.

mnt_freq
This element corresponds to fs_freq and also specifies the fre-
quency in days in which dumps are made.

mnt_passno
This element is equivalent to fs_passnowith the same meaning,
which is uninteresting for all programs beside dump.

For the ‘mtab’ file, there is again a set of three functions to access all entries
in a row. Unlike the functions to handle ‘fstab’, these functions do not access a
fixed file, and there is even a threadsafe variant of the get function. Besides this,
the GNU libc contains functions to alter the file and test for specific options.

FunctionFILE * setmntent (const char *file, const char *mode)
The setmntent function prepares the file named FILE, which must be in the
format of an ‘fstab’ and ‘mtab’ file, for the upcoming processing through the
other functions of the family. The mode parameter can be chosen in the way the
opentype parameter for fopen can be chosen.3 If the file is opened for writing,
the file is also allowed to be empty.
If the file was successfully opened, setmntent returns a file descriptor for
future use. Otherwise, the return value is NULL and errno is set accordingly.

Functionint endmntent (FILE *stream)
This function takes for the stream parameter a file handle that was previously
returned from the setmntent call. endmntent closes the stream and frees
all resources.
The return value is 1 unless an error occurred, in which case it is 0.

Functionstruct mntent * getmntent (FILE *stream)
The getmntent function takes as the parameter a file handle previously re-
turned by successful call to setmntent. It returns a pointer to a static variable

3 Ibid., “Opening Streams”.

Chapter 11: System Management 295

of type struct mntent that is filled with the information from the next entry
from the file currently read.
The file format used prescribes the use of spaces or tab characters to separate
the fields. This makes it harder to use names containing one of these characters
(e.g., mount points using spaces). Therefore, these characters are encoded in the
files and the getmntent function takes care of the decoding while reading the
entries back in. ‘\040’ is used to encode a space character, ‘\012’ to encode
a tab character and ‘\\’ to encode a backslash.
If there was an error or the end of the file is reached, the return value is NULL.
This function is not threadsafe, since all calls to this function return a pointer
to the same static variable. getmntent_r should be used in situations where
multiple threads access the file.

Functionstruct mntent * getmntent r (FILE *stream, struct
mentent *result, char *buffer, int bufsize)

The getmntent_r function is the reentrant variant of getmntent. It also
returns the next entry from the file and returns a pointer. The actual variable the
values are stored in is not static, though. Instead, the function stores the values
in the variable pointed to by the result parameter. Additional information (e.g.,
the strings pointed to by the elements of the result) are kept in the buffer of size
bufsize pointed to by buffer.
Escaped characters (space, tab, backslash) are converted back in the same way
as for getmentent.
The function returns a NULL pointer in error cases. Errors could be

• There was an error while reading the file.
• End of file was reached.
• bufsize is too small for reading a complete new entry.

Functionint addmntent (FILE *stream, const struct mntent
*mnt)

The addmntent function allows the addition of a new entry to the file previ-
ously opened with setmntent. The new entries are always appended—even
if the position of the file descriptor is not at the end of the file, this function does
not overwrite an existing entry following the current position.
The implication of this is that to remove an entry from a file, you have to create
a new file while leaving out the entry to be removed, and after closing the file,
remove the old one and rename the new file to the chosen name.
This function takes care of spaces and tab characters in the names to be written
to the file. It converts them and the backslash character into the format describe
in the getmntent description above.
This function returns 0 if the operation was successful. Otherwise, the return
value is 1 and errno is set appropriately.

296 The GNU C Library: System & Network Applications

Functionchar * hasmntopt (const struct mntent *mnt, const
char *opt)

This function can be used to check whether the string pointed to by the mnt_
opts element of the variable pointed to by mnt contains the option opt. If this
is true, a pointer to the beginning of the option in the mnt_opts element is
returned. If no such option exists, the function returns NULL.
This function is useful to test whether a specific option is present, but when
all options have to be processed, one is better off with using the getsubopt
function to iterate over all options in the string.

11.3.1.3 Other (Non-libc) Sources of Mount Information

On a system with a Linux kernel and the proc file-system, you can get infor-
mation on currently mounted file-systems from the file ‘mounts’ in the proc
file-system. Its format is similar to that of the ‘mtab’ file, but represents what is
truly mounted without relying on facilities outside the kernel to keep ‘mtab’ up to
date.

11.3.2 Mount, Unmount, Remount

This section describes the functions for mounting, unmounting and remounting
file systems.

Only the superuser can mount, unmount or remount a file system.
These functions do not access the ‘fstab’ and ‘mtab’ files. You should main-

tain and use these separately (see Section 11.3.1 [Mount Information], page 289).
The symbols in this section are declared in ‘sys/mount.h’.

Functionint mount (const char *special file, const char *dir,
const char *fstype, unsigned long int options, const
void *data)

mountmounts or remounts a file system. The two operations are quite different
and are merged rather unnaturally into this one function. The MS_REMOUNT
option, explained below, determines whether mount mounts or remounts.
For a mount, the file system on the block device represented by the device spe-
cial file named special file gets mounted over the mount point dir. This means
that the directory dir (along with any files in it) is no longer visible; in its place
(and still with the name dir) is the root directory of the file system on the device.
As an exception, if the file-system type (see below) is one that is not based on
a device (e.g. “proc”), mount instantiates a file system and mounts it over dir
and ignores special file.
For a remount, dir specifies the mount point where the file system to be re-
mounted is (and remains) mounted, and special file is ignored. Remounting a
file system means changing the options that control operations on the file system
while it is mounted. It does not mean unmounting and mounting again.

Chapter 11: System Management 297

For a mount, you must identify the type of the file system as fstype. This
type tells the kernel how to access the file system and can be thought of as
the name of a file-system driver. The acceptable values are system dependent.
On a system with a Linux kernel and the proc file-system, the list of possi-
ble values is in the file ‘filesystems’ in the proc file-system (type cat
/proc/filesystems to see the list). With a Linux kernel, the types of file
systems that mount can mount and their type names depend on what file-system
drivers are configured into the kernel or loaded as loadable kernel modules. An
example of a common value for fstype is ext2.
For a remount, mount ignores fstype.
options specifies a variety of options that apply until the file system is un-
mounted or remounted. The precise meaning of an option depends on the file
system and with some file-systems, an option may have no effect at all. Further-
more, for some file-systems, some of these options (but never MS_RDONLY)
can be overridden for individual file accesses via ioctl.
options is a bit string with bit fields defined using the following mask and
masked value macros:

MS_MGC_MASK
This multibit field contains a magic number. If it does not have
the value MS_MGC_VAL, mount assumes all the following bits
are zero and the data argument is a null string, regardless of their
actual values.

MS_REMOUNT
This bit on means to remount the file system. Off means to mount
it.

MS_RDONLY
When this bit is on, it specifies that no writing to the file system
will be allowed while it is mounted. This cannot be overridden by
ioctl. This option is available on nearly all file systems.

S_IMMUTABLE
When this bit is on, it specifies that no writing to the files in the file
system will be allowed while it is mounted. This can be overridden
for a particular file access by a properly privileged call to ioctl.
This option is a relatively new invention and is not available on
many file systems.

S_APPEND
When this bit is on. it specifies that the only file-writing that will
be allowed while the file system is mounted is appending. Some
file systems allow this to be overridden for a particular process
by a properly privileged call to ioctl. This is a relatively new
invention and is not available on many file systems.

298 The GNU C Library: System & Network Applications

MS_NOSUID
When this bit is on, it specifies that Setuid and Setgid permissions
on files in the file system will be ignored while it is mounted.

MS_NOEXEC
When this bit is on, it specifies that no files in the file system will
be executed while the file system is mounted.

MS_NODEV
When this bit is on, it specifies that no device special files in the
file system will be accessible while the file system is mounted.

MS_SYNCHRONOUS
When this bit is on, it specifies that all writes to the file system
while it is mounted will be synchronous—data will be synced be-
fore each write completes rather than be held in the buffer cache.

MS_MANDLOCK
When this bit is on, it specifies that mandatory locks on files will
be permitted while the file system is mounted.

MS_NOATIME
When this bit is on, it specifies that access times of files will not
be updated when the files are accessed while the file system is
mounted.

MS_NODIRATIME
When this bit is on, it specifies that access times of directories
will not be updated when the directories are accessed while the file
system in mounted.

Any bits not covered by the above masks should be set off; otherwise, results
are undefined.
The meaning of data depends on the file system type and is controlled entirely
by the file-system driver in the kernel.
Here is an example:

#include <sys/mount.h>

mount("/dev/hdb", "/cdrom", MS_MGC_VAL | MS_RDONLY | MS_NOSUID, "");

mount("/dev/hda2", "/mnt", MS_MGC_VAL | MS_REMOUNT, "");

Appropriate arguments for mount are conventionally recorded in the ‘fstab’
table (see Section 11.3.1 [Mount Information], page 289).
The return value is 0 if the mount or remount is successful. Otherwise, it is -1
and errno is set appropriately. The values of errno are file-system depen-
dent, but here is a general list:

Chapter 11: System Management 299

EPERM

• The process is not superuser.

ENODEV

• The file-system type fstype is not known to the kernel.

ENOTBLK

• The file dev is not a block device special file.

EBUSY

• The device is already mounted.
• The mount point is busy—it is some process’s working direc-

tory or has a file system mounted on it already.
• The request is to remount read-only, but there are files open

for write.

EINVAL

• A remount was attempted, but there is no file system mounted
over the specified mount point.

• The supposed file system has an invalid superblock.

EACCES

• The file system is inherently read-only (possibly due to a
switch on the device) and the process attempted to mount it
read/write (by setting the MS_RDONLY bit off).

• special file or dir is not accessible due to file permissions.
• special file is not accessible because it is in a file system that

is mounted with the MS_NODEV option.

EM_FILE

• The table of dummy devices is full. mount needs to create
a dummy device (aka “unnamed” device) if the file system
being mounted is not one that uses a device.

Functionint umount2 (const char *file, int flags)
umount2 unmounts a file system.
You can identify the file system to unmount either by the device special file that
contains the file system or by the mount point. The effect is the same. Specify
either as the string file.
flags contains the 1-bit field identified by the following mask macro:

MNT_FORCE
This bit on means to force the unmounting even if the file system is
busy, by making it unbusy first. If the bit is off and the file system
is busy, umount2 fails with errno = EBUSY. Depending on the
file system, this may override all, some, or no busy conditions.

300 The GNU C Library: System & Network Applications

All other bits in flags should be set to zero; otherwise, the result is undefined.
Here is an example:

#include <sys/mount.h>

umount2("/mnt", MNT_FORCE);

umount2("/dev/hdd1", 0);

After the file system is unmounted, the directory that was the mount point is
visible, as are any files in it.
As part of unmounting, umount2 syncs the file system.
If the unmounting is successful, the return value is 0. Otherwise, it is -1 and
errno is set accordingly:

EPERM The process is not superuser.

EBUSY The file system cannot be unmounted because it is busy—it con-
tains a directory that is some process’s working directory or a file
that some process has open. With some file-systems in some cases,
you can avoid this failure with the MNT_FORCE option.

EINVAL file validly refers to a file, but that file is neither a mount point nor
a device special file of a currently mounted file-system.

This function is not available on all systems.

Functionint umount (const char *file)
umount does the same thing as umount2 with flags set to zeroes. It is more
widely available than umount2, but since it lacks the ability to forcefully un-
mount a file system, it is deprecated when umount2 is also available.

11.4 System Parameters
This section describes the sysctl function, which gets and sets a variety of

system parameters.
The symbols used in this section are declared in the file ‘sysctl.h’.

Functionint sysctl (int *names, int nlen, void *oldval,
size t *oldlenp, void *newval, size t newlen)
sysctl gets or sets a specified system parameter. There are so many of these
parameters that it is not practical to list them all here, but here are some exam-
ples:

• Network domain name
• Paging parameters

Chapter 11: System Management 301

• Network Address Resolution Protocol time-out time
• Maximum number of files that may be open
• Root file-system device
• When the kernel was built

The set of available parameters depends on the kernel configuration and can
change while the system is running, particularly when you load and unload load-
able kernel modules.
The system parameters with which syslog is concerned are arranged in a hier-
archical structure like a hierarchical file-system. To identify a particular param-
eter, you specify a path through the structure in a way analogous to specifying
the pathname of a file. Each component of the path is specified by an integer
and each of these integers has a macro defined for it by ‘sysctl.h’. names is
the path, in the form of an array of integers. Each component of the path is one
element of the array, in order. nlen is the number of components in the path.
For example, the first component of the path for all the paging parameters is the
value CTL_VM. For the free-page thresholds, the second component of the path
is VM_FREEPG. So to get the free-page threshold values, make names an array
containing the two elements CTL_VM and VM_FREEPG, and make nlen = 2.
The format of the value of a parameter depends on the parameter. Sometimes
it is an integer, sometimes it is an ASCII string; sometimes it is an elaborate
structure. In the case of the free-page thresholds used in the example above, the
parameter value is a structure containing several integers.
In any case, you identify a place to return the parameter’s value with oldval and
specify the amount of storage available at that location as *oldlenp. *oldlenp
does double-duty because it is also the output location that contains the actual
length of the returned value.
If you don’t want the parameter value returned, specify a null pointer for oldval.
To set the parameter, specify the address and length of the new value as newval
and newlen. If you don’t want to set the parameter, specify a null pointer as
newval.
If you get and set a parameter in the same sysctl call, the value returned is
the value of the parameter before it was set.
Each system parameter has a set of permissions similar to the permissions for a
file (including the permissions on directories in its path) that determine whether
you may get or set it. For the purposes of these permissions, every parameter is
considered to be owned by the superuser and Group 0 so processes with that ef-
fective uid or gid may have more access to system parameters. Unlike with files,
the superuser does not invariably have full permission to all system parameters,
because some of them are designed never to be changed.
sysctl returns a zero return value if it succeeds. Otherwise, it returns -1 and
sets errno appropriately. Besides the failures that apply to all system calls, the
following are the errno codes for all possible failures:

302 The GNU C Library: System & Network Applications

EPERM The process is not permitted to access one of the components of
the path of the system parameter or is not permitted to access the
system parameter itself in the way (read or write) that it requested.

ENOTDIR There is no system parameter corresponding to name.

EFAULT oldval is not null, which means the process wanted to read the
parameter, but *oldlenp is 0, so there is no place to return it.

EINVAL

The process attempted to set a system parameter to a value that is
not valid for that parameter.
Or, the space provided for the return of the system parameter is not
the right size for that parameter.

ENOMEM This value may be returned instead of the more correct EINVAL in
some cases where the space provided for the return of the system
parameter is too small.

If you have a Linux kernel with the proc file-system, you can get and set most
of the same parameters by reading and writing to files in the sys directory of
the proc file-system. In the sys directory, the directory structure represents the
hierarchical structure of the parameters, so you can display the free-page thresholds
with:

cat /proc/sys/vm/freepages

Some more traditional and more widely available, though less general, GNU C
Library functions for getting and setting some of the same system parameters are

• getdomainname, setdomainname
• gethostname, sethostname (see Section 11.1 [Host Identification],

page 285)
• uname (see Section 11.2 [Platform-Type Identification], page 287)
• bdflush

Chapter 12: System-Configuration Parameters 303

12 System-Configuration Parameters

The functions and macros listed in this chapter give information about configura-
tion parameters of the operating system—for example, capacity limits, presence of
optional POSIX features and the default path for executable files (see Section 12.12
[String-Valued Parameters], page 324).

12.1 General Capacity-Limits
The POSIX.1 and POSIX.2 standards specify a number of parameters that describe

capacity limitations of the system. These limits can be fixed constants for a given
operating system, or they can vary from machine to machine. For example, some
limit values may be configurable by the system administrator, either at run time
or by rebuilding the kernel, and this should not require recompiling application
programs.

Each of the following limit parameters has a macro that is defined in
‘limits.h’ only if the system has a fixed, uniform limit for the parameter in
question. If the system allows different file-systems or files to have different
limits, then the macro is undefined; use sysconf to find out the limit that applies
at a particular time on a particular machine (see Section 12.4 [Using sysconf],
page 306).

Each of these parameters also has another macro, with a name starting with
‘_POSIX’, which gives the lowest value that the limit is allowed to have on any
POSIX system (see Section 12.5 [Minimum Values for General Capacity-Limits],
page 317).

Macroint ARG MAX
If defined, this is the unvarying maximum combined length of the argv and
environ arguments that can be passed to the exec functions.

Macroint CHILD MAX
If defined, this is the unvarying maximum number of processes that can exist
with the same real user-ID at any one time. In BSD and GNU, this is controlled
by the RLIMIT_NPROC resource limit (see Section 14.2 [Limiting Resource
Usage], page 338).

Macroint OPEN MAX
If defined, this is the unvarying maximum number of files that a single pro-
cess can have open simultaneously. In BSD and GNU, this is controlled by the
RLIMIT_NOFILE resource limit (see Section 14.2 [Limiting Resource Usage],
page 338).

304 The GNU C Library: System & Network Applications

Macroint STREAM MAX
If defined, this is the unvarying maximum number of streams that a single pro-
cess can have open simultaneously.1

Macroint TZNAME MAX
If defined, this is the unvarying maximum length of a time zone name.2

These limit macros are always defined in ‘limits.h’.

Macroint NGROUPS MAX
This is the maximum number of supplementary group-IDs that one process can
have.
The value of this macro is actually a lower bound for the maximum—that is,
you can count on being able to have that many supplementary group-IDs, but a
particular machine might let you have even more. You can use sysconf to see
whether a particular machine will let you have more (see Section 12.4 [Using
sysconf], page 306).

Macroint SSIZE MAX
This is the largest value that can fit in an object of type ssize_t. Effectively,
this is the limit on the number of bytes that can be read or written in a single
operation.
This macro is defined in all POSIX systems because this limit is never config-
urable.

Macroint RE DUP MAX
This is the largest number of repetitions guaranteed to be allowed in the con-
struct ‘\{min,max\}’ in a regular expression.
The value of this macro is actually a lower bound for the maximum—that is, you
can count on being able to have that many repetitions, but a particular machine
might let you have even more. You can use sysconf to see whether a particular
machine will let you have more (see Section 12.4 [Using sysconf], page 306).
Even the value that sysconf tells you is just a lower bound—larger values
might work.
This macro is defined in all POSIX.2 systems, because POSIX.2 says it should
always be defined even if there is no specific imposed limit.

1 See Loosemore et al., “Opening Streams” (see chap. 1, n.1).
2 Ibid., “Functions and Variables for Time Zones”.

Chapter 12: System-Configuration Parameters 305

12.2 Overall System Options
POSIX defines certain system-specific options that not all POSIX systems support.

Since these options are provided in the kernel, not in the library, simply using the
GNU C Library does not guarantee that any of these features will be supported; it
will depend on the system you are using.

You can test for the availability of a given option using the macros in this section,
together with the function sysconf. The macros are defined only if you include
‘unistd.h’.

For the following macros, if the macro is defined in ‘unistd.h’, then the
option is supported. Otherwise, the option may or may not be supported; use
sysconf to find out (see Section 12.4 [Using sysconf], page 306).

Macroint POSIX JOB CONTROL
If this symbol is defined, it indicates that the system supports job control. Oth-
erwise, the implementation behaves as if all processes within a session belong
to a single process-group. (See Chapter 8 [Job Control], page 221.)

Macroint POSIX SAVED IDS
If this symbol is defined, it indicates that the system remembers the effective
user- and group-IDs of a process before it executes an executable file with the
set-user-ID or set-group-ID bits set, and that explicitly changing the effective
user- or group-IDs back to these values is permitted. If this option is not defined,
then if a nonprivileged process changes its effective user- or group-ID to the real
user- or group-ID of the process, it can’t change it back again (see Section 10.8
[Enabling and Disabling Setuid Access], page 260).

For the following macros, if the macro is defined in ‘unistd.h’, then its value
indicates whether the option is supported. A value of -1 means no, and any other
value means yes. If the macro is not defined, then the option may or may not be sup-
ported; use sysconf to find out (see Section 12.4 [Using sysconf], page 306).

Macroint POSIX2 C DEV
If this symbol is defined, it indicates that the system has the POSIX.2 C compiler
command, c89. The GNU C Library always defines this as 1, on the assumption
that you would not have installed it if you didn’t have a C compiler.

Macroint POSIX2 FORT DEV
If this symbol is defined, it indicates that the system has the POSIX.2 Fortran
compiler command, fort77. The GNU C Library never defines this, because
we don’t know what the system has.

Macroint POSIX2 FORT RUN
If this symbol is defined, it indicates that the system has the POSIX.2 asa com-
mand to interpret Fortran carriage control. The GNU C library never defines this,
because we don’t know what the system has.

306 The GNU C Library: System & Network Applications

Macroint POSIX2 LOCALEDEF
If this symbol is defined, it indicates that the system has the POSIX.2
localedef command. The GNU C Library never defines this, because we
don’t know what the system has.

Macroint POSIX2 SW DEV
If this symbol is defined, it indicates that the system has the POSIX.2 commands
ar, make and strip. The GNU C Library always defines this as 1, on the
assumption that you had to have ar and make to install the library, and it’s
unlikely that strip would be absent when those are present.

12.3 Which Version of POSIX is Supported
Macrolong int POSIX VERSION

This constant represents the version of the POSIX.1 standard to which the imple-
mentation conforms. For an implementation conforming to the 1995 POSIX.1
standard, the value is the integer 199506L.
_POSIX_VERSION is always defined (in ‘unistd.h’) in any POSIX system.
Don’t try to test whether the system supports POSIX by including ‘unistd.h’
and then checking whether _POSIX_VERSION is defined. On a non-POSIX
system, this will probably fail because there is no ‘unistd.h’. We do not
know of any way you can reliably test at compilation time whether your target
system supports POSIX or whether ‘unistd.h’ exists.
The GNU C Compiler predefines the symbol __POSIX__ if the target system
is a POSIX system. Provided you do not use any other compilers on POSIX
systems, testing defined (__POSIX__) will reliably detect such systems.

Macrolong int POSIX2 C VERSION
This constant represents the version of the POSIX.2 standard that the library
and system kernel support. We don’t know what value this will be for the first
version of the POSIX.2 standard, because the value is based on the year and
month in which the standard is officially adopted.
The value of this symbol says nothing about the utilities installed on the system.
You can use this macro to tell whether a POSIX.1 system library supports
POSIX.2 as well. Any POSIX.1 system contains ‘unistd.h’, so include that
file and then test defined (_POSIX2_C_VERSION).

12.4 Using sysconf

When your system has configurable system-limits, you can use the sysconf
function to find out the value that applies to any particular machine. The function
and the associated parameter constants are declared in the header file ‘unistd.h’.

Chapter 12: System-Configuration Parameters 307

12.4.1 Definition of sysconf

Functionlong int sysconf (int parameter)
This function is used to inquire about run-time system parameters. The param-
eter argument should be one of the ‘_SC_’ symbols listed below.
The normal return value from sysconf is the value you requested. A value of
-1 is returned both if the implementation does not impose a limit and in case of
an error.
The following errno error condition is defined for this function:

EINVAL The value of the parameter is invalid.

12.4.2 Constants for sysconf Parameters

Here are the symbolic constants for use as the parameter argument to sysconf.
The values are all integer constants (more specifically, enumeration type values).

_SC_ARG_MAX
Inquire about the parameter corresponding to ARG_MAX.

_SC_CHILD_MAX
Inquire about the parameter corresponding to CHILD_MAX.

_SC_OPEN_MAX
Inquire about the parameter corresponding to OPEN_MAX.

_SC_STREAM_MAX
Inquire about the parameter corresponding to STREAM_MAX.

_SC_TZNAME_MAX
Inquire about the parameter corresponding to TZNAME_MAX.

_SC_NGROUPS_MAX
Inquire about the parameter corresponding to NGROUPS_MAX.

_SC_JOB_CONTROL
Inquire about the parameter corresponding to _POSIX_JOB_
CONTROL.

_SC_SAVED_IDS
Inquire about the parameter corresponding to _POSIX_SAVED_
IDS.

_SC_VERSION
Inquire about the parameter corresponding to _POSIX_VERSION.

_SC_CLK_TCK
Inquire about the parameter corresponding to CLOCKS_PER_SEC.3

3 Ibid., “CPU Time Inquiry”.

308 The GNU C Library: System & Network Applications

_SC_CHARCLASS_NAME_MAX
Inquire about the parameter corresponding to maximum length al-
lowed for a character-class name in an extended locale specification.
These extensions are not yet standardized, so this option is not stan-
dardized either.

_SC_REALTIME_SIGNALS
Inquire about the parameter corresponding to _POSIX_REALTIME_
SIGNALS.

_SC_PRIORITY_SCHEDULING
Inquire about the parameter corresponding to _POSIX_PRIORITY_
SCHEDULING.

_SC_TIMERS
Inquire about the parameter corresponding to _POSIX_TIMERS.

_SC_ASYNCHRONOUS_IO
Inquire about the parameter corresponding to _POSIX_
ASYNCHRONOUS_IO.

_SC_PRIORITIZED_IO
Inquire about the parameter corresponding to _POSIX_
PRIORITIZED_IO.

_SC_SYNCHRONIZED_IO
Inquire about the parameter corresponding to _POSIX_
SYNCHRONIZED_IO.

_SC_FSYNC
Inquire about the parameter corresponding to _POSIX_FSYNC.

_SC_MAPPED_FILES
Inquire about the parameter corresponding to _POSIX_MAPPED_
FILES.

_SC_MEMLOCK
Inquire about the parameter corresponding to _POSIX_MEMLOCK.

_SC_MEMLOCK_RANGE
Inquire about the parameter corresponding to _POSIX_MEMLOCK_
RANGE.

_SC_MEMORY_PROTECTION
Inquire about the parameter corresponding to _POSIX_MEMORY_
PROTECTION.

_SC_MESSAGE_PASSING
Inquire about the parameter corresponding to _POSIX_MESSAGE_
PASSING.

Chapter 12: System-Configuration Parameters 309

_SC_SEMAPHORES
Inquire about the parameter corresponding to _POSIX_
SEMAPHORES.

_SC_SHARED_MEMORY_OBJECTS
Inquire about the parameter corresponding to
_POSIX_SHARED_MEMORY_OBJECTS.

_SC_AIO_LISTIO_MAX
Inquire about the parameter corresponding to _POSIX_AIO_
LISTIO_MAX.

_SC_AIO_MAX
Inquire about the parameter corresponding to _POSIX_AIO_MAX.

_SC_AIO_PRIO_DELTA_MAX
Inquire about the value by which a process can decrease its asyn-
chronous I/O priority level from its own scheduling priority. This cor-
responds to the run-time invariant value AIO_PRIO_DELTA_MAX.

_SC_DELAYTIMER_MAX
Inquire about the parameter corresponding to _POSIX_
DELAYTIMER_MAX.

_SC_MQ_OPEN_MAX
Inquire about the parameter corresponding to _POSIX_MQ_OPEN_
MAX.

_SC_MQ_PRIO_MAX
Inquire about the parameter corresponding to _POSIX_MQ_PRIO_
MAX.

_SC_RTSIG_MAX
Inquire about the parameter corresponding to _POSIX_RTSIG_
MAX.

_SC_SEM_NSEMS_MAX
Inquire about the parameter corresponding to _POSIX_SEM_
NSEMS_MAX.

_SC_SEM_VALUE_MAX
Inquire about the parameter corresponding to _POSIX_SEM_
VALUE_MAX.

_SC_SIGQUEUE_MAX
Inquire about the parameter corresponding to _POSIX_SIGQUEUE_
MAX.

_SC_TIMER_MAX
Inquire about the parameter corresponding to _POSIX_TIMER_
MAX.

310 The GNU C Library: System & Network Applications

_SC_PII Inquire about the parameter corresponding to _POSIX_PII.

_SC_PII_XTI
Inquire about the parameter corresponding to _POSIX_PII_XTI.

_SC_PII_SOCKET
Inquire about the parameter corresponding to _POSIX_PII_
SOCKET.

_SC_PII_INTERNET
Inquire about the parameter corresponding to _POSIX_PII_
INTERNET.

_SC_PII_OSI
Inquire about the parameter corresponding to _POSIX_PII_OSI.

_SC_SELECT
Inquire about the parameter corresponding to _POSIX_SELECT.

_SC_UIO_MAXIOV
Inquire about the parameter corresponding to _POSIX_UIO_
MAXIOV.

_SC_PII_INTERNET_STREAM
Inquire about the parameter corresponding to _POSIX_PII_
INTERNET_STREAM.

_SC_PII_INTERNET_DGRAM
Inquire about the parameter corresponding to _POSIX_PII_
INTERNET_DGRAM.

_SC_PII_OSI_COTS
Inquire about the parameter corresponding to _POSIX_PII_OSI_
COTS.

_SC_PII_OSI_CLTS
Inquire about the parameter corresponding to _POSIX_PII_OSI_
CLTS.

_SC_PII_OSI_M
Inquire about the parameter corresponding to _POSIX_PII_OSI_
M.

_SC_T_IOV_MAX
Inquire about the value of the value associated with the T_IOV_MAX
variable.

_SC_THREADS
Inquire about the parameter corresponding to _POSIX_THREADS.

Chapter 12: System-Configuration Parameters 311

_SC_THREAD_SAFE_FUNCTIONS
Inquire about the parameter corresponding to
_POSIX_THREAD_SAFE_FUNCTIONS.

_SC_GETGR_R_SIZE_MAX
Inquire about the parameter corresponding to _POSIX_GETGR_R_
SIZE_MAX.

_SC_GETPW_R_SIZE_MAX
Inquire about the parameter corresponding to _POSIX_GETPW_R_
SIZE_MAX.

_SC_LOGIN_NAME_MAX
Inquire about the parameter corresponding to _POSIX_LOGIN_
NAME_MAX.

_SC_TTY_NAME_MAX
Inquire about the parameter corresponding to _POSIX_TTY_NAME_
MAX.

_SC_THREAD_DESTRUCTOR_ITERATIONS
Inquire about the parameter corresponding to _POSIX_THREAD_
DESTRUCTOR_ITERATIONS.

_SC_THREAD_KEYS_MAX
Inquire about the parameter corresponding to _POSIX_THREAD_
KEYS_MAX.

_SC_THREAD_STACK_MIN
Inquire about the parameter corresponding to _POSIX_THREAD_
STACK_MIN.

_SC_THREAD_THREADS_MAX
Inquire about the parameter corresponding to _POSIX_THREAD_
THREADS_MAX.

_SC_THREAD_ATTR_STACKADDR
Inquire about the parameter corresponding to
a _POSIX_THREAD_ATTR_STACKADDR.

_SC_THREAD_ATTR_STACKSIZE
Inquire about the parameter corresponding to
_POSIX_THREAD_ATTR_STACKSIZE.

_SC_THREAD_PRIORITY_SCHEDULING
Inquire about the parameter corresponding to _POSIX_THREAD_
PRIORITY_SCHEDULING.

_SC_THREAD_PRIO_INHERIT
Inquire about the parameter corresponding to _POSIX_THREAD_
PRIO_INHERIT.

312 The GNU C Library: System & Network Applications

_SC_THREAD_PRIO_PROTECT
Inquire about the parameter corresponding to _POSIX_THREAD_
PRIO_PROTECT.

_SC_THREAD_PROCESS_SHARED
Inquire about the parameter corresponding to _POSIX_THREAD_
PROCESS_SHARED.

_SC_2_C_DEV
Inquire about whether the system has the POSIX.2 C compiler com-
mand, c89.

_SC_2_FORT_DEV
Inquire about whether the system has the POSIX.2 Fortran compiler
command, fort77.

_SC_2_FORT_RUN
Inquire about whether the system has the POSIX.2 asa command to
interpret Fortran carriage-control.

_SC_2_LOCALEDEF
Inquire about whether the system has the POSIX.2 localedef com-
mand.

_SC_2_SW_DEV
Inquire about whether the system has the POSIX.2 commands ar,
make and strip.

_SC_BC_BASE_MAX
Inquire about the maximum value of obase in the bc utility.

_SC_BC_DIM_MAX
Inquire about the maximum size of an array in the bc utility.

_SC_BC_SCALE_MAX
Inquire about the maximum value of scale in the bc utility.

_SC_BC_STRING_MAX
Inquire about the maximum size of a string constant in the bc utility.

_SC_COLL_WEIGHTS_MAX
Inquire about the maximum number of weights that can necessarily
be used in defining the collating sequence for a locale.

_SC_EXPR_NEST_MAX
Inquire about the maximum number of expressions nested within
parentheses when using the expr utility.

_SC_LINE_MAX
Inquire about the maximum size of a text line that the POSIX.2 text
utilities can handle.

Chapter 12: System-Configuration Parameters 313

_SC_EQUIV_CLASS_MAX
Inquire about the maximum number of weights that can be assigned
to an entry of the LC_COLLATE category ‘order’ keyword in a lo-
cale definition. The GNU C Library does not presently support locale
definitions.

_SC_VERSION
Inquire about the version number of POSIX.1 that the library and ker-
nel support.

_SC_2_VERSION
Inquire about the version number of POSIX.2 that the system utilities
support.

_SC_PAGESIZE
Inquire about the virtual-memory page size of the machine.
getpagesize returns the same value (see Section 14.4.2 [How to
Get Information About the Memory Subsystem?], page 355).

_SC_NPROCESSORS_CONF
Inquire about the number of configured processors.

_SC_NPROCESSORS_ONLN
Inquire about the number of processors online.

_SC_PHYS_PAGES
Inquire about the number of physical pages in the system.

_SC_AVPHYS_PAGES
Inquire about the number of available physical pages in the system.

_SC_ATEXIT_MAX
Inquire about the number of functions that can be registered as termi-
nation functions for atexit.4

_SC_XOPEN_VERSION
Inquire about the parameter corresponding to _XOPEN_VERSION.

_SC_XOPEN_XCU_VERSION
Inquire about the parameter corresponding to _XOPEN_XCU_
VERSION.

_SC_XOPEN_UNIX
Inquire about the parameter corresponding to _XOPEN_UNIX.

_SC_XOPEN_REALTIME
Inquire about the parameter corresponding to _XOPEN_REALTIME.

4 Ibid., “Clean-Ups on Exit”.

314 The GNU C Library: System & Network Applications

_SC_XOPEN_REALTIME_THREADS
Inquire about the parameter corresponding to _XOPEN_REALTIME_
THREADS.

_SC_XOPEN_LEGACY
Inquire about the parameter corresponding to _XOPEN_LEGACY.

_SC_XOPEN_CRYPT
Inquire about the parameter corresponding to _XOPEN_CRYPT.

_SC_XOPEN_ENH_I18N
Inquire about the parameter corresponding to _XOPEN_ENH_I18N.

_SC_XOPEN_SHM
Inquire about the parameter corresponding to _XOPEN_SHM.

_SC_XOPEN_XPG2
Inquire about the parameter corresponding to _XOPEN_XPG2.

_SC_XOPEN_XPG3
Inquire about the parameter corresponding to _XOPEN_XPG3.

_SC_XOPEN_XPG4
Inquire about the parameter corresponding to _XOPEN_XPG4.

_SC_CHAR_BIT
Inquire about the number of bits in a variable of type char.

_SC_CHAR_MAX
Inquire about the maximum value that can be stored in a variable of
type char.

_SC_CHAR_MIN
Inquire about the minimum value that can be stored in a variable of
type char.

_SC_INT_MAX
Inquire about the maximum value that can be stored in a variable of
type int.

_SC_INT_MIN
Inquire about the minimum value that can be stored in a variable of
type int.

_SC_LONG_BIT
Inquire about the number of bits in a variable of type long int.

_SC_WORD_BIT
Inquire about the number of bits in a variable of a register word.

Chapter 12: System-Configuration Parameters 315

_SC_MB_LEN_MAX
Inquire about the maximum length of a multibyte representation of a
wide-character value.

_SC_NZERO
Inquire about the value used to internally represent the zero priority
level for the process execution.

SC_SSIZE_MAX
Inquire about the maximum value that can be stored in a variable of
type ssize_t.

_SC_SCHAR_MAX
Inquire about the maximum value that can be stored in a variable of
type signed char.

_SC_SCHAR_MIN
Inquire about the minimum value that can be stored in a variable of
type signed char.

_SC_SHRT_MAX
Inquire about the maximum value that can be stored in a variable of
type short int.

_SC_SHRT_MIN
Inquire about the minimum value that can be stored in a variable of
type short int.

_SC_UCHAR_MAX
Inquire about the maximum value that can be stored in a variable of
type unsigned char.

_SC_UINT_MAX
Inquire about the maximum value that can be stored in a variable of
type unsigned int.

_SC_ULONG_MAX
Inquire about the maximum value that can be stored in a variable of
type unsigned long int.

_SC_USHRT_MAX
Inquire about the maximum value that can be stored in a variable of
type unsigned short int.

_SC_NL_ARGMAX
Inquire about the parameter corresponding to NL_ARGMAX.

_SC_NL_LANGMAX
Inquire about the parameter corresponding to NL_LANGMAX.

316 The GNU C Library: System & Network Applications

_SC_NL_MSGMAX
Inquire about the parameter corresponding to NL_MSGMAX.

_SC_NL_NMAX
Inquire about the parameter corresponding to NL_NMAX.

_SC_NL_SETMAX
Inquire about the parameter corresponding to NL_SETMAX.

_SC_NL_TEXTMAX
Inquire about the parameter corresponding to NL_TEXTMAX.

12.4.3 Examples of sysconf

We recommend that you first test for a macro definition for the parameter you
are interested in, and call sysconf only if the macro is not defined. For example,
here is how to test whether job control is supported:

int

have_job_control (void)

{

#ifdef _POSIX_JOB_CONTROL

return 1;

#else

int value = sysconf (_SC_JOB_CONTROL);

if (value < 0)

/* If the system is that badly wedged,

there’s no use trying to go on. */

fatal (strerror (errno));

return value;

#endif

}

Here is how to get the value of a numeric limit:
int

get_child_max ()

{

#ifdef CHILD_MAX

return CHILD_MAX;

#else

int value = sysconf (_SC_CHILD_MAX);

if (value < 0)

fatal (strerror (errno));

return value;

#endif

}

Chapter 12: System-Configuration Parameters 317

12.5 Minimum Values for General Capacity-Limits

Here are the names for the POSIX minimum upper bounds for the system limit
parameters. The significance of these values is that you can safely push to these
limits without checking whether the particular system you are using can go that far.

_POSIX_AIO_LISTIO_MAX
The value of this macro is the most restrictive limit permitted by
POSIX for the maximum number of I/O operations that can be speci-
fied in a list I/O call. The value of this constant is 2; thus you can add
up to two new entries to the list of outstanding operations.

_POSIX_AIO_MAX
The value of this macro is the most restrictive limit permitted by
POSIX for the maximum number of outstanding asynchronous I/O op-
erations. The value of this constant is 1. So you cannot expect that
you can issue more than one operation and immediately continue with
the normal work, receiving the notifications asynchronously.

_POSIX_ARG_MAX
The value of this macro is the most restrictive limit permitted by
POSIX for the maximum combined length of the argv and environ ar-
guments that can be passed to the exec functions. Its value is 4096.

_POSIX_CHILD_MAX
The value of this macro is the most restrictive limit permitted by
POSIX for the maximum number of simultaneous processes per real
user-ID. Its value is 6.

_POSIX_NGROUPS_MAX
The value of this macro is the most restrictive limit permitted by
POSIX for the maximum number of supplementary group-IDs per pro-
cess. Its value is 0.

_POSIX_OPEN_MAX
The value of this macro is the most restrictive limit permitted by
POSIX for the maximum number of files that a single process can have
open simultaneously. Its value is 16.

_POSIX_SSIZE_MAX
The value of this macro is the most restrictive limit permitted by
POSIX for the maximum value that can be stored in an object of type
ssize_t. Its value is 32767.

_POSIX_STREAM_MAX
The value of this macro is the most restrictive limit permitted by
POSIX for the maximum number of streams that a single process can
have open simultaneously. Its value is 8.

318 The GNU C Library: System & Network Applications

_POSIX_TZNAME_MAX
The value of this macro is the most restrictive limit permitted by
POSIX for the maximum length of a time zone name. Its value is
3.

_POSIX2_RE_DUP_MAX
The value of this macro is the most restrictive limit permitted by
POSIX for the numbers used in the ‘\{min,max\}’ construct in a
regular expression. Its value is 255.

12.6 Limits on File-System Capacity
The POSIX.1 standard specifies a number of parameters that describe the limita-

tions of the file system. It’s possible for the system to have a fixed, uniform limit
for a parameter, but this isn’t the usual case. On most systems, it’s possible for dif-
ferent file systems (and, for some parameters, even different files) to have different
maximum limits. For example, this is very likely if you use NFS to mount some of
the file systems from other machines.

Each of the following macros is defined in ‘limits.h’ only if the system has
a fixed, uniform limit for the parameter in question. If the system allows differ-
ent file systems or files to have different limits, then the macro is undefined; use
pathconf or fpathconf to find out the limit that applies to a particular file (see
Section 12.9 [Using pathconf], page 321).

Each parameter also has another macro, with a name starting with ‘_POSIX’,
that gives the lowest value that the limit is allowed to have on any POSIX system
(see Section 12.8 [Minimum Values for File-System Limits], page 320).

Macroint LINK MAX
This is the uniform system-limit, if any, for the number of names for a given file
(see Section 3.4 [Hard Links], page 85).

Macroint MAX CANON
This is the uniform system-limit, if any, for the amount of text in a line of input
when input editing is enabled (see Section 6.3 [Two Styles of Input: Canonical
or Not], page 180).

Macroint MAX INPUT
This is the uniform system-limit, if any, for the total number of characters typed
ahead as input (see Section 6.2 [I/O Queues], page 180).

Macroint NAME MAX
This is the uniform system-limit, if any, for the length of a file-name component.

Chapter 12: System-Configuration Parameters 319

Macroint PATH MAX
This is the uniform system-limit, if any, for the length of an entire file-name
(that is, the argument given to system calls such as open).

Macroint PIPE BUF
This is the uniform system-limit, if any, for the number of bytes that can be
written atomically to a pipe. If multiple processes are writing to the same pipe
simultaneously, output from different processes might be interleaved in chunks
of this size (see Chapter 4 [Pipes and FIFOs], page 119).

These are alternative macro names for some of the same information.

Macroint MAXNAMLEN
This is the BSD name for NAME_MAX. It is defined in ‘dirent.h’.

Macroint FILENAME MAX
The value of this macro is an integer constant expression that represents the
maximum length of a file-name string. It is defined in ‘stdio.h’.
Unlike PATH_MAX, this macro is defined even if there is no actual limit im-
posed. In such a case, its value is typically a very large number. This is always
the case on the GNU system.
Don’t use FILENAME_MAX as the size of an array in which to store a file name,
because you can’t possibly make an array that big. Use dynamic allocation
instead.5

12.7 Optional Features in File Support
POSIX defines certain system-specific options in the system calls for operating

on files. Some systems support these options and others do not. Since these options
are provided in the kernel, not in the library, simply using the GNU C Library does
not guarantee that any of these features is supported; it depends on the system you
are using. They can also vary between file systems on a single machine.

This section describes the macros you can test to determine whether a particular
option is supported on your machine. If a given macro is defined in ‘unistd.h’,
then its value says whether the corresponding feature is supported. A value of -1
indicates no; any other value indicates yes. If the macro is undefined, it means
particular files may or may not support the feature.

Since all the machines that support the GNU C Library also support NFS, one
can never make a general statement about whether all file systems support the
_POSIX_CHOWN_RESTRICTED and _POSIX_NO_TRUNC features. So these
names are never defined as macros in the GNU C Library.

5 Ibid., “Allocating Storage for Program Data”.

320 The GNU C Library: System & Network Applications

Macroint POSIX CHOWN RESTRICTED
If this option is in effect, the chown function is restricted so that the only change
permitted to nonprivileged processes is to change the group owner of a file to be
either the effective group-ID of the process, or one of its supplementary group-
IDs (see Section 3.9.4 [File Owner], page 101).

Macroint POSIX NO TRUNC
If this option is in effect, file-name components longer than NAME_MAX gen-
erate an ENAMETOOLONG error. Otherwise, file-name components that are too
long are silently truncated.

Macrounsigned char POSIX VDISABLE
This option is only meaningful for files that are terminal devices. If it is enabled,
then handling for special control-characters can be disabled individually (see
Section 6.4.9 [Special Characters], page 194).

If one of these macros is undefined, that means that the option might be in effect
for some files and not for others. To inquire about a particular file, call pathconf
or fpathconf (see Section 12.9 [Using pathconf], page 321).

12.8 Minimum Values for File-System Limits
Here are the names for the POSIX minimum upper bounds for some of the above

parameters. The significance of these values is that you can safely push to these
limits without checking whether the particular system you are using can go that far.
In most cases, GNU systems do not have these strict limitations. The actual limit
should be requested if necessary.
_POSIX_LINK_MAX

This is the most restrictive limit permitted by POSIX for the maximum
value of a file’s link count. The value of this constant is 8; thus, you
can always make up to eight names for a file without running into a
system limit.

_POSIX_MAX_CANON
This is the most restrictive limit permitted by POSIX for the maximum
number of bytes in a canonical-input line from a terminal device. The
value of this constant is 255.

_POSIX_MAX_INPUT
This is the most restrictive limit permitted by POSIX for the maxi-
mum number of bytes in a terminal-device input queue (or type-ahead
buffer) (see Section 6.4.4 [Input Modes], page 185). The value of this
constant is 255.

_POSIX_NAME_MAX
This is the most restrictive limit permitted by POSIX for the maximum
number of bytes in a file-name component. The value of this constant
is 14.

Chapter 12: System-Configuration Parameters 321

_POSIX_PATH_MAX
This is the most restrictive limit permitted by POSIX for the maximum
number of bytes in a file name. The value of this constant is 256.

_POSIX_PIPE_BUF
This is the most restrictive limit permitted by POSIX for the maximum
number of bytes that can be written atomically to a pipe. The value of
this constant is 512.

SYMLINK_MAX
This is the maximum number of bytes in a symbolic link.

POSIX_REC_INCR_XFER_SIZE
This is the recommended increment for file-transfer sizes between the
POSIX_REC_MIN_XFER_SIZE and POSIX_REC_MAX_XFER_
SIZE values.

POSIX_REC_MAX_XFER_SIZE
This is the maximum recommended file-transfer size.

POSIX_REC_MIN_XFER_SIZE
This is the minimum recommended file-transfer size.

POSIX_REC_XFER_ALIGN
This is recommended file-transfer buffer alignment.

12.9 Using pathconf

When your machine allows different files to have different values for a file-
system parameter, you can use the functions in this section to find out the value
that applies to any particular file.

These functions and the associated constants for the parameter argument are
declared in the header file ‘unistd.h’.

Functionlong int pathconf (const char *filename, int parameter)
This function is used to inquire about the limits that apply to the file named
filename.
The parameter argument should be one of the ‘_PC_’ constants listed below.
The normal return value from pathconf is the value you requested. A value
of -1 is returned both if the implementation does not impose a limit and in case
of an error. In the former case, errno is not set, while in the latter case, errno
is set to indicate the cause of the problem. So the only way to use this function
robustly is to store 0 into errno just before calling it.
Besides the usual file-name errors, the following error condition is defined for
this function:6

EINVAL The value of parameter is invalid, or the implementation doesn’t
support the parameter for the specific file.

6 Ibid., “File-Name Errors”.

322 The GNU C Library: System & Network Applications

Functionlong int fpathconf (int filedes, int parameter)
This is just like pathconf, except that an open file-descriptor is used to specify
the file for which information is requested, instead of a file name.
The following errno error conditions are defined for this function:

EBADF The filedes argument is not a valid file-descriptor.

EINVAL The value of parameter is invalid, or the implementation doesn’t
support the parameter for the specific file.

Here are the symbolic constants that you can use as the parameter argument to
pathconf and fpathconf. The values are all integer constants.

_PC_LINK_MAX
Inquire about the value of LINK_MAX.

_PC_MAX_CANON
Inquire about the value of MAX_CANON.

_PC_MAX_INPUT
Inquire about the value of MAX_INPUT.

_PC_NAME_MAX
Inquire about the value of NAME_MAX.

_PC_PATH_MAX
Inquire about the value of PATH_MAX.

_PC_PIPE_BUF
Inquire about the value of PIPE_BUF.

_PC_CHOWN_RESTRICTED
Inquire about the value of _POSIX_CHOWN_RESTRICTED.

_PC_NO_TRUNC
Inquire about the value of _POSIX_NO_TRUNC.

_PC_VDISABLE
Inquire about the value of _POSIX_VDISABLE.

_PC_SYNC_IO
Inquire about the value of _POSIX_SYNC_IO.

_PC_ASYNC_IO
Inquire about the value of _POSIX_ASYNC_IO.

_PC_PRIO_IO
Inquire about the value of _POSIX_PRIO_IO.

_PC_SOCK_MAXBUF
Inquire about the value of _POSIX_PIPE_BUF.

_PC_FILESIZEBITS
Inquire about the availability of large files on the file system.

Chapter 12: System-Configuration Parameters 323

_PC_REC_INCR_XFER_SIZE
Inquire about the value of POSIX_REC_INCR_XFER_SIZE.

_PC_REC_MAX_XFER_SIZE
Inquire about the value of POSIX_REC_MAX_XFER_SIZE.

_PC_REC_MIN_XFER_SIZE
Inquire about the value of POSIX_REC_MIN_XFER_SIZE.

_PC_REC_XFER_ALIGN
Inquire about the value of POSIX_REC_XFER_ALIGN.

12.10 Utility Program Capacity-Limits
The POSIX.2 standard specifies certain system-limits that you can access through

sysconf that apply to utility behavior rather than the behavior of the library or
the operating system.

The GNU C Library defines macros for these limits, and sysconf returns values
for them if you ask; but these values convey no meaningful information. They are
simply the smallest values that POSIX.2 permits.

Macroint BC BASE MAX
This is the largest value of obase that the bc utility is guaranteed to support.

Macroint BC DIM MAX
This is the largest number of elements in one array that the bc utility is guaran-
teed to support.

Macroint BC SCALE MAX
This is the largest value of scale that the bc utility is guaranteed to support.

Macroint BC STRING MAX
This is the largest number of characters in one string constant that the bc utility
is guaranteed to support.

Macroint COLL WEIGHTS MAX
This is the largest number of weights that can for certain be used in defining the
collating sequence for a locale.

Macroint EXPR NEST MAX
This is the maximum number of expressions that can be nested within parenthe-
ses by the expr utility.

Macroint LINE MAX
This is the largest text line that the text-oriented POSIX.2 utilities can support.
If you are using the GNU versions of these utilities, then there is no actual limit
except that imposed by the available virtual memory, but there is no way that
the library can tell you this.

324 The GNU C Library: System & Network Applications

Macroint EQUIV CLASS MAX
This is the maximum number of weights that can be assigned to an entry of the
LC_COLLATE category ‘order’ keyword in a locale definition. The GNU C
Library does not presently support locale definitions.

12.11 Minimum Values for Utility Limits

_POSIX2_BC_BASE_MAX
This is the most restrictive limit permitted by POSIX.2 for the maxi-
mum value of obase in the bc utility. Its value is 99.

_POSIX2_BC_DIM_MAX
This is the most restrictive limit permitted by POSIX.2 for the maxi-
mum size of an array in the bc utility. Its value is 2048.

_POSIX2_BC_SCALE_MAX
This is the most restrictive limit permitted by POSIX.2 for the maxi-
mum value of scale in the bc utility. Its value is 99.

_POSIX2_BC_STRING_MAX
This is the most restrictive limit permitted by POSIX.2 for the maxi-
mum size of a string constant in the bc utility. Its value is 1000.

_POSIX2_COLL_WEIGHTS_MAX
This is the most restrictive limit permitted by POSIX.2 for the maxi-
mum number of weights that can necessarily be used in defining the
collating sequence for a locale. Its value is 2.

_POSIX2_EXPR_NEST_MAX
This is the most restrictive limit permitted by POSIX.2 for the max-
imum number of expressions nested within parentheses when using
the expr utility. Its value is 32.

_POSIX2_LINE_MAX
This is the most restrictive limit permitted by POSIX.2 for the maxi-
mum size of a text line that the text utilities can handle. Its value is
2048.

_POSIX2_EQUIV_CLASS_MAX
This is the most restrictive limit permitted by POSIX.2 for the maxi-
mum number of weights that can be assigned to an entry of the LC_
COLLATE category ‘order’ keyword in a locale definition. Its value
is 2. The GNU C Library does not presently support locale definitions.

12.12 String-Valued Parameters
POSIX.2 defines a way to get string-valued parameters from the operating system

with the function confstr:

Chapter 12: System-Configuration Parameters 325

Functionsize_t confstr (int parameter, char *buf, size_t len)
This function reads the value of a string-valued system parameter, storing the
string into len bytes of memory space starting at buf. The parameter argument
should be one of the ‘_CS_’ symbols listed below.
The normal return value from confstr is the length of the string value that
you asked for. If you supply a null pointer for buf, then confstr does not try
to store the string; it just returns its length. A value of 0 indicates an error.
If the string you asked for is too long for the buffer (that is, longer than len
- 1), then confstr stores just that much (leaving room for the terminating
null character). You can tell that this has happened because confstr returns a
value greater than or equal to len.
The following errno error condition is defined for this function:

EINVAL The value of the parameter is invalid.

Currently there is just one parameter you can read with confstr:

_CS_PATH
This parameter’s value is the recommended default path for searching
for executable files. This is the path that a user has by default just after
logging in.

_CS_LFS_CFLAGS
The returned string specifies which additional flags must be given
to the C compiler if a source is compiled using the _LARGEFILE_
SOURCE feature-select macro (see Section 1.3.4 [Feature-Test
Macros], page 8).

_CS_LFS_LDFLAGS
The returned string specifies which additional flags must be given to
the linker if a source is compiled using the _LARGEFILE_SOURCE
feature-select macro (see Section 1.3.4 [Feature-Test Macros],
page 8).

_CS_LFS_LIBS
The returned string specifies which additional libraries must
be linked to the application if a source is compiled using the
_LARGEFILE_SOURCE feature-select macro (see Section 1.3.4
[Feature-Test Macros], page 8).

_CS_LFS_LINTFLAGS
The returned string specifies which additional flags must be given
to the lint tool if a source is compiled using the _LARGEFILE_
SOURCE feature-select macro (see Section 1.3.4 [Feature-Test
Macros], page 8).

_CS_LFS64_CFLAGS
The returned string specifies which additional flags must be given to
the C compiler if a source is compiled using the _LARGEFILE64_

326 The GNU C Library: System & Network Applications

SOURCE feature-select macro (see Section 1.3.4 [Feature-Test
Macros], page 8).

_CS_LFS64_LDFLAGS
The returned string specifies which additional flags must be given
to the linker if a source is compiled using the _LARGEFILE64_
SOURCE feature-select macro (see Section 1.3.4 [Feature-Test
Macros], page 8).

_CS_LFS64_LIBS
The returned string specifies which additional libraries must
be linked to the application if a source is compiled using the
_LARGEFILE64_SOURCE feature-select macro (see Section 1.3.4
[Feature-Test Macros], page 8).

_CS_LFS64_LINTFLAGS
The returned string specifies which additional flags must be given
to the lint tool if a source is compiled using the _LARGEFILE64_
SOURCE feature-select macro (see Section 1.3.4 [Feature-Test
Macros], page 8).

The way to use confstr without any arbitrary limit on string size is to call it
twice: first call it to get the length, allocate the buffer accordingly, and then call
confstr again to fill the buffer, like this:

char *

get_default_path (void)

{

size_t len = confstr (_CS_PATH, NULL, 0);

char *buffer = (char *) xmalloc (len);

if (confstr (_CS_PATH, buf, len + 1) == 0)

{

free (buffer);

return NULL;

}

return buffer;

}

Chapter 13: DES Encryption and Password Handling 327

13 DES Encryption and Password Handling
On many systems, it is unnecessary to have any kind of user authentication. For

instance, a workstation that is not connected to a network probably does not need
any user authentication, because to use the machine an intruder must have physical
access.

Sometimes, however, it is necessary to be sure that a user is authorized to use
some service a machine provides—for instance, to log in as a particular user ID
(see Chapter 10 [Users and Groups], page 253). One traditional way of doing
this is for each user to choose a secret password ; then, the system can ask someone
claiming to be a user what the user’s password is, and if the person gives the correct
password, the system can grant the appropriate privileges.

If all the passwords are just stored in a file somewhere, then this file has to be very
carefully protected. To avoid this, passwords are run through a one-way function,
a function that makes it difficult to work out what its input was by looking at its
output, before being stored in the file.

The GNU C Library provides a one-way function that is compatible with the
behavior of the crypt function introduced in FreeBSD 2.0. It supports two one-
way algorithms: one based on the MD5 message-digest algorithm that is compatible
with modern BSD systems, and the other based on the Data Encryption Standard
(DES) that is compatible with Unix systems.

It also provides support for Secure RPC, and some library functions that can be
used to perform normal DES encryption.

13.1 Legal Problems
Because of the continuously changing state of the law, it’s not possible to provide

a definitive survey of the laws affecting cryptography. Instead, this section warns
you of some of the known trouble spots; this may help you when you try to find out
what the laws of your country are.

Some countries require that you have a license to use, possess or import cryptog-
raphy. These countries are believed to include Byelorussia, Burma, India, Indone-
sia, Israel, Kazakhstan, Pakistan, Russia and Saudi Arabia.

Some countries restrict the transmission of encrypted messages by radio; some
telecommunications carriers restrict the transmission of encrypted messages over
their network.

Many countries have some form of export control for encryption software. The
Wassenaar Arrangement is a multilateral agreement between 33 countries (Ar-
gentina, Australia, Austria, Belgium, Bulgaria, Canada, the Czech Republic, Den-
mark, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Japan, Luxem-
bourg, the Netherlands, New Zealand, Norway, Poland, Portugal, the Republic of
Korea, Romania, the Russian Federation, the Slovak Republic, Spain, Sweden,
Switzerland, Turkey, Ukraine, the United Kingdom and the United States) that re-
stricts some kinds of encryption exports. Different countries apply the arrangement

328 The GNU C Library: System & Network Applications

in different ways; some do not allow the exception for certain kinds of “public do-
main” software (which would include this library), some only restrict the export of
software in tangible form, and others impose significant additional restrictions.

The United States has additional rules. This software would generally be ex-
portable under 15 CFR 740.13(e), which permits exports of “encryption source
code” that is “publicly available” and that is “not subject to an express agreement
for the payment of a licensing fee or royalty for commercial production or sale of
any product developed with the source code”, to most countries.

The rules in this area are continuously changing. If you know of any information
in this manual that is out of date, please report it using the glibcbug script (see
Section C.6 [Reporting Bugs], page 541).

13.2 Reading Passwords
When reading in a password, it is desirable to avoid displaying it on the screen,

to help keep it secret. The following function handles this in a convenient way.

Functionchar * getpass (const char *prompt)
getpass outputs prompt, then reads a string in from the terminal without echo-
ing it. It tries to connect to the real terminal, ‘/dev/tty’, if possible, to en-
courage users not to put plaintext passwords in files. Otherwise, it uses stdin
and stderr. getpass also disables the INTR, QUIT and SUSP characters on
the terminal using the ISIG terminal attribute (see Section 6.4.7 [Local Modes],
page 189). The terminal is flushed before and after getpass, so that characters
of a mistyped password are not accidentally visible.
In other C libraries, getpass may only return the first PASS_MAX bytes of a
password. The GNU C Library has no limit, so PASS_MAX is undefined.
The prototype for this function is in ‘unistd.h’. PASS_MAX would be de-
fined in ‘limits.h’.

This precise set of operations may not suit all possible situations. In this case,
it is recommended that users write their own getpass substitute. For instance, a
very simple substitute is as follows:

#include <termios.h>

#include <stdio.h>

ssize_t

my_getpass (char **lineptr, size_t *n, FILE *stream)

{

struct termios old, new;

int nread;

/* Turn echoing off and fail if we can’t. */

if (tcgetattr (fileno (stream), &old) != 0)

Chapter 13: DES Encryption and Password Handling 329

return -1;

new = old;

new.c_lflag &= ˜ECHO;

if (tcsetattr (fileno (stream), TCSAFLUSH, &new) != 0)

return -1;

/* Read the password. */

nread = getline (lineptr, n, stream);

/* Restore terminal. */

(void) tcsetattr (fileno (stream), TCSAFLUSH, &old);

return nread;

}

The substitute takes the same parameters as getline;1 the user must print any
prompt desired.

13.3 Encrypting Passwords

Functionchar * crypt (const char *key, const char *salt)
The crypt function takes a password, key, as a string, and a salt character
array, which is described below, and returns a printable ASCII string that starts
with another salt. It is believed that, given the output of the function, the best
way to find a key that will produce that output is to guess values of key until the
original value of key is found.
The salt parameter does two things. Firstly, it selects which algorithm is used,
the MD5-based one or the DES-based one. Secondly, it makes life harder for
someone trying to guess passwords against a file containing many passwords;
without a salt, an intruder can make a guess, run crypt on it once, and compare
the result with all the passwords. With a salt, the intruder must run crypt once
for each different salt.
For the MD5-based algorithm, the salt should consist of the string 1, followed
by up to eight characters, terminated by either another $ or the end of the string.
The result of crypt will be the salt, followed by a $ if the salt didn’t end
with 1, followed by 22 characters from the alphabet ./0-9A-Za-z, up to 34
characters total. Every character in the key is significant.
For the DES-based algorithm, the salt should consist of two characters from the
alphabet ./0-9A-Za-z, and the result of crypt will be those two characters
followed by eleven more from the same alphabet, thirteen in total. Only the first
eight characters in the key are significant.

1 See Loosemore et al., “Line-Oriented Input” (see chap. 1, n. 1).

330 The GNU C Library: System & Network Applications

The MD5-based algorithm has no limit on the useful length of the password
used, and is slightly more secure. It is therefore preferred over the DES-based
algorithm.
When the user enters her password for the first time, the salt should be set to a
new string that is reasonably random. To verify a password against the result of
a previous call to crypt, pass the result of the previous call as the salt.

The following short program is an example of how to use crypt the first time a
password is entered. The salt generation is just barely acceptable; in particular, it is
not unique between machines, and in many applications it would not be acceptable
to let an attacker know what time the user’s password was last set.

#include <stdio.h>

#include <time.h>

#include <unistd.h>

#include <crypt.h>

int

main(void)

{

unsigned long seed[2];

char salt[] = "1........";

const char *const seedchars =

"./0123456789ABCDEFGHIJKLMNOPQRST"

"UVWXYZabcdefghijklmnopqrstuvwxyz";

char *password;

int i;

/* Generate a (not very) random seed.

You should do it better than this... */

seed[0] = time(NULL);

seed[1] = getpid() ˆ (seed[0] >> 14 & 0x30000);

/* Turn it into printable characters from ‘seedchars’. */

for (i = 0; i < 8; i++)

salt[3+i] = seedchars[(seed[i/5] >> (i%5)*6) & 0x3f];

/* Read in the user’s password and encrypt it. */

password = crypt(getpass("Password:"), salt);

/* Print the results. */

puts(password);

return 0;

}

Chapter 13: DES Encryption and Password Handling 331

The next program shows how to verify a password. It prompts the user for a
password and prints “Access granted.” if the user types GNU libc manual.

#include <stdio.h>

#include <string.h>

#include <unistd.h>

#include <crypt.h>

int

main(void)

{

/* Hashed form of “GNU libc manual” */

const char *const pass = "1/iSaq7rB$EoUw5jJPPvAPECNaaWzMK/";

char *result;

int ok;

/* Read in the user’s password and encrypt it,

passing the expected password in as the salt. */

result = crypt(getpass("Password:"), pass);

/* Test the result. */

ok = strcmp (result, pass) == 0;

puts(ok ? "Access granted." : "Access denied.");

return ok ? 0 : 1;

}

Functionchar * crypt r (const char *key, const char *salt,
struct crypt_data * data)

The crypt_r function does the same thing as crypt, but takes an extra pa-
rameter that includes space for its result (among other things), so it can be reen-
trant. data->initialized must be cleared to zero before the first time
crypt_r is called.
The crypt_r function is a GNU extension.

The crypt and crypt_r functions are prototyped in the header ‘crypt.h’.

13.4 DES Encryption
The Data Encryption Standard is described in the US Government Federal In-

formation Processing Standards (FIPS) 46-3 published by the National Institute of

332 The GNU C Library: System & Network Applications

Standards and Technology.2 The DES has been very thoroughly analyzed since it
was developed in the late 1970s, and no new significant flaws have been found.

However, the DES uses only a 56-bit key (plus 8 parity bits), and a machine has
been built in 1998 that can search through all possible keys in about 6 days, which
cost about US$200,000; faster searches would be possible with more money. This
makes simple DES insecure for most purposes, and NIST no longer permits new US
government systems to use simple DES.

For serious encryption functionality, it is recommended that one of the many free
encryption libraries be used instead of these routines.

The DES is a reversible operation that takes a 64-bit block and a 64-bit key and
produces another 64-bit block. Usually, the bits are numbered so that the most
significant bit, the first bit of each block, is numbered 1.

Under that numbering, every eighth bit of the key (the eighth, sixteenth, and so
on) is not used by the encryption algorithm itself. But the key must have odd parity;
that is, out of bits one through eight, and nine through sixteen, and so on, there must
be an odd number of ‘1’ bits, and this completely specifies the unused bits.

Functionvoid setkey (const char *key)
The setkey function sets an internal data structure to be an expanded form of
key. key is specified as an array of 64 bits each stored in a char. The first bit is
key[0] and the 64th bit is key[63]. The key should have the correct parity.

Functionvoid encrypt (char *block, int edflag)
The encrypt function encrypts block if edflag is 0. Otherwise, it decrypts
block, using a key previously set by setkey. The result is placed in block.
Like setkey, block is specified as an array of 64 bits each stored in a char,
but there are no parity bits in block.

Functionvoid setkey r (const char *key, struct crypt_data *
data)

Functionvoid encrypt r (char *block, int edflag, struct
crypt_data * data)

These are reentrant versions of setkey and encrypt. The only difference is
the extra parameter, which stores the expanded version of key. Before calling
setkey_r the first time, data->initialized must be cleared to zero.

The setkey_r and encrypt_r functions are GNU extensions. setkey,
encrypt, setkey_r and encrypt_r are defined in ‘crypt.h’.

2 National Institute of Standards and Technology, Federal Information Processing Standards
46-3 (October 1999), http:// csrc.nist.gov/ publications/ fips/ fips46-3/
fips46-3.pdf.

http:// csrc.nist.gov/ publications/ fips/ fips46-3/ fips46-3.pdf
http:// csrc.nist.gov/ publications/ fips/ fips46-3/ fips46-3.pdf

Chapter 13: DES Encryption and Password Handling 333

Functionint ecb crypt (char *key, char *blocks, unsigned len,
unsigned mode)

The function ecb_crypt encrypts or decrypts one or more blocks using DES.
Each block is encrypted independently.
The blocks and the key are stored packed in 8-bit bytes, so that the first bit of the
key is the most significant bit of key[0] and the 63rd bit of the key is stored
as the least significant bit of key[7]. The key should have the correct parity.
len is the number of bytes in blocks. It should be a multiple of 8, so that there
is a whole number of blocks to encrypt. len is limited to a maximum of DES_
MAXDATA bytes.
The result of the encryption replaces the input in blocks.
The mode parameter is the bit-wise OR of two of the following:

DES_ENCRYPT
This constant, used in the mode parameter, specifies that blocks is
to be encrypted.

DES_DECRYPT
This constant, used in the mode parameter, specifies that blocks is
to be decrypted.

DES_HW This constant, used in the mode parameter, asks to use a hardware
device. If no hardware device is available, encryption happens any-
way, but in software.

DES_SW This constant, used in the mode parameter, specifies that no hard-
ware device is to be used.

The result of the function will be one of these values:

DESERR_NONE
The encryption succeeded.

DESERR_NOHWDEVICE
The encryption succeeded, but there was no hardware device avail-
able.

DESERR_HWERROR
The encryption failed because of a hardware problem.

DESERR_BADPARAM
The encryption failed because of a bad parameter, for instance len
is not a multiple of eight or len is larger than DES_MAXDATA.

Functionint DES FAILED (int err)
This macro returns 1 if err is a ‘success’ result code from ecb_crypt or cbc_
crypt, and 0 otherwise.

334 The GNU C Library: System & Network Applications

Functionint cbc crypt (char *key, char *blocks, unsigned len,
unsigned mode, char *ivec)

The function cbc_crypt encrypts or decrypts one or more blocks using DES
in Cipher Block Chaining mode.
For encryption in CBC mode, each block is exclusive-ORed with ivec before
being encrypted, then ivec is replaced with the result of the encryption, then the
next block is processed. Decryption is the reverse of this process.
This has the advantage that blocks that are the same before being encrypted are
very unlikely to be the same after being encrypted, making it much harder to
detect patterns in the data.
Usually, ivec is set to 8 random bytes before encryption starts. Then the 8
random bytes are transmitted along with the encrypted data (without themselves
being encrypted), and passed back in as ivec for decryption. Another possibility
is to set ivec to eight zeroes initially, and have the first block encrypted consist
of 8 random bytes.
Otherwise, all the parameters are similar to those for ecb_crypt.

Functionvoid des setparity (char *key)
The function des_setparity changes the 64-bit key, stored packed in 8-bit
bytes, to have odd parity by altering the low bits of each byte.

The ecb_crypt, cbc_crypt and des_setparity functions and their ac-
companying macros are all defined in the header ‘rpc/des_crypt.h’.

Chapter 14: Resource Usage and Limitation 335

14 Resource Usage and Limitation
This chapter describes functions for examining how much of various kinds of

resources (CPU time, memory, etc.) a process has used, and for getting and setting
limits on future usage.

14.1 Resource Usage
The function getrusage and the data-type struct rusage are used to ex-

amine the resource usage of a process. They are declared in ‘sys/resource.h’.

Functionint getrusage (int processes, struct rusage *rusage)
This function reports resource usage totals for processes specified by processes,
storing the information in *rusage .
In most systems, processes has only two valid values:

RUSAGE_SELF
This means just the current process.

RUSAGE_CHILDREN
This specifies all child processes, direct and indirect, that have al-
ready terminated.

In the GNU system, you can also inquire about a particular child-process by
specifying its process ID.
The return value of getrusage is zero for success and -1 for failure.

EINVAL The argument processes is not valid.

One way of getting resource usage for a particular child-process is with the func-
tion wait4, which returns totals for a child when it terminates (see Section 7.8
[BSD Process Wait Functions], page 218).

Data Typestruct rusage
This data type stores various resource usage statistics. It has the following mem-
bers, and possibly others:

struct timeval ru_utime
This is the time spent executing user instructions.

struct timeval ru_stime
This is the time spent in operating system code on behalf of pro-
cesses.

long int ru_maxrss
This is the maximum resident set size used, in kilobytes. That is,
the maximum number of kilobytes of physical memory that pro-
cesses used simultaneously.

336 The GNU C Library: System & Network Applications

long int ru_ixrss
This is an integral value expressed in kilobytes times ticks of ex-
ecution, which indicates the amount of memory used by text that
was shared with other processes.

long int ru_idrss
This is an integral value expressed the same way, which is the
amount of unshared memory used for data.

long int ru_isrss
This is an integral value expressed the same way, which is the
amount of unshared memory used for stack space.

long int ru_minflt
This is the number of page faults that were serviced without re-
quiring any I/O.

long int ru_majflt
This is the number of page faults that were serviced by doing I/O.

long int ru_nswap
This is the number of times processes was swapped entirely out of
main memory.

long int ru_inblock
This is the number of times the file system had to read from the
disk on behalf of processes.

long int ru_oublock
This is the number of times the file system had to write to the disk
on behalf of processes.

long int ru_msgsnd
This is the number of IPC messages sent.

long int ru_msgrcv
This is the number of IPC messages received.

long int ru_nsignals
This is the number of signals received.

long int ru_nvcsw
This is the number of times processes voluntarily invoked a context
switch (usually to wait for some service).

long int ru_nivcsw
The number of times an involuntary context switch took place (be-
cause a time slice expired, or another process of higher priority
was scheduled).

vtimes is a historical function that does some of what getrusage does.
getrusage is a better choice.
vtimes and its vtimes data structure are declared in ‘sys/vtimes.h’.

Chapter 14: Resource Usage and Limitation 337

Functionint vtimes (struct vtimes current, struct vtimes child)

vtimes reports resource-usage totals, for a process.
If current is nonnull, vtimes stores resource usage totals for the invoking pro-
cess alone, in the structure to which it points. If child is nonnull, vtimes stores
resource-usage totals for all past children (that have terminated) of the invoking
process in the structure to which it points.

Data Typestruct vtimes
This data type contains information about the resource usage of a process.
Each member corresponds to a member of the struct rusage data type
described above.

vm_utime
This is user CPU time. It is analogous to ru_utime in
struct rusage.

vm_stime
This is system CPU time. It is analogous to ru_stime in
struct rusage.

vm_idsrss
This is data and stack memory, the sum of the values that
would be reported as ru_idrss and ru_isrss in struct
rusage.

vm_ixrss
This is shared memory. It is analogous to ru_ixrss in
struct rusage.

vm_maxrss
This is maximum resident set size. It is analogous to ru_
maxrss in struct rusage.

vm_majflt
This is major page faults. It is analogous to ru_majflt in
struct rusage.

vm_minflt
This is minor page faults. It is analogous to ru_minflt in
struct rusage.

vm_nswap
This is the swap count. It is analogous to ru_nswap in
struct rusage.

vm_inblk
This is disk reads. It is analogous to ru_inblk in struct
rusage.

338 The GNU C Library: System & Network Applications

vm_oublk
This is disk writes. It is analogous to ru_oublk in struct
rusage.

The return value is 0 if the function succeeds and -1 otherwise.

An additional historical function for examining resource usage, vtimes, is sup-
ported but not documented here. It is declared in ‘sys/vtimes.h’.

14.2 Limiting Resource Usage
You can specify limits for the resource usage of a process. When the process

tries to exceed a limit, it may get a signal, or the system call by which it tried to
do so may fail, depending on the resource. Each process initially inherits its limit
values from its parent, but it can subsequently change them.

There are two per-process limits associated with a resource:

current limit
The current limit is the value the system will not allow usage to ex-
ceed. It is also called the “soft limit” because the process being limited
can generally raise the current limit at will.

maximum limit
The maximum limit is the maximum value to which a process is al-
lowed to set its current limit. It is also called the “hard limit” because
there is no way for a process to get around it. A process may lower its
own maximum limit, but only the superuser may increase a maximum
limit.

The symbols for use with getrlimit, setrlimit, getrlimit64 and
setrlimit64 are defined in ‘sys/resource.h’.

Functionint getrlimit (int resource, struct rlimit *rlp)
Read the current and maximum limits for the resource resource and store them
in *rlp .
The return value is 0 on success and -1 on failure. The only possible errno
error condition is EFAULT.
When the sources are compiled with _FILE_OFFSET_BITS == 64 on a 32-
bit system, this function is in fact getrlimit64. Thus, the LFS interface
transparently replaces the old interface.

Functionint getrlimit64 (int resource, struct rlimit64 *rlp)
This function is similar to getrlimit, but its second parameter is a pointer
to a variable of type struct rlimit64, which allows it to read values that
wouldn’t fit in the member of a struct rlimit.
If the sources are compiled with _FILE_OFFSET_BITS == 64 on a 32-bit
machine, this function is available under the name getrlimit and so trans-
parently replaces the old interface.

Chapter 14: Resource Usage and Limitation 339

Functionint setrlimit (int resource, const struct rlimit *rlp)
Store the current and maximum limits for the resource resource in *rlp .
The return value is 0 on success and -1 on failure. The following errno error
condition is possible:

EPERM

• The process tried to raise a current limit beyond the maximum
limit.

• The process tried to raise a maximum limit, but is not supe-
ruser.

When the sources are compiled with _FILE_OFFSET_BITS == 64 on a 32-
bit system, this function is in fact setrlimit64. Thus, the LFS interface
transparently replaces the old interface.

Functionint setrlimit64 (int resource, const struct rlimit64
*rlp)

This function is similar to setrlimit, but its second parameter is a pointer to
a variable of type struct rlimit64 that allows it to set values that wouldn’t
fit in the member of a struct rlimit.
If the sources are compiled with _FILE_OFFSET_BITS == 64 on a 32-bit
machine, this function is available under the name setrlimit and so trans-
parently replaces the old interface.

Data Typestruct rlimit
This structure is used with getrlimit to receive limit values, and with
setrlimit to specify limit values for a particular process and resource. It
has two fields:

rlim_t rlim_cur
This is the current limit.

rlim_t rlim_max
This is the maximum limit.

For getrlimit, the structure is an output; it receives the current values. For
setrlimit, it specifies the new values.

For the LFS functions, a similar type is defined in ‘sys/resource.h’.

Data Typestruct rlimit64
This structure is analogous to the rlimit structure above, but its components
have wider ranges. It has two fields:

rlim64_t rlim_cur
This is analogous to rlimit.rlim_cur, but with a different
type.

340 The GNU C Library: System & Network Applications

rlim64_t rlim_max
This is analogous to rlimit.rlim_max, but with a different
type.

Here is a list of resources for which you can specify a limit. Memory and file
sizes are measured in bytes.

RLIMIT_CPU
This is the maximum amount of CPU time the process can use. If it
runs for longer than this, it gets a signal, SIGXCPU. The value is
measured in seconds (see Section 17.2.6 [Operation-Error Signals],
page 387).

RLIMIT_FSIZE
This is the maximum size of file the process can create. Trying to write
a larger file causes a signal, SIGXFSZ (see Section 17.2.6 [Operation-
Error Signals], page 387).

RLIMIT_DATA
This is the maximum size of data memory for the process. If the pro-
cess tries to allocate data memory beyond this amount, the allocation
function fails.

RLIMIT_STACK
This is the maximum stack size for the process. If the process tries
to extend its stack past this size, it gets a SIGSEGV signal (see Sec-
tion 17.2.1 [Program-Error Signals], page 379).

RLIMIT_CORE
This is the maximum size core file that this process can create. If the
process terminates and would dump a core file larger than this, then
no core file is created. So setting this limit to 0 prevents core files
from ever being created.

RLIMIT_RSS
This is the maximum amount of physical memory that this process
should get. This parameter is a guide for the system’s scheduler and
memory allocator; the system may give the process more memory
when there is a surplus.

RLIMIT_MEMLOCK
This is the maximum amount of memory that can be locked into phys-
ical memory (so it will never be paged out).

RLIMIT_NPROC
This is the maximum number of processes that can be created with
the same user-ID. If you have reached the limit for your user-ID,
fork will fail with EAGAIN (see Section 7.4 [Creating a Process],
page 211).

Chapter 14: Resource Usage and Limitation 341

RLIMIT_NOFILE
RLIMIT_OFILE

The maximum number of files that the process can open. If it tries
to open more files than this, its open attempt fails with errno
EMFILE.1 Not all systems support this limit; GNU does, and 4.4 BSD
does.

RLIMIT_AS
This is the maximum size of total memory that this process should get.
If the process tries to allocate more memory beyond this amount with,
for example, brk, malloc, mmap or sbrk, the allocation function
fails.

RLIM_NLIMITS
This is the number of different resource limits. Any valid resource
operand must be less than RLIM_NLIMITS.

Constantint RLIM INFINITY
This constant stands for a value of “infinity” when supplied as the limit value in
setrlimit.

The following are historical functions to do some of what the functions above
do. The functions above are better choices.
ulimit and the command symbols are declared in ‘ulimit.h’.

Functionint ulimit (int cmd, ...)
ulimit gets the current limit or sets the current and maximum limit for a
particular resource for the calling process according to the command cmd.a
If you are getting a limit, the command argument is the only argument. If you
are setting a limit, there is a second argument: long int limit, which is the
value to which you are setting the limit.
The cmd values and the operations they specify are:

GETFSIZE
Get the current limit on the size of a file, in units of 512 bytes.

SETFSIZE
Set the current and maximum limit on the size of a file to limit *
512 bytes.

There are also some other cmd values that may do things on some systems, but
they are not supported.
Only the superuser may increase a maximum limit.
When you successfully get a limit, the return value of ulimit is that limit,
which is never negative. When you successfully set a limit, the return value is
0. When the function fails, the return value is -1 and errno is set according
to the reason:

1 See Loosemore et al., “Error Codes” (see chap. 1, n. 1).

342 The GNU C Library: System & Network Applications

EPERM A process tried to increase a maximum limit, but is not superuser.

vlimit and its resource symbols are declared in ‘sys/vlimit.h’.

Functionint vlimit (int resource, int limit)
vlimit sets the current limit for a resource for a process.
resource identifies the resource:

LIM_CPU This is the maximum CPU time. It is the same as RLIMIT_CPU
for setrlimit.

LIM_FSIZE
This is the maximum file size. It is the same as RLIMIT_FSIZE
for setrlimit.

LIM_DATA
This is the maximum data memory. It is the same as RLIMIT_
DATA for setrlimit.

LIM_STACK
This is the maximum stack size. It is the same as RLIMIT_STACK
for setrlimit.

LIM_CORE
This is the maximum core file size. It is the same as RLIMIT_COR
for setrlimit.

LIM_MAXRSS
This is the maximum physical memory. It is the same as RLIMIT_
RSS for setrlimit.

The return value is 0 for success and -1 with errno set accordingly for failure:

EPERM The process tried to set its current limit beyond its maximum limit.

14.3 Process CPU Priority and Scheduling
When multiple processes simultaneously require CPU time, the system’s schedul-

ing policy and process CPU priorities determine which processes get it. This section
describes how that determination is made and GNU C Library functions to control
it.

It is common to refer to CPU scheduling simply as scheduling and a process’s
CPU priority simply as the process’s priority, with the CPU resource being implied.
Bear in mind, though, that CPU time is not the only resource a process uses or that
processes contend for. In some cases, it is not even particularly important. Giving
a process a high “priority” may have very little effect on how fast a process runs
with respect to other processes. The priorities discussed in this section apply only
to CPU time.

CPU scheduling is a complex issue and different systems do it in wildly different
ways. New ideas continually develop and find their way into the intricacies of the

Chapter 14: Resource Usage and Limitation 343

various systems’ scheduling algorithms. This section discusses the general con-
cepts, some specifics of systems that commonly use the GNU C Library, and some
standards.

For simplicity, we talk about CPU contention as if there is only one CPU in the
system. But all the same principles apply when a processor has multiple CPUs, and
knowing that the number of processes that can run at any one time is equal to the
number of CPUs, you can easily extrapolate the information.

The functions described in this section are all defined by the POSIX.1 and
POSIX.1b standards (the sched... functions are POSIX.1b). However, POSIX
does not define any semantics for the values that these functions get and set. In
this chapter, the semantics are based on the Linux kernel’s implementation of the
POSIX standard. As you will see, the Linux implementation is quite the inverse of
what the authors of the POSIX syntax had in mind.

14.3.1 Absolute Priority

Every process has an absolute priority, and it is represented by a number. The
higher the number, the higher the absolute priority.

On systems of the past, and most systems today, all processes have absolute
priority 0 and this section is irrelevant. In that case, see Section 14.3.4 [Traditional
Scheduling], page 349. Absolute priorities were invented to accommodate real-
time systems, in which it is vital that certain processes be able to respond to external
events happening in real time, which means they cannot wait around while some
other process that wants to, but doesn’t need to run occupies the CPU.

When two processes are in contention to use the CPU at any instant, the one
with the higher absolute priority always gets it. This is true even if the process
with the lower priority is already using the CPU—the scheduling is preemptive. Of
course, we’re only talking about processes that are running or “ready to run”, which
means they are ready to execute instructions right now. The term “runnable” is a
synonym for “ready to run.” When a process blocks to wait for something like I/O,
its absolute priority is irrelevant.

When two processes are running or ready to run, and both have the same abso-
lute priority, it’s more interesting. In that case, who gets the CPU is determined
by the scheduling policy. If the processes have absolute priority 0, the traditional
scheduling policy described in Section 14.3.4 [Traditional Scheduling], page 349
applies. Otherwise, the policies described in Section 14.3.2 [Real-Time Schedul-
ing], page 345, apply.

You normally give an absolute priority above 0 only to a process that can be
trusted not to hog the CPU. Such processes are designed to block (or terminate)
after relatively short CPU runs.

A process begins life with the same absolute priority as its parent process.
Functions described in Section 14.3.3 [Basic Scheduling Functions], page 346 can
change it.

344 The GNU C Library: System & Network Applications

Only a privileged process can change a process’s absolute priority to something
other than 0. Only a privileged process or the target process’s owner can change its
absolute priority at all.

POSIX requires absolute priority values used with the real-time scheduling poli-
cies to be consecutive with a range of at least 32. On Linux, they are 1 through 99.
The functions sched_get_priority_max and sched_set_priority_
min portably tell you what the range is on a particular system.

14.3.1.1 Using Absolute Priority

One thing you must keep in mind when designing real-time applications is that
having higher absolute priority than any other process doesn’t guarantee the process
can run continuously. Two things that can wreck a good CPU run are interrupts and
page faults.

Interrupt handlers live in that limbo between processes. The CPU is executing
instructions, but they aren’t part of any process. An interrupt will stop even the
highest priority process. So you must allow for slight delays and make sure that
no device in the system has an interrupt handler that could cause too long a delay
between instructions for your process.

Similarly, a page fault causes what looks like a straightforward sequence of in-
structions to take a long time. The fact that other processes get to run while the
page faults in is of no consequence, because as soon as the I/O is complete, the
high-priority process will kick them out and run again, but the wait for the I/O
itself could be a problem. To neutralize this threat, use mlock or mlockall.

There are a few ramifications of the absoluteness of this priority on a single-CPU
system that you need to keep in mind when you choose to set a priority and also
when you’re working on a program that runs with high absolute priority. Consider
a process that has higher absolute priority than any other process in the system and
due to a bug in its program, it gets into an infinite loop. It will never cede the CPU.
You can’t run a command to kill it because your command would need to get the
CPU in order to run. The errant program is in complete control. It controls the
vertical, it controls the horizontal.

There are two ways to avoid this: 1) keep a shell running somewhere with a
higher absolute priority; 2) keep a controlling terminal attached to the high-priority
process group. All the priority in the world won’t stop an interrupt handler from
running and delivering a signal to the process if you hit Control-C.

Some systems use absolute priority as a means of allocating a fixed percentage
of CPU time to a process. To do this, a super-high-priority privileged process con-
stantly monitors the process’s CPU usage and raises its absolute priority when the
process isn’t getting its entitled share and lowers it when the process is exceeding
it.

The absolute priority is sometimes called the “static priority”. We don’t use that
term in this manual because it misses the most important feature of the absolute
priority—its absoluteness.

Chapter 14: Resource Usage and Limitation 345

14.3.2 Real-Time Scheduling

Whenever two processes with the same absolute priority are ready to run, the ker-
nel has a decision to make, because only one can run at a time. If the processes have
absolute priority 0, the kernel makes this decision as described in Section 14.3.4
[Traditional Scheduling], page 349. Otherwise, the decision is as described in this
section.

If two processes are ready to run but have different absolute priorities, the de-
cision is much simpler, and is described in Section 14.3.1 [Absolute Priority],
page 343.

Each process has a scheduling policy. For processes with absolute priority other
than 0, there are two available:

1. First-come first-served
2. Round-robin

The most sensible case is where all the processes with a certain absolute priority
have the same scheduling policy. We’ll discuss that first.

Under a round-robin policy, processes share the CPU, each one running for a
small quantum of time (“time slice”) and then yielding to another in a circular
fashion. Of course, only processes that are ready to run and have the same absolute
priority are in this circle.

Under a first-come first-served policy, the process that has been waiting the
longest to run gets the CPU, and it keeps it until it voluntarily relinquishes the CPU,
runs out of things to do (blocks), or gets preempted by a higher priority process.

First-come first-served, along with maximum absolute priority and careful con-
trol of interrupts and page faults, is the one to use when a process absolutely, posi-
tively has to run at full CPU speed or not at all.

Judicious use of sched_yield function invocations by processes with first-
come first-served scheduling policy forms a good compromise between round-robin
and first-come first-served.

To understand how scheduling works when processes of different scheduling
policies occupy the same absolute priority, you have to know the nitty-gritty details
of how processes enter and exit the ready-to-run list.

In both cases, the ready-to-run list is organized as a true queue, where a process
gets pushed onto the tail when it becomes ready to run and is popped off the head
when the scheduler decides to run it. Ready to run and running are two mutually
exclusive states. When the scheduler runs a process, that process is no longer ready
to run and no longer in the ready-to-run list. When the process stops running, it
may go back to being ready to run again.

The only difference between a process that is assigned the round-robin schedul-
ing policy and a process that is assigned first-come first-served is that in the former
case, the process is automatically booted off the CPU after a certain amount of time.
When that happens, the process goes back to being ready to run, which means it
enters the queue at the tail. The time quantum we’re talking about is small—really
small. This is not your father’s timesharing. For example, with the Linux kernel,

346 The GNU C Library: System & Network Applications

the round-robin time slice is a thousand times shorter than its typical time-slice for
traditional scheduling.

A process begins life with the same scheduling policy as its parent process.
Functions described in Section 14.3.3 [Basic Scheduling Functions], page 346 can
change it.

Only a privileged process can set the scheduling policy of a process that has
absolute priority higher than 0.

14.3.3 Basic Scheduling Functions

This section describes functions in the GNU C Library for setting the absolute
priority and scheduling policy of a process.

Portability Note: On systems that have the functions in this section, the macro
POSIX PRIORITY SCHEDULING is defined in ‘<unistd.h>’.

When the scheduling policy is traditional scheduling, more functions to fine tune
the scheduling are in Section 14.3.4 [Traditional Scheduling], page 349.

Don’t try to make too much out of the naming and structure of these functions.
They don’t match the concepts described in this manual because the functions are
as defined by POSIX.1b, but the implementation on systems that use the GNU C
Library is the inverse of what the POSIX structure contemplates. The POSIX scheme
assumes that the primary scheduling parameter is the scheduling policy and that the
priority value, if any, is a parameter of the scheduling policy. In the implementation,
though, the priority value is king and the scheduling policy, if anything, only fine-
tunes the effect of that priority.

The symbols in this section are declared by including file ‘sched.h’.

Data Typestruct sched param
This structure describes an absolute priority.

int sched_priority
This is the absolute priority value.

Functionint sched setscheduler (pid_t pid, int policy, const
struct sched_param *param)

This function sets both the absolute priority and the scheduling policy for a
process.
It assigns the absolute priority value given by param and the scheduling policy
policy to the process with Process ID pid, or the calling process if pid is 0.
If policy is negative, sched_setscheduler keeps the existing scheduling
policy.
The following macros represent the valid values for policy:

SCHED_OTHER
This is traditional scheduling.

Chapter 14: Resource Usage and Limitation 347

SCHED_FIFO
This is first-in first-out.

SCHED_RR
This is round-robin.

On success, the return value is 0. Otherwise, it is -1 and ERRNO is set accord-
ingly. The errno values specific to this function are
EPERM

• The calling process does not have CAP_SYS_NICE permis-
sion and policy is not SCHED_OTHER (or it’s negative and
the existing policy is not SCHED_OTHER).

• The calling process does not have CAP_SYS_NICE permis-
sion and its owner is not the target process’s owner. The ef-
fective uid of the calling process is neither the effective nor
the real uid of process pid.

ESRCH There is no process with PID pid and pid is not 0.
EINVAL

• policy does not identify an existing scheduling policy.
• The absolute priority value identified by *param is outside

the valid range for the scheduling policy policy (or the ex-
isting scheduling policy if policy is negative) or param is
null. sched_get_priority_max and sched_get_
priority_min tell you what the valid range is.

• pid is negative.

Functionint sched getscheduler (pid_t pid)
This function returns the scheduling policy assigned to the process with process
ID (PID) pid, or the calling process if pid is 0.
The return value is the scheduling policy. See sched_setscheduler for
the possible values.
If the function fails, the return value is instead -1 and errno is set accordingly.
The errno values specific to this function are
ESRCH There is no process with PID pid and it is not 0.
EINVAL pid is negative.
This function is not an exact mate to sched_setscheduler, because while
that function sets the scheduling policy and the absolute priority, this function
gets only the scheduling policy. To get the absolute priority, use sched_
getparam.

Functionint sched setparam (pid_t pid, const struct
sched_param *param)

This function sets a process’s absolute priority.
It is functionally identical to sched_setscheduler with policy = -1.

348 The GNU C Library: System & Network Applications

Functionint sched getparam (pid_t pid, const struct
sched_param *param)

This function returns a process’s absolute priority.
pid is the process ID (PID) of the process whose absolute priority you want to
know.
param is a pointer to a structure in which the function stores the absolute priority
of the process.
On success, the return value is 0. Otherwise, it is -1 and ERRNO is set accord-
ingly. The errno values specific to this function are

ESRCH There is no process with PID pid and it is not 0.

EINVAL pid is negative.

Functionint sched get priority min (int *policy);
This function returns the lowest absolute priority value that is allowable for a
process with scheduling policy policy.
On Linux, it is 0 for SCHED OTHER and 1 for everything else.
On success, the return value is 0. Otherwise, it is -1 and ERRNO is set accord-
ingly. The errno value specific to this function is

EINVAL policy does not identify an existing scheduling policy.

Functionint sched get priority max (int *policy);
This function returns the highest absolute priority value that is allowable for a
process with scheduling policy policy.
On Linux, it is 0 for SCHED OTHER and 99 for everything else.
On success, the return value is 0. Otherwise, it is -1 and ERRNO is set accord-
ingly. The errno value specific to this function is

EINVAL policy does not identify an existing scheduling policy.

Functionint sched rr get interval (pid_t pid, struct timespec
*interval)

This function returns the length of the quantum (time slice) used with the round-
robin scheduling policy, if it is used, for the process with process ID pid.
It returns the length of time as interval.
With a Linux kernel, the round-robin time slice is always 150 microseconds,
and pid need not even be a real PID.
The return value is 0 on success and in the pathological case that it fails, the
return value is -1 and errno is set accordingly. There is nothing specific that
can go wrong with this function, so there are no specific errno values.

Functionint sched yield (void)
This function voluntarily gives up the process’s claim on the CPU.

Chapter 14: Resource Usage and Limitation 349

Technically, sched_yield causes the calling process to be made immediately
ready to run (as opposed to running, which is what it was before). This means
that if it has absolute priority higher than 0, it gets pushed onto the tail of the
queue of processes that share its absolute priority and are ready to run, and it
will run again when its turn next arrives. If its absolute priority is 0, it is more
complicated, but still has the effect of yielding the CPU to other processes.
If there are no other processes that share the calling process’s absolute priority,
this function doesn’t have any effect.
To the extent that the containing program is oblivious to what other processes in
the system are doing and how fast it executes, this function appears as a no-op.
The return value is 0 on success and in the pathological case that it fails, the
return value is -1 and errno is set accordingly. There is nothing specific that
can go wrong with this function, so there are no specific errno values.

14.3.4 Traditional Scheduling

This section is about the scheduling among processes whose absolute priority
is 0. When the system hands out the scraps of CPU time that are left over after
the processes with higher absolute priority have taken all they want, the scheduling
described herein determines who among the great unwashed processes gets them.

14.3.4.1 Introduction to Traditional Scheduling

Long before there was absolute priority (see Section 14.3.1 [Absolute Priority],
page 343), Unix systems were scheduling the CPU using this system. When Posix
came in like the Romans and imposed absolute priorities to accommodate the needs
of real-time processing, it left the indigenous Absolute Priority Zero processes to
govern themselves by their own familiar scheduling policy.

Indeed, absolute priorities higher than 0 are not available on many systems today
and are not typically used when they are, being intended mainly for computers
that do real-time processing. So this section describes the only scheduling many
programmers need to be concerned about.

But just to be clear about the scope of this scheduling: Any time a process with a
absolute priority of 0 and a process with an absolute priority higher than 0 are ready
to run at the same time, the one with absolute priority 0 does not run. If it’s already
running when the higher priority ready-to-run process comes into existence, it stops
immediately.

In addition to its absolute priority of 0, every process has another priority, which
we will refer to as dynamic priority because it changes over time. The dynamic
priority is meaningless for processes with an absolute priority higher than 0.

The dynamic priority sometimes determines who gets the next turn on the CPU.
Sometimes it determines how long turns last. Sometimes it determines whether a
process can kick another off the CPU.

In Linux, the value is a combination of these things, but mostly it just determines
the length of the time slice. The higher a process’s dynamic priority, the longer a

350 The GNU C Library: System & Network Applications

shot it gets on the CPU when it gets one. If it doesn’t use up its time slice before
giving up the CPU to do something like wait for I/O, it is favored for getting the CPU
back when it’s ready for it, to finish out its time slice. Other than that, selection of
processes for new time slices is basically round robin. But the scheduler does throw
a bone to the low-priority processes: A process’s dynamic priority rises every time
it is snubbed in the scheduling process.

The fluctuation of a process’s dynamic priority is regulated by another value—
the nice value. The nice value is an integer, usually in the range -20 to 20, and
represents an upper limit on a process’s dynamic priority. The higher the nice
number, the lower that limit.

On a typical Linux system, for example, a process with a nice value of 20 can
get only 10 milliseconds on the CPU at a time, whereas a process with a nice value
of -20 can achieve a high enough priority to get 400 milliseconds.

The idea of the nice value is deferential courtesy. In the beginning, in the Unix
garden of Eden, all processes shared equally in the bounty of the computer system.
But not all processes really need the same share of CPU time, so the nice value
gave a courteous process the ability to refuse its equal share of CPU time that others
might prosper. Hence, the higher a process’s nice value, the nicer the process is.

Dynamic priorities tend upward and downward with an objective of smoothing
out allocation of CPU time and giving quick response time to infrequent requests.
But they never exceed their nice limits, so on a heavily loaded CPU, the nice value
effectively determines how fast a process runs.

In keeping with the socialistic heritage of Unix process priority, a process begins
life with the same nice value as its parent process and can raise it at will. A pro-
cess can also raise the nice value of any other process owned by the same user (or
effective user). But only a privileged process can lower its nice value. A privileged
process can also raise or lower another process’s nice value.

GNU C Library functions for getting and setting nice values are described in
Section 14.3.4.2 [Functions for Traditional Scheduling], page 350.

14.3.4.2 Functions for Traditional Scheduling

This section describes how you can read and set the nice value of a process. All
these symbols are declared in ‘sys/resource.h’.

The function and macro names are defined by POSIX, and refer to “priority”, but
the functions actually have to do with nice values, as the terms are used both in the
manual and POSIX.

The range of valid nice values depends on the kernel, but typically it runs from -
20 to 20. A lower nice value corresponds to higher priority for the process. These
constants describe the range of priority values:

PRIO_MIN
This is the lowest valid nice value.

PRIO_MAX
This is the highest valid nice value.

Chapter 14: Resource Usage and Limitation 351

Functionint getpriority (int class, int id)
Return the nice value of a set of processes; class and id specify which ones
(see below). If the processes specified do not all have the same nice value, this
returns the lowest value that any of them has.
On success, the return value is 0. Otherwise, it is -1 and ERRNO is set accord-
ingly. The errno values specific to this function are

ESRCH The combination of class and id does not match any existing pro-
cess.

EINVAL The value of class is not valid.

If the return value is -1, it could indicate failure, or it could be the nice
value. The only way to make certain is to set errno = 0 before calling
getpriority, then use errno != 0 afterward as the criterion for failure.

Functionint setpriority (int class, int id, int niceval)
Set the nice value of a set of processes to niceval ; class and id specify which
ones (see below).
The return value is 0 on success, and -1 on failure. The following errno error
condition are possible for this function are

ESRCH The combination of class and id does not match any existing pro-
cess.

EINVAL The value of class is not valid.

EPERM The call would set the nice value of a process that is owned by a
different user than the calling process (i.e. the target process’s real
or effective uid does not match the calling process’s effective uid)
and the calling process does not have CAP_SYS_NICE permis-
sion.

EACCES The call would lower the process’s nice value and the process does
not have CAP_SYS_NICE permission.

The arguments class and id together specify a set of processes in which you are
interested. These are the possible values of class:

PRIO_PROCESS
This is one particular process. The argument id is a process ID (PID).

PRIO_PGRP
This is all the processes in a particular process-group. The argument
id is a process-group ID (pgid).

PRIO_USER
This is all the processes owned by a particular user (i.e. whose real
uid indicates the user). The argument id is a user ID (uid).

If the argument id is 0, it stands for the calling process, its process group or its
owner (real uid), according to class.

352 The GNU C Library: System & Network Applications

Functionint nice (int increment)
Increment the nice value of the calling process by increment. The return value is
the new nice value on success and -1 on failure. In the case of failure, errno
will be set to the same values as for setpriority.
Here is an equivalent definition of nice:

int

nice (int increment)

{

int result, old = getpriority (PRIO_PROCESS, 0);

result = setpriority (PRIO_PROCESS, 0, old + increment);

if (result != -1)

return old + increment;

else

return -1;

}

14.3.5 Limiting Execution to Certain CPUs

On a multiprocessor system, the operating system usually distributes the dif-
ferent processes that are runnable on all available CPUs in a way that allows the
system to work most efficiently. Which processes and threads run can be to some
extent controlled with the scheduling functionality described in the last sections.
But which CPU finally executes which process or thread is not covered.

There are a number of reasons why a program might want to have control over
this aspect of the system as well:

• One thread or process is responsible for absolutely critical that which under no
circumstances must be interrupted or hindered from making progress by other
processes or threads using CPU resources. In this case, the special process
would be confined to a CPU that no other process or thread is allowed to use.

• The access to certain resources (RAM, I/O ports) has different costs from dif-
ferent CPUs. This is the case in NUMA (Nonuniform Memory Architecture)
machines. Preferably memory should be accessed locally but this requirement
is usually not visible to the scheduler. Therefore, forcing a process or thread
to the CPUs that have local access to the mostly used memory helps to signifi-
cantly boost the performance.

• In controlled run-times, resource allocation and bookkeeping work (like
garbage collection) are performance-local to processors. This can help to re-
duce locking costs if the resources do not have to be protected from concurrent
accesses from different processors.

The POSIX standard up to this date is of not much help to solve this problem.
The Linux kernel provides a set of interfaces to allow specifying affinity sets for a
process. The scheduler will schedule the thread or process on on CPUs specified
by the affinity masks. The interfaces that the GNU C Library define follow to some
extent the Linux kernel interface.

Chapter 14: Resource Usage and Limitation 353

Data Typecpu set t
This data set is a bitset where each bit represents a CPU. How the system’s CPUs
are mapped to bits in the bitset is system dependent. The data type has a fixed
size; in the unlikely case that the number of bits are not sufficient to describe
the CPUs of the system, a different interface has to be used.
This type is a GNU extension and is defined in ‘sched.h’.

To manipulate the bitset, to set and reset bits, a number of macros are defined.
Some of the macros take a CPU number as a parameter. Here it is important to never
exceed the size of the bitset. The following macro specifies the number of bits in
the cpu_set_t bitset:

Macroint CPU SETSIZE
The value of this macro is the maximum number of CPUs that can be handled
with a cpu_set_t object.

The type cpu_set_t should be considered opaque; all manipulation should
happen via the next four macros.

Macrovoid CPU ZERO (cpu_set_t *set)
This macro initializes the CPU set set to be the empty set.
This macro is a GNU extension and is defined in ‘sched.h’.

Macrovoid CPU SET (int cpu, cpu_set_t *set)
This macro adds cpu to the CPU set set.
The cpu parameter must not have side effects, since it is evaluated more than
once.
This macro is a GNU extension and is defined in ‘sched.h’.

Macrovoid CPU CLR (int cpu, cpu_set_t *set)
This macro removes cpu from the CPU set set.
The cpu parameter must not have side effects, since it is evaluated more than
once.
This macro is a GNU extension and is defined in ‘sched.h’.

Macroint CPU ISSET (int cpu, const cpu_set_t *set)
This macro returns a nonzero value (true) if cpu is a member of the CPU set set,
and 0 (false) otherwise.
The cpu parameter must not have side effects, since it is evaluated more than
once.
This macro is a GNU extension and is defined in ‘sched.h’.

CPU bitsets can be constructed from scratch or the currently installed affinity
mask can be retrieved from the system.

354 The GNU C Library: System & Network Applications

Functionint sched getaffinity (pid_t pid, cpu_set_t *cpuset)
This function stores the CPU affinity mask for the process or thread with the
ID pid in the memory pointed to by cpuset. If successful, the function always
initializes all bits in the cpu_set_t object and returns 0.
If pid does not correspond to a process or thread on the system or the function
fails for some other reason, it returns -1 and errno is set to represent the error
condition.

ESRCH No process or thread with the given ID is found.

EFAULT The pointer cpuset is does not point to a valid object.

This function is a GNU extension and is declared in ‘sched.h’.

It is not portably possible to use this information to retrieve the information for
different POSIX threads. A separate interface must be provided for that.

Functionint sched setaffinity (pid_t pid, const cpu_set_t
*cpuset)

This function installs the affinity mask pointed to by cpuset for the process or
thread with the ID pid. If successful, the function returns 0 and the scheduler
will in future take the affinity information into account.
If the function fails, it will return -1 and errno is set to the error code:

ESRCH No process or thread with the given ID is found.

EFAULT The pointer cpuset is does not point to a valid object.

EINVAL The bitset is not valid. This might mean that the affinity set might
not leave a processor for the process or thread to run on.

This function is a GNU extension and is declared in ‘sched.h’.

14.4 Querying Memory-Available Resources
The amount of memory available in the system and the way it is organized de-

termines oftentimes the way programs can and have to work. For functions like
mmap, it is necessary to know about the size of individual memory pages, and
knowing how much memory is available enables a program to select appropriate
sizes for, say, caches. Before we get into these details, a few words about memory
subsystems in traditional Unix systems will be given.

14.4.1 Overview of Traditional Unix Memory-Handling

Unix systems normally provide processes virtual-address spaces. This means
that the addresses of the memory regions do not have to correspond directly to the
addresses of the actual physical memory that stores the data. An extra level of
indirection is introduced that translates virtual addresses into physical addresses.
This is normally done by the hardware of the processor.

Chapter 14: Resource Usage and Limitation 355

Using a virtual address space has several advantages. The most important is
process isolation. The different processes running on the system cannot interfere
directly with each other. No process can write into the address space of another
process (except when shared memory is used, in which case this is desired and
controlled).

Another advantage of virtual memory is that the address space the processes see
can actually be larger than the physical memory available. The physical memory
can be extended by storage on an external media where the content of currently un-
used memory regions is stored. The address translation can then intercept accesses
to these memory regions and make memory content available again by loading the
data back into memory. This concept makes it necessary that programs that have
to use lots of memory know the difference between available virtual-address space
and available physical memory. If the working set of virtual memory of all the
processes is larger than the available physical memory the system will slow down
dramatically due to constant swapping of memory content from the memory to the
storage media and back. This is called thrashing.

A final aspect of virtual memory that is important and follows from what is said
in the last paragraph is the granularity of the virtual-address space handling. Al-
though the virtual-address handling stores memory content externally, it cannot do
this on a byte-by-byte basis. The administrative overhead does not allow this (not
to mention the processor hardware). Instead, several thousand bytes are handled
together and form a page. The size of each page is always a power of 2 bytes. The
smallest page size in use today is 4096, with 8192, 16384 and 65536 being other
popular sizes.

14.4.2 How to Get Information About the Memory
Subsystem?

It is essential in several situations to know the page size of the virtual memory the
process sees. Some programming interfaces (e.g., mmap; see Section 2.7 [Memory-
Mapped I/O], page 32) require the user to provide information adjusted to the page
size. In the case of mmap it is necessary to provide a length argument that is a
multiple of the page size. Another place where knowledge about the page size is
useful is in memory allocation. If you allocate pieces of memory in larger chunks
that are then subdivided by the application code, it is useful to adjust the size of
the larger blocks to the page size. If the total memory requirement for the block
is close to (but not larger than) a multiple of the page size, the kernel’s memory-
handling can work more effectively since it only has to allocate memory pages that
are fully used. To do this optimization, it is necessary to know a bit about the
memory allocator, which will require a bit of memory itself for each block, and this
overhead must not push the total size over the page size multiple.

The page size traditionally was a compile-time constant. But recent develop-
ment of processors changed this. Processors now support different page sizes, and
they can possibly even vary among different processes on the same system. There-

356 The GNU C Library: System & Network Applications

fore, the system should be queried at run-time about the current page-size, and no
assumptions (except about it being a power of 2) should be made.

The correct interface to query about the page size is sysconf (see
Section 12.4.1 [Definition of sysconf], page 307) with the parameter
_SC_PAGESIZE. There is a much older interface available, too.

Functionint getpagesize (void)
The getpagesize function returns the page size of the process. This value is
fixed for the runtime of the process but can vary in different runs of the applica-
tion.
The function is declared in ‘unistd.h’.

Widely available on System V-derived systems is a method to get information
about the physical memory the system has. The call:

sysconf (_SC_PHYS_PAGES)

returns the total number of pages of physical the system has. This does not mean
all this memory is available. This information can be found using:

sysconf (_SC_AVPHYS_PAGES)

These two values help to optimize applications. The value returned for _SC_
AVPHYS_PAGES is the amount of memory the application can use without hinder-
ing any other process (given that no other process increases its memory usage). The
value returned for _SC_PHYS_PAGES is more or less a hard limit for the working
set. If all applications together constantly use more than that amount of memory,
the system is in trouble.

The GNU C Library provides two functions in addition to the ways already de-
scribed to get this information. They are declared in the file ‘sys/sysinfo.h’.
Programmers should prefer to use the sysconf method described above.

Functionlong int get phys pages (void)
The get_phys_pages function returns the total number of pages of physical
memory the system has. To get the amount of memory, this number has to be
multiplied by the page size.
This function is a GNU extension.

Functionlong int get avphys pages (void)
The get_phys_pages function returns the number of available pages of
physical memory the system has. To get the amount of memory, this number
has to be multiplied by the page size.
This function is a GNU extension.

14.5 Learn About the Processors Available
The use of threads or processes with shared memory allows an application to

take advantage of all the processing power a system can provide. If the task can be

Chapter 14: Resource Usage and Limitation 357

parallelized, the optimal way to write an application is to have at any time as many
processes running as there are processors. To determine the number of processors
available to the system you can run:

sysconf (_SC_NPROCESSORS_CONF)

which returns the number of processors the operating system configured. But it
might be possible for the operating system to disable individual processors, and so
the call:

sysconf (_SC_NPROCESSORS_ONLN)

returns the number of processors that are currently in-line (i.e., available).
The GNU C Library also provides functions to get this information directly. The

functions are declared in ‘sys/sysinfo.h’.

Functionint get nprocs conf (void)
The get_nprocs_conf function returns the number of processors the oper-
ating system configured.
This function is a GNU extension.

Functionint get nprocs (void)
The get_nprocs function returns the number of available processors.
This function is a GNU extension.

Before starting more threads, it should be checked whether the processors are not
already overused. Unix systems calculate something called the load average. This
is a number indicating how many processes were running. This number is average
over different periods of times (normally 1, 5 and 15 minutes).

Functionint getloadavg (double loadavg[], int nelem)
This function gets the 1-, 5- and 15-minute load averages of the system. The
values are placed in loadavg. getloadavg will place at most nelem elements
into the array but never more than three elements. The return value is the number
of elements written to loadavg, or -1 on error.
This function is declared in ‘stdlib.h’.

358 The GNU C Library: System & Network Applications

Chapter 15: Syslog 359

15 Syslog
This chapter describes facilities for issuing and logging messages of system-

administration interest. This chapter has nothing to do with programs issuing mes-
sages to their own users or keeping private logs.1

Most systems have a facility called “Syslog” that allows programs to submit
messages of interest to system administrators and can be configured to pass these
messages on in various ways, such as printing on the console, mailing to a particular
person, or recording in a log file for future reference.

A program uses the facilities in this chapter to submit such messages.

15.1 Overview of Syslog
System administrators have to deal with lots of different kinds of messages from

a plethora of subsystems within each system, and usually lots of systems as well.
For example, an FTP server might report every connection it gets. The kernel might
report hardware failures on a disk drive. A DNS server might report usage statistics
at regular intervals.

Some of these messages need to be brought to a system administrator’s attention
immediately. And it may not be just any system administrator—there may be a
particular system administrator who deals with a particular kind of message. Other
messages just need to be recorded for future reference if there is a problem. Still
others may need to have information extracted from them by an automated process
that generates monthly reports.

To deal with these messages, most Unix systems have a facility called "Syslog."
It is generally based on a daemon called “Syslogd” Syslogd listens for messages on
a Unix domain socket named ‘/dev/log’. Based on classification information in
the messages and its configuration file (usually ‘/etc/syslog.conf’), Syslogd
routes them in various ways. Some of the popular routings are

• Write to the system console.
• Mail to a specific user.
• Write to a log file.
• Pass to another daemon.
• Discard.

Syslogd can also handle messages from other systems. It listens on the syslog
UDP port as well as the local socket for messages.

Syslog can handle messages from the kernel itself. But the kernel doesn’t write
to ‘/dev/log’; rather, another daemon (sometimes called “Klogd”) extracts mes-
sages from the kernel and passes them on to Syslog as any other process would
(and it properly identifies them as messages from the kernel).

1 You would typically do that with the facilities described in Loosemore et al., “Input/Output on
Streams” (see chap. 1, n. 1).

360 The GNU C Library: System & Network Applications

Syslog can even handle messages that the kernel issued before Syslogd or Klogd
was running. A Linux kernel, for example, stores start-up messages in a kernel
message ring and they are normally still there when Klogd later starts up. Assuming
Syslogd is running by the time Klogd starts, Klogd then passes everything in the
message ring to it.

In order to classify messages for disposition, Syslog requires any process that
submits a message to it to provide two pieces of classification information with it:

• facility This identifies who submitted the message. There are a small number
of facilities defined. The kernel, the mail subsystem, and an FTP server are
examples of recognized facilities. For the complete list, see Section 15.2.2
[syslog, vsyslog], page 362. Keep in mind that these are essentially arbitrary
classifications. “Mail subsystem” doesn’t have any more meaning than the
system administrator gives to it.

• priority This tells how important the content of the message is. Examples
of defined priority values are: debug, informational, warning, critical. For
the complete list, see Section 15.2.2 [syslog, vsyslog], page 362. Except for
the fact that the priorities have a defined order, the meaning of each of these
priorities is entirely determined by the system administrator.

A facility/priority is a number that indicates both the facility and the priority.
This terminology is not universal. Some people use level to refer to the priority

and priority to refer to the combination of facility and priority. A Linux kernel has
a concept of a message level, which corresponds both to a Syslog priority and to a
Syslog facility/priority (It can be both because the facility code for the kernel is 0,
and that makes priority and facility/priority the same value).

The GNU C Library provides functions to submit messages to Syslog. They
do it by writing to the ‘/dev/log’ socket (see Section 15.2 [Submitting Syslog
Messages], page 360).

The GNU C Library functions only work to submit messages to the Syslog facility
on the same system. To submit a message to the Syslog facility on another system,
use the socket I/O functions to write a UDP datagram to the syslog UDP port on
that system (see Chapter 5 [Sockets], page 125).

15.2 Submitting Syslog Messages
The GNU C Library provides functions to submit messages to the Syslog facility.
These functions only work to submit messages to the Syslog facility on the same

system. To submit a message to the Syslog facility on another system, use the
socket I/O functions to write a UDP datagram to the syslog UDP port on that
system (see Chapter 5 [Sockets], page 125).

15.2.1 openlog

The symbols referred to in this section are declared in the file ‘syslog.h’.

Chapter 15: Syslog 361

Functionvoid openlog (const char *ident, int option, int facility)
openlog opens or reopens a connection to Syslog in preparation for submitting
messages.

ident is an arbitrary identification string that future syslog invocations will
prefix to each message. This is intended to identify the source of the message,
and people conventionally set it to the name of the program that will submit the
messages.

If ident is NULL, or if openlog is not called, the default identification string
used in Syslog messages will be the program name, taken from argv[0].

Please note that the string pointer ident will be retained internally by the Syslog
routines. You must not free the memory that ident points to. It is also dangerous
to pass a reference to an automatic variable since leaving the scope would mean
ending the lifetime of the variable. If you want to change the ident string, you
must call openlog again; overwriting the string pointed to by ident is not
threadsafe.

You can cause the Syslog routines to drop the reference to ident and go back to
the default string (the program name taken from argv[0]), by calling closelog
(see Section 15.2.3 [closelog], page 365).

In particular, if you are writing code for a shared library that might get loaded
and then unloaded (like a PAM module), and you use openlog, you must call
closelog before any point where your library might get unloaded, as in this
example:

#include <syslog.h>

void

shared_library_function (void)

{

openlog ("mylibrary", option, priority);

syslog (LOG_INFO, "shared library has been invoked");

closelog ();

}

Without the call to closelog, future invocations of syslog by the program
using the shared library may crash, if the library gets unloaded and the memory
containing the string "mylibrary" becomes unmapped. This is a limitation
of the BSD Syslog interface.

openlog may or may not open the ‘/dev/log’ socket, depending on option.
If it does, it tries to open it and connect it as a stream socket. If that doesn’t
work, it tries to open it and connect it as a datagram socket. The socket has the
“Close on Exec” attribute, so the kernel will close it if the process performs an
exec.

362 The GNU C Library: System & Network Applications

You don’t have to use openlog. If you call syslog without having called
openlog, syslog just opens the connection implicitly and uses defaults for
the information in ident and options.
options is a bit string, with the bits as defined by the following single-bit masks:

LOG_PERROR
If on, openlog sets up the connection so that any syslog on
this connection writes its message to the calling process’s standard
error stream, in addition to submitting it to Syslog. If off, syslog
does not write the message to standard error.

LOG_CONS
If on, openlog sets up the connection so that a syslog on this
connection that fails to submit a message to Syslog writes the mes-
sage instead to system console. If off, syslog does not write to
the system console (but of course Syslog may write messages it
receives to the console).

LOG_PID When on, openlog sets up the connection so that a syslog on
this connection inserts the calling process’s process ID (PID) into
the message. When off, openlog does not insert the PID.

LOG_NDELAY
When on, openlog opens and connects the ‘/dev/log’ socket.
When off, a future syslog call must open and connect the socket.
Portability note: In early systems, the sense of this bit was exactly
the opposite.

LOG_ODELAY
This bit does nothing. It exists for backward compatibility.

If any other bit in options is on, the result is undefined.
facility is the default facility-code for this connection. A syslog on this con-
nection that specifies default facility causes this facility to be associated with
the message. See syslog for possible values. A value of 0 means the default
default, which is LOG_USER.
If a Syslog connection is already open when you call openlog, openlog
“reopens” the connection. Reopening is like opening except that if you specify 0
for the default facility code, the default facility code simply remains unchanged
and if you specify LOG NDELAY and the socket is already open and connected,
openlog just leaves it that way.

15.2.2 syslog, vsyslog

The symbols referred to in this section are declared in the file ‘syslog.h’.

Functionvoid syslog (int facility priority, char *format, ...)
syslog submits a message to the Syslog facility. It does this by writing to the
Unix domain socket ‘/dev/log’.

Chapter 15: Syslog 363

syslog submits the message with the facility and priority indicated by fa-
cility priority. The macro LOG_MAKEPRI generates a facility/priority from a
facility and a priority, as in the following example:

LOG_MAKEPRI(LOG_USER, LOG_WARNING)

The possible values for the facility code are (macros):

LOG_USER
This is a miscellaneous user process.

LOG_MAIL
This is mail.

LOG_DAEMON
This is a miscellaneous system daemon.

LOG_AUTH
This is security (authorization).

LOG_SYSLOG
This is syslog.

LOG_LPR This is the central printer.

LOG_NEWS
This is network news (e.g. Usenet).

LOG_UUCP
This is UUCP.

LOG_CRON
This is cron and At.

LOG_AUTHPRIV
This is private security (authorization).

LOG_FTP This is an ftp server.

LOG_LOCAL0
This is locally defined.

LOG_LOCAL1
This is locally defined.

LOG_LOCAL2
This is locally defined.

LOG_LOCAL3
This is locally defined.

LOG_LOCAL4
This is locally defined.

364 The GNU C Library: System & Network Applications

LOG_LOCAL5
This is locally defined.

LOG_LOCAL6
This is locally defined.

LOG_LOCAL7
This is locally defined.

Results are undefined if the facility code is anything else.
syslog recognizes one other facility code—that of the kernel. But you can’t
specify that facility code with these functions. If you try, it looks the same to
syslog as if you are requesting the default facility. But you wouldn’t want to
anyway, because any program that uses the GNU C Library is not the kernel.
You can use just a priority code as facility priority. In that case, syslog as-
sumes the default facility established when the Syslog connection was opened
(see Section 15.2.5 [Syslog Example], page 366).
The possible values for the priority code are (macros):

LOG_EMERG
The message says the system is unusable.

LOG_ALERT
Action on the message must be taken immediately.

LOG_CRIT
The message states a critical condition.

LOG_ERR The message describes an error.

LOG_WARNING
The message is a warning.

LOG_NOTICE
The message describes a normal but important event.

LOG_INFO
The message is purely informational.

LOG_DEBUG
The message is only for debugging purposes.

Results are undefined if the priority code is anything else.
If the process does not presently have a Syslog connection open (i.e. it did
not call openlog), syslog implicitly opens the connection the same as
openlog would, with the defaults for information that would otherwise be
included in an openlog call. The default identification-string is the program
name. The default default facility is LOG_USER. The default for all the connec-
tion options in options is as if those bits were off. syslog leaves the Syslog
connection open.

Chapter 15: Syslog 365

If the ‘dev/log’ socket is not open and connected, syslog opens and con-
nects it, the same as openlog with the LOG_NDELAY option would.
syslog leaves ‘/dev/log’ open and connected unless its attempt to send the
message failed, in which case syslog closes it, with the hope that a future
implicit open will restore the Syslog connection to a usable state.
Here is an example:

#include <syslog.h>

syslog (LOG_MAKEPRI(LOG_LOCAL1, LOG_ERROR),

"Unable to make network connection to %s. Error=%m", host);

Functionvoid vsyslog (int facility priority, char *format, va_list
arglist)

This is functionally identical to syslog, with the BSD-style variable length
argument.

15.2.3 closelog

The symbols referred to in this section are declared in the file ‘syslog.h’.

Functionvoid closelog (void)
closelog closes the current Syslog connection, if there is one. This includes
closing the ‘dev/log’ socket, if it is open. closelog also sets the identifica-
tion string for Syslog messages back to the default, if openlog was called with
a non-NULL argument to ident. The default identification string is the program
name taken from argv[0].
If you are writing shared library code that uses openlog to generate custom
syslog output, you should use closelog to drop the GNU C Library’s internal
reference to the ident pointer when you are done (see Section 15.2.1 [openlog],
page 360).
closelog does not flush any buffers. You do not have to call closelog
before reopening a Syslog connection with initlog. Syslog connections are
automatically closed on exec or exit.

15.2.4 setlogmask

The symbols referred to in this section are declared in the file ‘syslog.h’.

Functionint setlogmask (int mask)
setlogmask sets a mask (the “logmask”) that determines which future
syslog calls should be ignored. If a program has not called setlogmask,
syslog doesn’t ignore any calls. You can use setlogmask to specify that
messages of particular priorities shall be ignored in the future.

366 The GNU C Library: System & Network Applications

A setlogmask call overrides any previous setlogmask call.
Note that the logmask exists entirely independently of opening and closing of
Syslog connections.
Setting the logmask has a similar effect to, but is not the same as, configuring
Syslog. The Syslog configuration may cause Syslog to discard certain messages
it receives, but the logmask causes certain messages never to get submitted to
Syslog in the first place.
mask is a bit string with 1 bit corresponding to each of the possible message
priorities. If the bit is on, syslog handles messages of that priority normally.
If it is off, syslog discards messages of that priority. Use the message priority
macros described in Section 15.2.2 [syslog, vsyslog], page 362 and the LOG_
MASK to construct an appropriate mask value, as in this example:

LOG_MASK(LOG_EMERG) | LOG_MASK(LOG_ERROR)

or:
˜(LOG_MASK(LOG_INFO))

There is also a LOG_UPTO macro, which generates a mask with the bits on for
a certain priority and all priorities above it:

LOG_UPTO(LOG_ERROR)

The unfortunate naming of the macro is due to the fact that internally, higher
numbers are used for lower message priorities.

15.2.5 Syslog Example

Here is an example of openlog, syslog and closelog:
This example sets the logmask so that debug and informational messages get

discarded without ever reaching Syslog. So the second syslog in the example
does nothing.

#include <syslog.h>

setlogmask (LOG_UPTO (LOG_NOTICE));

openlog ("exampleprog", LOG_CONS | LOG_PID | LOG_NDELAY, LOG_LOCAL1);

syslog (LOG_NOTICE, "Program started by User %d", getuid ());

syslog (LOG_INFO, "A tree falls in a forest");

closelog ();

Chapter 16: Nonlocal Exits 367

16 Nonlocal Exits
Sometimes when your program detects an unusual situation inside a deeply

nested set of function calls, you would like to be able to immediately return to
an outer level of control. This section describes how you can do such nonlocal
exits using the setjmp and longjmp functions.

16.1 Introduction to Nonlocal Exits
As an example of a situation where a nonlocal exit can be useful, suppose you

have an interactive program that has a “main loop” that prompts for and executes
commands. Suppose the “read” command reads input from a file, doing some
lexical analysis and parsing of the input while processing it. If a low-level input
error is detected, it would be useful to be able to return immediately to the “main
loop” instead of having to make each of the lexical analysis, parsing and processing
phases all have to explicitly deal with error situations initially detected by nested
calls.

On the other hand, if each of these phases has to do a substantial amount of clean-
up when it exits—such as closing files, deallocating buffers or other data structures,
etc.—then it can be more appropriate to do a normal return and have each phase do
its own clean-up, because a nonlocal exit would bypass the intervening phases and
their associated clean-up code entirely. Alternatively, you could use a nonlocal exit
but do the clean-up explicitly either before or after returning to the “main loop”.

In some ways, a nonlocal exit is similar to using the ‘return’ statement to
return from a function. But while ‘return’ abandons only a single function call,
transferring control back to the point at which it was called, a nonlocal exit can
potentially abandon many levels of nested function calls.

You identify return points for nonlocal exits by calling the function setjmp.
This function saves information about the execution environment in which the call
to setjmp appears in an object of type jmp_buf. Execution of the program
continues normally after the call to setjmp, but if an exit is later made to this
return point by calling longjmp with the corresponding jmp_buf object, control
is transferred back to the point where setjmp was called. The return value from
setjmp is used to distinguish between an ordinary return and a return made by a
call to longjmp, so calls to setjmp usually appear in an ‘if’ statement.

Here is how the example program described above might be set up:
#include <setjmp.h>

#include <stdlib.h>

#include <stdio.h>

jmp_buf main_loop;

void

abort_to_main_loop (int status)

368 The GNU C Library: System & Network Applications

{

longjmp (main_loop, status);

}

int

main (void)

{

while (1)

if (setjmp (main_loop))

puts ("Back at main loop....");

else

do_command ();

}

void

do_command (void)

{

char buffer[128];

if (fgets (buffer, 128, stdin) == NULL)

abort_to_main_loop (-1);

else

exit (EXIT_SUCCESS);

}

The function abort_to_main_loop causes an immediate transfer of control
back to the main loop of the program, no matter where it is called from.

The flow of control inside the main function may appear a little mysterious at
first, but it is actually a common idiom with setjmp. A normal call to setjmp re-
turns 0, so the “else” clause of the conditional is executed. If abort_to_main_
loop is called somewhere within the execution of do_command, then it actually
appears as if the same call to setjmp in main were returning a second time with
a value of -1.

So, the general pattern for using setjmp looks something like:

if (setjmp (buffer))

/* Code to clean up after premature return. */

...

else

/* Code to be executed normally after setting up the return point. */

...

Chapter 16: Nonlocal Exits 369

16.2 Details of Nonlocal Exits
Here are the details on the functions and data structures used for performing

nonlocal exits. These facilities are declared in ‘setjmp.h’.

Data Typejmp buf
Objects of type jmp_buf hold the state information to be restored by a nonlocal
exit. The contents of a jmp_buf identify a specific place to return to.

Macroint setjmp (jmp_buf state)
When called normally, setjmp stores information about the execution state
of the program in state and returns 0. If longjmp is later used to perform a
nonlocal exit to this state, setjmp returns a nonzero value.

Functionvoid longjmp (jmp_buf state, int value)
This function restores the current execution to the state saved in state, and con-
tinues execution from the call to setjmp that established that return point. Re-
turning from setjmp by means of longjmp returns the value argument that
was passed to longjmp, rather than 0. (But if value is given as 0, setjmp
returns 1.

There are a lot of obscure but important restrictions on the use of setjmp and
longjmp. Most of these restrictions are present because nonlocal exits require a
fair amount of magic on the part of the C compiler and can interact with other parts
of the language in strange ways.

The setjmp function is actually a macro without an actual function defini-
tion, so you shouldn’t try to ‘#undef’ it or take its address. In addition, calls
to setjmp are safe in only the following contexts:

• As the test expression of a selection or iteration statement (such as ‘if’,
‘switch’ or ‘while’)

• As one operand of an equality or comparison operator that appears as the test
expression of a selection or iteration statement—the other operand must be an
integer constant expression

• As the operand of a unary ‘!’ operator, that appears as the test expression of a
selection or iteration statement

• By itself as an expression statement

Return points are valid only during the dynamic extent of the function that called
setjmp to establish them. If you longjmp to a return point that was estab-
lished in a function that has already returned, unpredictable and disastrous things
are likely to happen.

You should use a nonzero value argument to longjmp. While longjmp re-
fuses to pass back a zero argument as the return value from setjmp, this is in-
tended as a safety net against accidental misuse and is not really good programming
style.

370 The GNU C Library: System & Network Applications

When you perform a nonlocal exit, accessible objects generally retain whatever
values they had at the time longjmp was called. The exception is that the values
of automatic variables local to the function containing the setjmp call that have
been changed since the call to setjmp are indeterminate, unless you have declared
them volatile.

16.3 Nonlocal Exits and Signals
In BSD Unix systems, setjmp and longjmp also save and restore the set

of blocked signals (see Section 17.7 [Blocking Signals], page 414). However,
the POSIX.1 standard requires setjmp and longjmp not to change the set of
blocked signals, and provides an additional pair of functions (sigsetjmp and
siglongjmp) to get the BSD behavior.

The behavior of setjmp and longjmp in the GNU library is controlled by
feature-test macros (see Section 1.3.4 [Feature-Test Macros], page 8). The default
in the GNU system is the POSIX.1 behavior rather than the BSD behavior.

The facilities in this section are declared in the header file ‘setjmp.h’.

Data Typesigjmp buf
This is similar to jmp_buf, except that it can also store state information about
the set of blocked signals.

Functionint sigsetjmp (sigjmp_buf state, int savesigs)
This is similar to setjmp. If savesigs is nonzero, the set of blocked signals is
saved in state and will be restored if a siglongjmp is later performed with
this state.

Functionvoid siglongjmp (sigjmp_buf state, int value)
This is similar to longjmp except for the type of its state argument. If the
sigsetjmp call that set this state used a nonzero savesigs flag, siglongjmp
also restores the set of blocked signals.

16.4 Complete Context Control
The Unix standard provides one more set of functions to control the execution

path, and these functions are more powerful than those discussed in this chapter so
far. These function were part of the original System V API and by this route were
added to the Unix API. Besides on branded Unix implementations, these interfaces
are not widely available. Not all platforms and/or architectures the GNU C Library
is available on provide this interface. Use ‘configure’ to detect the availability.

Similar to the jmp_buf and sigjmp_buf types used for the variables to con-
tain the state of the longjmp functions, the interfaces of interest here have an
appropriate type as well. Objects of this type are normally much larger since more
information is contained. The type is also used in a few more places, as we will

Chapter 16: Nonlocal Exits 371

see. The types and functions described in this section are all defined and declared
respectively in the ‘ucontext.h’ header file.

Data Typeucontext t
The ucontext_t type is defined as a structure with as least the following
elements:

ucontext_t *uc_link
This is a pointer to the next context structure that is used if the
context described in the current structure returns.

sigset_t uc_sigmask
This is the set of signals that are blocked when this context is used.

stack_t uc_stack
This is the stack used for this context. The value need not be (and
normally is not) the stack pointer (see Section 17.9 [Using a Sepa-
rate Signal-Stack], page 424).

mcontext_t uc_mcontext
This element contains the actual state of the process. The
mcontext_t type is also defined in this header but the definition
should be treated as opaque. Any use of knowledge of the type
makes applications less portable.

Objects of this type have to be created by the user. The initialization and modifi-
cation happens through one of the following functions:

Functionint getcontext (ucontext_t *ucp)
The getcontext function initializes the variable pointed to by ucp with the
context of the calling thread. The context contains the content of the registers,
the signal mask, and the current stack. Executing the contents would start at the
point where the getcontext call just returned.
The function returns 0 if successful. Otherwise, it returns -1 and sets errno
accordingly.

The getcontext function is similar to setjmp, but it does not provide an
indication of whether the function returns for the first time or whether the initialized
context was used, and the execution is resumed at just that point. If this is necessary,
the user has to determine this herself. This must be done carefully, since the context
contains registers that might contain register variables. This is a good situation in
which to define variables with volatile.

Once the context variable is initialized, it can be used as is or it can be modified.
The latter is normally done to implement co-routines or similar constructs. The
makecontext function is what has to be used to do that.

372 The GNU C Library: System & Network Applications

Functionvoid makecontext (ucontext_t *ucp, void (*func)
(void), int argc, ...)

The ucp parameter passed to makecontext should be initialized by a call to
getcontext. The context will be modified so that if the context is resumed,
it will start by calling the function func, which gets argc integer arguments
passed. The integer arguments that are to be passed should follow the argc
parameter in the call to makecontext.
Before the call to this function, the uc_stack and uc_link element of the
ucp structure should be initialized. The uc_stack element describes the stack
that is used for this context. No two contexts that are used at the same time
should use the same memory region for a stack.
The uc_link element of the object pointed to by ucp should be a pointer to
the context to be executed when the function func returns, or it should be a null
pointer. See setcontext for more information about the exact use.

While allocating the memory for the stack, you have to be careful. Most modern
processors keep track of whether a certain memory region is allowed to contain
code that is executed or not. Data segments and heap memory are normally not
tagged to allow this. The result is that programs would fail. Examples for such code
include the calling sequences the GNU C Compiler generates for calls to nested
functions. Safe ways to allocate stacks correctly include using memory on the
original threads stack or explicitly allocating memory tagged for execution using
memory-mapped I/O (see Section 2.7 [Memory-Mapped I/O], page 32).

Compatibility Note: The current Unix standard is very imprecise about the way
the stack is allocated. All implementations seem to agree that the uc_stack
element must be used but the values stored in the elements of the stack_t value
are unclear. The GNU C Library and most other Unix implementations require the
ss_sp value of the uc_stack element to point to the base of the memory region
allocated for the stack and the size of the memory region to be stored in ss_size.
There are implementations out there that require ss_sp to be set to the value the
stack pointer will have (which can be different depending on the direction the stack
grows). This difference makes the makecontext function hard to use, and it
requires detection of the platform at compile time.

Functionint setcontext (const ucontext_t *ucp)
The setcontext function restores the context described by ucp. The context
is not modified and can be reused as often as wanted.
If the context was created by getcontext, execution resumes with the regis-
ters filled with the same values and the same stack as if the getcontext call
just returned.
If the context was modified with a call to makecontext, execution contin-
ues with the function passed to makecontext, which gets the specified pa-
rameters passed. If this function returns, execution is resumed in the context
that was referenced by the uc_link element of the context structure passed
to makecontext at the time of the call. If uc_link was a null pointer, the
application terminates in this case.

Chapter 16: Nonlocal Exits 373

Since the context contains information about the stack, no two threads should
use the same context at the same time. The result in most cases would be disas-
trous.
The setcontext function does not return unless an error occurred, in which
case it returns -1.

The setcontext function simply replaces the current context with the one
described by the ucp parameter. This is often useful, but there are situations where
the current context has to be preserved.

Functionint swapcontext (ucontext_t *restrict oucp, const
ucontext_t *restrict ucp)

The swapcontext function is similar to setcontext, but instead of just
replacing the current context, the latter is first saved in the object pointed to by
oucp as if this were a call to getcontext. The saved context would resume
after the call to swapcontext.
Once the current context is saved, the context described in ucp is installed, and
execution continues as described in this context.
If swapcontext succeeds, the function does not return unless the context
oucp is used without prior modification by makecontext. The return value
in this case is 0. If the function fails it returns -1 and set errno accordingly.

Example for SVID Context-Handling
The easiest way to use the context-handling functions is as a replacement for

setjmp and longjmp. The context contains on most platforms more informa-
tion, which might lead to less surprises, but this also means using these functions
is more expensive (besides being less portable).

int

random_search (int n, int (*fp) (int, ucontext_t *))

{

volatile int cnt = 0;

ucontext_t uc;

/* Safe current context. */

if (getcontext (&uc) < 0)

return -1;

/* If we have not tried n times try again. */

if (cnt++ < n)

/* Call the function with a new random number

and the context. */

if (fp (rand (), &uc) != 0)

/* We found what we were looking for. */

374 The GNU C Library: System & Network Applications

return 1;

/* Not found */

return 0;

}

Using contexts in such a way enables emulating exception handling. The search
functions passed in the fp parameter could be very large, nested, and complex,
which would make it complicated (or at least would require a lot of code) to leave
the function with an error value that has to be passed down to the caller. By using
the context, it is possible to leave the search function in one step and allow restarting
the search, which also has the nice side effect that it can be significantly faster.

Something that is harder to implement with setjmp and longjmp is to switch
temporarily to a different execution path and then resume where execution was
stopped.

#include <signal.h>

#include <stdio.h>

#include <stdlib.h>

#include <ucontext.h>

#include <sys/time.h>

/* Set by the signal handler */

static volatile int expired;

/* The contexts */

static ucontext_t uc[3];

/* We do only a certain number of switches. */

static int switches;

/* This is the function doing the work. It is just a

skeleton; real code has to be filled in. */

static void

f (int n)

{

int m = 0;

while (1)

{

/* This is where the work would be done. */

if (++m % 100 == 0)

{

putchar (’.’);

fflush (stdout);

}

Chapter 16: Nonlocal Exits 375

/* The expire variable must be checked regularly. */

if (expired)

{

/* We do not want the program to run forever. */

if (++switches == 20)

return;

printf ("\nswitching from %d to %d\n", n, 3 - n);

expired = 0;

/* Switch to the other context, saving the current one. */

swapcontext (&uc[n], &uc[3 - n]);

}

}

}

/* This is the signal handler that simply sets the variable. */

void

handler (int signal)

{

expired = 1;

}

int

main (void)

{

struct sigaction sa;

struct itimerval it;

char st1[8192];

char st2[8192];

/* Initialize the data structures for the interval timer. */

sa.sa_flags = SA_RESTART;

sigfillset (&sa.sa_mask);

sa.sa_handler = handler;

it.it_interval.tv_sec = 0;

it.it_interval.tv_usec = 1;

it.it_value = it.it_interval;

/* Install the timer and get the context we can manipulate. */

if (sigaction (SIGPROF, &sa, NULL) < 0

|| setitimer (ITIMER_PROF, &it, NULL) < 0

|| getcontext (&uc[1]) == -1

376 The GNU C Library: System & Network Applications

|| getcontext (&uc[2]) == -1)

abort ();

/* Create a context with a separate stack that causes the

function f to be called with the parameter 1.

The uc_link points to the main context,

which will cause the program to terminate once the function

returns. */

uc[1].uc_link = &uc[0];

uc[1].uc_stack.ss_sp = st1;

uc[1].uc_stack.ss_size = sizeof st1;

makecontext (&uc[1], (void (*) (void)) f, 1, 1);

/* This is similar to the above, but 2 is passed as the parameter to f. */

uc[2].uc_link = &uc[0];

uc[2].uc_stack.ss_sp = st2;

uc[2].uc_stack.ss_size = sizeof st2;

makecontext (&uc[2], (void (*) (void)) f, 1, 2);

/* Start running. */

swapcontext (&uc[0], &uc[1]);

putchar (’\n’);

return 0;

}

This an example how the context functions can be used to implement coroutines
or cooperative multithreading. All that has to be done is to call swapcontext
every once in a while to continue running a different context. It is not permis-
sible to do the context switching from the signal handler directly, since neither
setcontext nor swapcontext are functions that can be called from a signal
handler. But setting a variable in the signal handler and checking it in the body
of the functions which are executed. Since swapcontext is saving the current
context, it is possible to have multiple different scheduling-points in the code. Ex-
ecution will always resume where it was left.

Chapter 17: Signal Handling 377

17 Signal Handling

A signal is a software interrupt delivered to a process. The operating system
uses signals to report exceptional situations to an executing program. Some sig-
nals report errors such as references to invalid memory-addresses; others report
asynchronous events, such as disconnection of a phone line.

The GNU C Library defines a variety of signal types, each for a particular kind of
event. Some kinds of events make it inadvisable or impossible for the program to
proceed as usual, and the corresponding signals normally abort the program. Other
kinds of signals that report harmless events are ignored by default.

If you anticipate an event that causes signals, you can define a handler function
and tell the operating system to run it when that particular type of signal arrives.

Finally, one process can send a signal to another process; this allows a parent
process to abort a child, or two related processes to communicate and synchronize.

17.1 Basic Concepts of Signals
This section explains basic concepts of how signals are generated, what happens

after a signal is delivered, and how programs can handle signals.

17.1.1 Some Kinds of Signals

A signal reports the occurrence of an exceptional event. These are some of the
events that can cause (or generate, or raise) a signal:

• A program error such as dividing by 0 or issuing an address outside the valid
range

• A user request to interrupt or terminate the program.; most environments are
set up to let a user suspend the program by typing C-z, or terminate it with
C-c. Whatever key sequence is used, the operating system sends the proper
signal to interrupt the process.

• The termination of a child process
• Expiration of a timer or alarm
• A call to kill or raise by the same process
• A call to kill from another process; signals are a limited but useful form of

interprocess communication.
• An attempt to perform an I/O operation that cannot be done; examples are

reading from a pipe that has no writer (see Chapter 4 [Pipes and FIFOs],
page 119), and reading or writing to a terminal in certain situations (see Chap-
ter 8 [Job Control], page 221).

Each of these kinds of events (excepting explicit calls to kill and raise)
generates its own particular kind of signal. The various kinds of signals are listed
and described in detail in Section 17.2 [Standard Signals], page 379.

378 The GNU C Library: System & Network Applications

17.1.2 Concepts of Signal Generation

In general, the events that generate signals fall into three major categories: errors,
external events and explicit requests.

An error means that a program has done something invalid and cannot continue
execution. But not all kinds of errors generate signals—in fact, most do not. For
example, opening a nonexistent file is an error, but it does not raise a signal; instead,
open returns -1. In general, errors that are necessarily associated with certain
library functions are reported by returning a value that indicates an error. The
errors that raise signals are those that can happen anywhere in the program, not just
in library calls. These include division by 0 and invalid memory-addresses.

An external event generally has to do with I/O or other processes. These include
the arrival of input, the expiration of a timer and the termination of a child process.

An explicit request means the use of a library function such as kill whose
purpose is specifically to generate a signal.

Signals may be generated synchronously or asynchronously. A synchronous
signal pertains to a specific action in the program, and is delivered (unless blocked)
during that action. Most errors generate signals synchronously, and so do explicit
requests by a process to generate a signal for that same process. On some machines,
certain kinds of hardware errors (usually floating-point exceptions) are not reported
completely synchronously, but may arrive a few instructions later.

Asynchronous signals are generated by events outside the control of the process
that receives them. These signals arrive at unpredictable times during execution.
External events generate signals asynchronously, and so do explicit requests that
apply to some other process.

A given type of signal is either typically synchronous or typically asynchronous.
For example, signals for errors are typically synchronous because errors generate
signals synchronously. But any type of signal can be generated synchronously or
asynchronously with an explicit request.

17.1.3 How Signals Are Delivered

When a signal is generated, it becomes pending. Normally, it remains pending
for just a short period of time and then is delivered to the process that was sig-
naled. However, if that kind of signal is currently blocked, it may remain pending
indefinitely—until signals of that kind are unblocked. Once unblocked, it will be
delivered immediately (see Section 17.7 [Blocking Signals], page 414).

When the signal is delivered, whether right away or after a long delay, the spec-
ified action for that signal is taken. For certain signals, such as SIGKILL and
SIGSTOP, the action is fixed, but for most signals, the program has a choice: ig-
nore the signal, specify a handler function or accept the default action for that kind
of signal. The program specifies its choice using functions such as signal or
sigaction (see Section 17.3 [Specifying Signal Actions], page 389). We some-
times say that a handler catches the signal. While the handler is running, that
particular signal is normally blocked.

Chapter 17: Signal Handling 379

If the specified action for a kind of signal is to ignore it, then any such signal
that is generated is discarded immediately. This happens even if the signal is also
blocked at the time. A signal discarded in this way will never be delivered, not even
if the program subsequently specifies a different action for that kind of signal and
then unblocks it.

If a signal arrives that the program has neither handled nor ignored, its default
action takes place. Each kind of signal has its own default action, documented
below (see Section 17.2 [Standard Signals], page 379). For most kinds of signals,
the default action is to terminate the process. For certain kinds of signals that
represent “harmless” events, the default action is to do nothing.

When a signal terminates a process, its parent process can determine the cause
of termination by examining the termination status-code reported by the wait or
waitpid functions. (This is discussed in more detail in Section 7.6 [Process Com-
pletion], page 215.) The information it can get includes the fact that termination
was due to a signal and the kind of signal involved. If a program you run from a
shell is terminated by a signal, the shell typically prints some kind of error message.

The signals that normally represent program errors have a special property: when
one of these signals terminates the process, it also writes a core-dump file that
records the state of the process at the time of termination. You can examine the
core dump with a debugger to investigate what caused the error.

If you raise a “program error” signal by explicit request, and this terminates the
process, it makes a core-dump file just as if the signal had been due directly to an
error.

17.2 Standard Signals
This section lists the names for various standard kinds of signals and describes

what kind of event they mean. Each signal name is a macro that stands for a positive
integer—the signal number for that kind of signal. Your programs should never
make assumptions about the numeric code for a particular kind of signal, but rather
refer to them always by the names defined here. This is because the number for a
given kind of signal can vary from system to system, but the meanings of the names
are standardized and fairly uniform.

The signal names are defined in the header file ‘signal.h’.

Macroint NSIG
The value of this symbolic constant is the total number of signals defined. Since
the signal numbers are allocated consecutively, NSIG is also 1 greater than the
largest defined signal-number.

17.2.1 Program-Error Signals

The following signals are generated when a serious program error is detected
by the operating system or the computer itself. In general, all of these signals are

380 The GNU C Library: System & Network Applications

indications that your program is seriously broken in some way, and there’s usually
no way to continue the computation that encountered the error.

Some programs handle program-error signals in order to tidy up before termi-
nating; for example, programs that turn off echoing of terminal input should handle
program-error signals in order to turn echoing back on. The handler should end by
specifying the default action for the signal that happened and then reraising it; this
will cause the program to terminate with that signal, as if it had not had a handler
(see Section 17.4.2 [Handlers That Terminate the Process], page 398).

Termination is the sensible ultimate outcome from a program error in most pro-
grams. However, programming systems such as Lisp that can load compiled user-
programs might need to keep executing even if a user program incurs an error.
These programs have handlers that use longjmp to return control to the command
level.

The default action for all of these signals is to cause the process to terminate. If
you block or ignore these signals or establish handlers for them that return normally,
your program will probably break horribly when such signals happen, unless they
are generated by raise or kill instead of a real error.

When one of these program-error signals terminates a process, it also writes a
core-dump file that records the state of the process at the time of termination. The
core dump file is named ‘core’ and is written in whichever directory is current
in the process at the time. On the GNU system, you can specify the file name for
core dumps with the environment variable COREFILE. The purpose of core-dump
files is so that you can examine them with a debugger to investigate what caused
the error.

Macroint SIGFPE
The SIGFPE signal reports a fatal arithmetic error. Although the name is de-
rived from “floating-point exception”, this signal actually covers all arithmetic
errors, including division by 0 and overflow. If a program stores integer data
in a location that is then used in a floating-point operation, this often causes an
“invalid operation” exception, because the processor cannot recognize the data
as a floating-point number.
Actual floating-point exceptions are a complicated subject because there are
many types of exceptions with subtly different meanings, and the SIGFPE sig-
nal doesn’t distinguish between them. The IEEE Standard for Binary Floating-
Point Arithmetic (ANSI/IEEE Std 754-1985 and ANSI/IEEE Std 854-1987) de-
fines various floating-point exceptions and requires conforming computer sys-
tems to report their occurrences. However, this standard does not specify how
the exceptions are reported, or what kinds of handling and control the operating
system can offer to the programmer.

BSD systems provide the SIGFPE handler with an extra argument that distin-
guishes various causes of the exception. In order to access this argument, you must
define the handler to accept two arguments, which means you must cast it to a
one-argument function type in order to establish the handler. The GNU library does

Chapter 17: Signal Handling 381

provide this extra argument, but the value is meaningful only on operating systems
that provide the information (BSD systems and GNU systems).

FPE_INTOVF_TRAP
Integer overflow (impossible in a C program unless you enable over-
flow trapping in a hardware-specific fashion)

FPE_INTDIV_TRAP
Integer division by 0

FPE_SUBRNG_TRAP
Subscript range (something that C programs never check for)

FPE_FLTOVF_TRAP
Floating overflow trap

FPE_FLTDIV_TRAP
Floating/decimal division by 0.

FPE_FLTUND_TRAP
Floating underflow trap; trapping on floating underflow is not nor-
mally enabled.

FPE_DECOVF_TRAP
Decimal overflow trap; only a few machines have decimal arithmetic,
and C never uses it.

Macroint SIGILL
The name of this signal is derived from “illegal instruction”; it usually means
your program is trying to execute garbage or a privileged instruction. Since the
C compiler generates only valid instructions, SIGILL typically indicates that
the executable file is corrupted, or that you are trying to execute data. Some
common ways of getting into the latter situation are by passing an invalid object
where a pointer to a function was expected, or by writing past the end of an
automatic array (or similar problems with pointers to automatic variables) and
corrupting other data on the stack such as the return address of a stack frame.
SIGILL can also be generated when the stack overflows, or when the system
has trouble running the handler for a signal.

Macroint SIGSEGV
This signal is generated when a program tries to read or write outside the mem-
ory that is allocated for it, or to write memory that can only be read. Actually,
the signals only occur when the program goes far enough outside to be detected
by the system’s memory protection mechanism. The name is an abbreviation
for “segmentation violation”.
Common ways of getting a SIGSEGV condition include dereferencing a null or
uninitialized pointer, or when you use a pointer to step through an array, but fail
to check for the end of the array. It varies among systems whether dereferencing
a null pointer generates SIGSEGV or SIGBUS.

382 The GNU C Library: System & Network Applications

Macroint SIGBUS
This signal is generated when an invalid pointer is dereferenced. Like
SIGSEGV, this signal is typically the result of dereferencing an uninitialized
pointer. The difference between the two is that SIGSEGV indicates an invalid
access to valid memory, while SIGBUS indicates an access to an invalid
address. In particular, SIGBUS signals often result from dereferencing a
misaligned pointer, such as referring to a four-word integer at an address not
divisible by 4. Each kind of computer has its own requirements for address
alignment.
The name of this signal is an abbreviation for “bus error”.

Macroint SIGABRT
This signal indicates an error detected by the program itself and reported by
calling abort.1

Macroint SIGIOT
This is generated by the PDP-11 “iot” instruction. On most machines, this is
just another name for SIGABRT.

Macroint SIGTRAP
This is generated by the machine’s breakpoint instruction, and possibly other
trap instructions. This signal is used by debuggers. Your program will probably
only see SIGTRAP if it is somehow executing bad instructions.

Macroint SIGEMT
This indicates an emulator trap; it results from certain unimplemented instruc-
tions that might be emulated in software, or the operating system’s failure to
properly emulate them.

Macroint SIGSYS
This indicates a bad system call. The instruction to trap to the operating system
was executed, but the code number for the system call to perform was invalid.

17.2.2 Termination Signals

These signals are all used to tell a process to terminate, in one way or another.
They have different names because they’re used for slightly different purposes, and
programs might want to handle them differently.

The reason for handling these signals is usually so your program can tidy up as
appropriate before actually terminating. For example, you might want to save state
information, delete temporary files, or restore the previous terminal modes. Such
a handler should end by specifying the default action for the signal that happened

1 See Loosemore et al., “Aborting a Program” (see chap. 1, n. 1).

Chapter 17: Signal Handling 383

and then reraising it; this will cause the program to terminate with that signal, as if
it had not had a handler (see Section 17.4.2 [Handlers That Terminate the Process],
page 398).

The (obvious) default action for all of these signals is to cause the process to
terminate.

Macroint SIGTERM
The SIGTERM signal is a generic signal used to cause program termination.
Unlike SIGKILL, this signal can be blocked, handled and ignored. It is the
normal way to politely ask a program to terminate.
The shell command kill generates SIGTERM by default.

Macroint SIGINT
The SIGINT (“program interrupt”) signal is sent when the user types the INTR
character (normally C-c). See Section 6.4.9 [Special Characters], page 194, for
information about terminal driver support for C-c.

Macroint SIGQUIT
The SIGQUIT signal is similar to SIGINT, except that it’s controlled by a
different key—the QUIT character, usually C-\—and produces a core dump
when it terminates the process, just like a program-error signal. You can think
of this as a program-error condition “detected” by the user.
See Section 17.2.1 [Program-Error Signals], page 379, for information about
core dumps, and Section 6.4.9 [Special Characters], page 194, for information
about terminal-driver support.
Certain kinds of clean-ups are best omitted in handling SIGQUIT. For example,
if the program creates temporary files, it should handle the other termination
requests by deleting the temporary files. But it is better for SIGQUIT not to
delete them, so that the user can examine them in conjunction with the core
dump.

Macroint SIGKILL
The SIGKILL signal is used to cause immediate program termination. It cannot
be handled or ignored, and is therefore always fatal. It is also not possible to
block this signal.
This signal is usually generated only by explicit request. Since it cannot be
handled, you should generate it only as a last resort, after first trying a less
drastic method such as C-c or SIGTERM. If a process does not respond to
any other termination signals, sending it a SIGKILL signal will almost always
cause it to go away.
In fact, if SIGKILL fails to terminate a process, that by itself constitutes an
operating system bug that you should report.
The system will generate SIGKILL for a process itself under some unusual
conditions where the program cannot possibly continue to run (even to run a
signal handler).

384 The GNU C Library: System & Network Applications

Macroint SIGHUP
The SIGHUP (“hang-up”) signal is used to report that the user’s terminal is
disconnected, perhaps because a network or telephone connection was broken
(see Section 6.4.6 [Control Modes], page 187).
This signal is also used to report the termination of the controlling process on
a terminal to jobs associated with that session; this termination effectively dis-
connects all processes in the session from the controlling terminal.2

17.2.3 Alarm Signals

These signals are used to indicate the expiration of timers.3

The default behavior for these signals is to cause program termination. This
default is rarely useful, but no other default would be useful; most of the ways of
using these signals would require handler functions in any case.

Macroint SIGALRM
This signal typically indicates expiration of a timer that measures real or clock
time. It is used by the alarm function, for example.

Macroint SIGVTALRM
This signal typically indicates expiration of a timer that measures CPU time used
by the current process. The name is an abbreviation for “virtual time alarm”.

Macroint SIGPROF
This signal typically indicates expiration of a timer that measures both CPU time
used by the current process, and CPU time expended on behalf of the process by
the system. Such a timer is used to implement code-profiling facilities, hence
the name of this signal.

17.2.4 Asynchronous-I/O Signals

The signals listed in this section are used in conjunction with asynchronous I/O
facilities. You have to take explicit action by calling fcntl to enable a particular
file-descriptor to generate these signals (see Section 2.16 [Interrupt-Driven Input],
page 68). The default action for these signals is to ignore them.

Macroint SIGIO
This signal is sent when a file descriptor is ready to perform input or output.

2 Ibid., “Termination Internals”.
3 For information about functions that cause these signals to be sent see Loosemore et al., “Setting

an Alarm”.

Chapter 17: Signal Handling 385

On most operating systems, terminals and sockets are the only kinds of files
that can generate SIGIO; other kinds, including ordinary files, never generate
SIGIO even if you ask them to.
In the GNU system, SIGIO will always be generated properly if you success-
fully set asynchronous mode with fcntl.

Macroint SIGURG
This signal is sent when “urgent” or out-of-band data arrives on a socket (see
Section 5.9.8 [Out-of-Band Data], page 164).

Macroint SIGPOLL
This is a System V signal name, more or less similar to SIGIO. It is defined
only for compatibility.

17.2.5 Job Control Signals

These signals are used to support job control. If your system doesn’t support job
control, then these macros are defined but the signals themselves can’t be raised or
handled.

You should generally leave these signals alone unless you really understand how
job control works (see Chapter 8 [Job Control], page 221).

Macroint SIGCHLD
This signal is sent to a parent process whenever one of its child processes termi-
nates or stops.
The default action for this signal is to ignore it. If you establish a handler for this
signal while there are child processes that have terminated but not reported their
status via wait or waitpid (see Section 7.6 [Process Completion], page 215),
whether your new handler applies to those processes or not depends on the par-
ticular operating system.

Macroint SIGCLD
This is an obsolete name for SIGCHLD.

Macroint SIGCONT
You can send a SIGCONT signal to a process to make it continue. This signal is
special—it always makes the process continue if it is stopped, before the signal
is delivered. The default behavior is to do nothing else. You cannot block this
signal. You can set a handler, but SIGCONT always makes the process continue
regardless.
Most programs have no reason to handle SIGCONT; they simply resume ex-
ecution without realizing they were ever stopped. You can use a handler for
SIGCONT to make a program do something special when it is stopped and
continued—for example, to reprint a prompt when it is suspended while waiting
for input.

386 The GNU C Library: System & Network Applications

Macroint SIGSTOP
The SIGSTOP signal stops the process. It cannot be handled, ignored or
blocked.

Macroint SIGTSTP
The SIGTSTP signal is an interactive stop-signal. Unlike SIGSTOP, this signal
can be handled and ignored.
Your program should handle this signal if you have a special need to leave files
or system tables in a secure state when a process is stopped. For example, pro-
grams that turn off echoing should handle SIGTSTP so they can turn echoing
back on before stopping.
This signal is generated when the user types the SUSP character (normally C-
z). For more information about terminal driver support, see Section 6.4.9 [Spe-
cial Characters], page 194.

Macroint SIGTTIN
A process cannot read from the user’s terminal while it is running as a back-
ground job. When any process in a background job tries to read from the ter-
minal, all of the processes in the job are sent a SIGTTIN signal. The default
action for this signal is to stop the process. For more information about how
this interacts with the terminal driver, see Section 8.4 [Access to the Controlling
Terminal], page 223.

Macroint SIGTTOU
This is similar to SIGTTIN, but is generated when a process in a background
job attempts to write to the terminal or set its modes. Again, the default action
is to stop the process. SIGTTOU is only generated for an attempt to write to the
terminal if the TOSTOP output-mode is set (see Section 6.4.5 [Output Modes],
page 187).

While a process is stopped, no more signals can be delivered to it until it is
continued, except SIGKILL signals and (obviously) SIGCONT signals. The sig-
nals are marked as pending, but not delivered until the process is continued. The
SIGKILL signal always causes termination of the process and can’t be blocked,
handled or ignored. You can ignore SIGCONT, but it always causes the process
to be continued anyway if it is stopped. Sending a SIGCONT signal to a process
causes any pending stop-signals for that process to be discarded. Likewise, any
pending SIGCONT signals for a process are discarded when it receives a stop sig-
nal.

When a process in an orphaned process-group (see Section 8.5 [Orphaned
Process-Groups], page 223) receives a SIGTSTP, SIGTTIN or SIGTTOU sig-
nal and does not handle it, the process does not stop. Stopping the process would

Chapter 17: Signal Handling 387

probably not be very useful, since there is no shell program that will notice and al-
low the user to continue it. What happens instead depends on the operating system
you are using. Some systems may do nothing; others may deliver another signal
instead, such as SIGKILL or SIGHUP. In the GNU system, the process dies with
SIGKILL; this avoids the problem of many stopped, orphaned processes lying
around the system.

17.2.6 Operation-Error Signals

These signals are used to report various errors generated by an operation done by
the program. They do not necessarily indicate a programming error in the program,
but an error that prevents an operating system call from completing. The default
action for all of them is to cause the process to terminate.

Macroint SIGPIPE
There is a broken pipe. If you use pipes or FIFOs, you have to design your
application so that one process opens the pipe for reading before another starts
writing. If the reading process never starts, or terminates unexpectedly, writing
to the pipe or FIFO raises a SIGPIPE signal. If SIGPIPE is blocked, handled
or ignored, the offending call fails with EPIPE instead.
Pipes and FIFO special files are discussed in more detail in Chapter 4 [Pipes and
FIFOs], page 119.
Another cause of SIGPIPE is when you try to output to a socket that isn’t
connected (see Section 5.9.5.1 [Sending Data], page 157).

Macroint SIGLOST
The resource was lost. This signal is generated when you have an advisory lock
on an NFS file, and the NFS server reboots and forgets about your lock.
In the GNU system, SIGLOST is generated when any server program dies un-
expectedly. It is usually fine to ignore the signal; whatever call was made to the
server that died just returns an error.

Macroint SIGXCPU
The CPU-time limit exceeded. This signal is generated when the process exceeds
its soft resource-limit on CPU time (see Section 14.2 [Limiting Resource Usage],
page 338).

Macroint SIGXFSZ
The file size limit was exceeded. This signal is generated when the process
attempts to extend a file so it exceeds the process’s soft resource-limit on file
size (see Section 14.2 [Limiting Resource Usage], page 338).

17.2.7 Miscellaneous Signals

These signals are used for various other purposes. In general, they will not affect
your program unless it explicitly uses them for something.

388 The GNU C Library: System & Network Applications

Macroint SIGUSR1
Macroint SIGUSR2

The SIGUSR1 and SIGUSR2 signals are set aside for you to use any way you
want. They’re useful for simple interprocess communication, if you write a
signal handler for them in the program that receives the signal.
There is an example showing the use of SIGUSR1 and SIGUSR2 in Sec-
tion 17.6.2 [Signaling Another Process], page 410.
The default action is to terminate the process.

Macroint SIGWINCH
This signals a window size change. This is generated on some systems (includ-
ing GNU) when the terminal driver’s record of the number of rows and columns
on the screen is changed. The default action is to ignore it.
If a program does full-screen display, it should handle SIGWINCH. When the
signal arrives, it should fetch the new screen-size and reformat its display ac-
cordingly.

Macroint SIGINFO
Information request. In 4.4 BSD and the GNU system, this signal is sent to all
the processes in the foreground process-group of the controlling terminal when
the user types the STATUS character in canonical mode (see Section 6.4.9.2
[Characters that Cause Signals], page 196).
If the process is the leader of the process group, the default action is to print
some status information about the system and what the process is doing. Other-
wise, the default is to do nothing.

17.2.8 Signal Messages

We mentioned above that the shell prints a message describing the signal that
terminated a child process. The clean way to print a message describing a signal
is to use the functions strsignal and psignal. These functions use a signal
number to specify which kind of signal to describe. The signal number may come
from the termination status of a child process (see Section 7.6 [Process Comple-
tion], page 215), or it may come from a signal handler in the same process.

Functionchar * strsignal (int signum)
This function returns a pointer to a statically allocated string containing a mes-
sage describing the signal signum. You should not modify the contents of this
string; and, since it can be rewritten on subsequent calls, you should save a copy
of it if you need to reference it later.
This function is a GNU extension, declared in the header file ‘string.h’.

Chapter 17: Signal Handling 389

Functionvoid psignal (int signum, const char *message)
This function prints a message describing the signal signum to the standard error
output stream stderr.4

If you call psignal with a message that is either a null pointer or an empty
string, psignal just prints the message corresponding to signum, adding a
trailing newline.
If you supply a nonnull message argument, then psignal prefixes its output
with this string. It adds a colon and a space character to separate the message
from the string corresponding to signum.
This function is a BSD feature, declared in the header file ‘signal.h’.

There is also an array sys_siglist that contains the messages for the various
signal codes. This array exists on BSD systems, unlike strsignal.

17.3 Specifying Signal Actions
The simplest way to change the action for a signal is to use the signal function.

You can specify a built-in action (such as to ignore the signal), or you can establish
a handler.

The GNU library also implements the more versatile sigaction facility. This
section describes both facilities and gives suggestions on which to use when.

17.3.1 Basic Signal-Handling

The signal function provides a simple interface for establishing an action for
a particular signal. The function and associated macros are declared in the header
file ‘signal.h’.

Data Typesighandler t
This is the type of signal-handler functions. Signal handlers take one integer
argument specifying the signal number, and have return type void. So, you
should define handler functions like this:

void handler (int signum) { ... }

The name sighandler_t for this data type is a GNU extension.

Functionsighandler_t signal (int signum, sighandler_t
action)

The signal function establishes action as the action for the signal signum.
The first argument, signum, identifies the signal whose behavior you want to
control, and should be a signal number. The proper way to specify a signal
number is with one of the symbolic signal-names (see Section 17.2 [Standard

4 Ibid., “Standard Streams”.

390 The GNU C Library: System & Network Applications

Signals], page 379)—don’t use an explicit number, because the numerical code
for a given kind of signal may vary from operating system to operating system.
The second argument, action, specifies the action to use for the signal signum.
This can be one of the following:

SIG_DFL SIG_DFL specifies the default action for the particular signal.
The default actions for various kinds of signals are stated in Sec-
tion 17.2 [Standard Signals], page 379.

SIG_IGN SIG_IGN specifies that the signal should be ignored.
Your program generally should not ignore signals that represent se-
rious events or that are normally used to request termination. You
cannot ignore the SIGKILL or SIGSTOP signals at all. You can
ignore program-error signals like SIGSEGV, but ignoring the er-
ror won’t enable the program to continue executing meaningfully.
Ignoring user requests such as SIGINT, SIGQUIT and SIGTSTP
is unfriendly.
When you do not wish signals to be delivered during a certain part
of the program, the thing to do is to block them, not ignore them
(see Section 17.7 [Blocking Signals], page 414).

handler Supply the address of a handler function in your program, to spec-
ify running this handler as the way to deliver the signal.
For more information about defining signal-handler functions, see
Section 17.4 [Defining Signal-Handlers], page 396.

If you set the action for a signal to SIG_IGN, or if you set it to SIG_DFL and
the default action is to ignore that signal, then any pending signals of that type
are discarded (even if they are blocked). Discarding the pending signals means
that they will never be delivered, not even if you subsequently specify another
action and unblock this kind of signal.
The signal function returns the action that was previously in effect for the
specified signum. You can save this value and restore it later by calling signal
again.
If signal can’t honor the request, it returns SIG_ERR instead. The following
errno error condition is defined for this function:

EINVAL You specified an invalid signum; or you tried to ignore or provide
a handler for SIGKILL or SIGSTOP.

Compatibility Note: A problem encountered when working with the signal
function is that it has different semantics on BSD and SVID systems. The difference
is that on SVID systems, the signal handler is deinstalled after signal delivery. On
BSD systems, the handler must be explicitly deinstalled. In the GNU C Library, we
use the BSD version by default. To use the SVID version, you can either use the
function sysv_signal (see below), or use the _XOPEN_SOURCE feature-select
macro (see Section 1.3.4 [Feature-Test Macros], page 8). In general, use of these

Chapter 17: Signal Handling 391

functions should be avoided because of compatibility problems. It is better to use
sigaction if it is available, since the results are much more reliable.

Here is a simple example of setting up a handler to delete temporary files when
certain fatal signals happen:

#include <signal.h>

void

termination_handler (int signum)

{

struct temp_file *p;

for (p = temp_file_list; p; p = p->next)

unlink (p->name);

}

int

main (void)

{

...

if (signal (SIGINT, termination_handler) == SIG_IGN)

signal (SIGINT, SIG_IGN);

if (signal (SIGHUP, termination_handler) == SIG_IGN)

signal (SIGHUP, SIG_IGN);

if (signal (SIGTERM, termination_handler) == SIG_IGN)

signal (SIGTERM, SIG_IGN);

...

}

If a given signal was previously set to be ignored, this code avoids altering that
setting. This is because non-job-control shells often ignore certain signals when
starting children, and it is important for the children to respect this.

We do not handle SIGQUIT or the program-error signals in this example because
these are designed to provide information for debugging (a core dump), and the
temporary files may give useful information.

Functionsighandler_t sysv signal (int signum, sighandler_t
action)

The sysv_signal implements the behavior of the standard signal function
as found on SVID systems. The difference with BSD systems is that the handler
is deinstalled after a delivery of a signal.
Compatibility Note: As said above for signal, this function should be
avoided when possible. sigaction is the preferred method.

392 The GNU C Library: System & Network Applications

Functionsighandler_t ssignal (int signum, sighandler_t
action)

The ssignal function does the same thing as signal; it is provided only for
compatibility with SVID.

Macrosighandler_t SIG ERR
The value of this macro is used as the return value from signal to indicate an
error.

17.3.2 Advanced Signal-Handling

The sigaction function has the same basic effect as signal—to specify
how a signal should be handled by the process. However, sigaction offers more
control, at the expense of more complexity. In particular, sigaction allows you
to specify additional flags to control when the signal is generated and how the
handler is invoked.

The sigaction function is declared in ‘signal.h’.

Data Typestruct sigaction
Structures of type struct sigaction are used in the sigaction function
to specify all the information about how to handle a particular signal. This
structure contains at least the following members:

sighandler_t sa_handler
This is used in the same way as the action argument to the signal
function. The value can be SIG_DFL, SIG_IGN or a function
pointer (see Section 17.3.1 [Basic Signal-Handling], page 389).

sigset_t sa_mask
This specifies a set of signals to be blocked while the handler runs
(see Section 17.7.5 [Blocking Signals for a Handler], page 418).
The signal that was delivered is automatically blocked by default
before its handler is started; this is true regardless of the value in
sa_mask. If you want that signal not to be blocked within its
handler, you must write code in the handler to unblock it.

int sa_flags
This specifies various flags that can affect the behavior of the signal
(see Section 17.3.5 [Flags for sigaction], page 395).

Functionint sigaction (int signum, const struct sigaction
*restrict action, struct sigaction *restrict
old-action)

The action argument is used to set up a new action for the signal signum, while
the old-action argument is used to return information about the action previously
associated with this symbol. In other words, old-action has the same purpose as

Chapter 17: Signal Handling 393

the signal function’s return value—you can check to see what the old action
in effect for the signal was, and restore it later if you want.
Either action or old-action can be a null pointer. If old-action is a null pointer,
this simply suppresses the return of information about the old action. If action
is a null pointer, the action associated with the signal signum is unchanged; this
allows you to inquire about how a signal is being handled without changing that
handling.
The return value from sigaction is 0 if it succeeds and -1 on failure. The
following errno error condition is defined for this function:

EINVAL The signum argument is not valid, or you are trying to trap or
ignore SIGKILL or SIGSTOP.

17.3.3 Interaction of signal and sigaction

It’s possible to use both the signal and sigaction functions within a single
program, but you have to be careful because they can interact in slightly strange
ways.

The sigaction function specifies more information than the signal
function, so the return value from signal cannot express the full range of
sigaction possibilities. Therefore, if you use signal to save and later
reestablish an action, it may not be able to reestablish properly a handler that was
established with sigaction.

To avoid having problems as a result, always use sigaction to save and re-
store a handler if your program uses sigaction at all. Since sigaction is
more general, it can properly save and reestablish any action, regardless of whether
it was established originally with signal or sigaction.

On some systems, if you establish an action with signal and then examine it
with sigaction, the handler address that you get may not be the same as what
you specified with signal. It may not even be suitable for use as an action argu-
ment with signal. But you can rely on using it as an argument to sigaction.
This problem never happens on the GNU system.

So, you’re better off using one or the other of the mechanisms consistently within
a single program.

Portability Note: The basic signal function is a feature of ISO C, while
sigaction is part of the POSIX.1 standard. If you are concerned about porta-
bility to non-POSIX systems, then you should use the signal function instead.

17.3.4 sigaction Function Example

In Section 17.3.1 [Basic Signal-Handling], page 389, we gave an example of
establishing a simple handler for termination signals using signal. Here is an
equivalent example using sigaction:

#include <signal.h>

394 The GNU C Library: System & Network Applications

void

termination_handler (int signum)

{

struct temp_file *p;

for (p = temp_file_list; p; p = p->next)

unlink (p->name);

}

int

main (void)

{

...

struct sigaction new_action, old_action;

/* Set up the structure to specify the new action. */

new_action.sa_handler = termination_handler;

sigemptyset (&new_action.sa_mask);

new_action.sa_flags = 0;

sigaction (SIGINT, NULL, &old_action);

if (old_action.sa_handler != SIG_IGN)

sigaction (SIGINT, &new_action, NULL);

sigaction (SIGHUP, NULL, &old_action);

if (old_action.sa_handler != SIG_IGN)

sigaction (SIGHUP, &new_action, NULL);

sigaction (SIGTERM, NULL, &old_action);

if (old_action.sa_handler != SIG_IGN)

sigaction (SIGTERM, &new_action, NULL);

...

}

The program just loads the new_action structure with the desired parameters
and passes it in the sigaction call. The usage of sigemptyset is described
later (see Section 17.7 [Blocking Signals], page 414).

As in the example using signal, we avoid handling signals previously set to
be ignored. Here we can avoid altering the signal handler even momentarily, by
using the feature of sigaction that lets us examine the current action without
specifying a new one.

Here is another example. It retrieves information about the current action for
SIGINT without changing that action.

struct sigaction query_action;

if (sigaction (SIGINT, NULL, &query_action) < 0)

/* sigaction returns -1 in case of error. */

Chapter 17: Signal Handling 395

else if (query_action.sa_handler == SIG_DFL)

/* SIGINT is handled in the default, fatal manner. */

else if (query_action.sa_handler == SIG_IGN)

/* SIGINT is ignored. */

else

/* A programmer-defined signal-handler is in effect. */

17.3.5 Flags for sigaction

The sa_flags member of the sigaction structure is a catch-all for special
features. Most of the time, SA_RESTART is a good value to use for this field.

The value of sa_flags is interpreted as a bit mask. Thus, you should choose
the flags you want to set, OR those flags together and store the result in the sa_
flags member of your sigaction structure.

Each signal number has its own set of flags. Each call to sigaction affects one
particular signal-number, and the flags that you specify apply only to that particular
signal.

In the GNU C Library, establishing a handler with signal sets all the flags to 0
except for SA_RESTART, whose value depends on the settings you have made with
siginterrupt (see Section 17.5 [Primitives Interrupted by Signals], page 408).

These macros are defined in the header file ‘signal.h’.

Macroint SA NOCLDSTOP
This flag is meaningful only for the SIGCHLD signal. When the flag is set, the
system delivers the signal for a terminated child-process but not for one that is
stopped. By default, SIGCHLD is delivered for both terminated children and
stopped children.
Setting this flag for a signal other than SIGCHLD has no effect.

Macroint SA ONSTACK
If this flag is set for a particular signal-number, the system uses the signal stack
when delivering that kind of signal (see Section 17.9 [Using a Separate Signal-
Stack], page 424). If a signal with this flag arrives and you have not set a signal
stack, the system terminates the program with SIGILL.

Macroint SA RESTART
This flag controls what happens when a signal is delivered during certain primi-
tives (such as open, read or write), and the signal handler returns normally.
There are two alternatives: the library function can resume, or it can return fail-
ure with error code EINTR.
The choice is controlled by the SA_RESTART flag for the particular kind of
signal that was delivered. If the flag is set, returning from a handler resumes the
library function. If the flag is clear, returning from a handler makes the function
fail (see Section 17.5 [Primitives Interrupted by Signals], page 408).

396 The GNU C Library: System & Network Applications

17.3.6 Initial Signal Actions

When a new process is created (see Section 7.4 [Creating a Process], page 211),
it inherits handling of signals from its parent process. However, when you load a
new process image using the exec function (see Section 7.5 [Executing a File],
page 212), any signals that you’ve defined your own handlers for revert to their
SIG_DFL handling. This makes sense; the handler functions from the old program
are specific to that program, and aren’t even present in the address space of the new
program image. Of course, the new program can establish its own handlers.

When a program is run by a shell, the shell normally sets the initial actions for the
child process to SIG_DFL or SIG_IGN, as appropriate. It’s a good idea to check
to make sure that the shell has not set up an initial action of SIG_IGN before you
establish your own signal-handlers.

Here is an example of how to establish a handler for SIGHUP, but not if SIGHUP
is currently ignored:

...

struct sigaction temp;

sigaction (SIGHUP, NULL, &temp);

if (temp.sa_handler != SIG_IGN)

{

temp.sa_handler = handle_sighup;

sigemptyset (&temp.sa_mask);

sigaction (SIGHUP, &temp, NULL);

}

17.4 Defining Signal-Handlers
This section describes how to write a signal-handler function that can be estab-

lished with the signal or sigaction functions.
A signal handler is just a function that you compile together with the rest

of the program. Instead of directly invoking the function, you use signal or
sigaction to tell the operating system to call it when a signal arrives. This is
known as establishing the handler (see Section 17.3 [Specifying Signal Actions],
page 389).

There are two basic strategies you can use in signal-handler functions:
• You can have the handler function note that the signal arrived by tweaking

some global data structures, and then return normally.
• You can have the handler function terminate the program or transfer control to

a point where it can recover from the situation that caused the signal.

Chapter 17: Signal Handling 397

You need to take special care in writing handler-functions, because they can be
called asynchronously. A handler might be called at any point in the program,
unpredictably. If two signals arrive during a very short interval, one handler can
run within another. This section describes what your handler should do, and what
you should avoid.

17.4.1 Signal Handlers That Return

Handlers that return normally are usually used for signals such as SIGALRM and
the I/O and interprocess-communication signals. But a handler for SIGINT might
also return normally after setting a flag that tells the program to exit at a convenient
time.

It is not safe to return normally from the handler for a program-error signal, be-
cause the behavior of the program when the handler function returns is not defined
after a program error (see Section 17.2.1 [Program-Error Signals], page 379).

Handlers that return normally must modify some global variable in order to
have any effect. Typically, the variable is one that is examined periodically by
the program during normal operation. Its data type should be sig_atomic_t for
reasons described in Section 17.4.7 [Atomic Data-Access and Signal-Handling],
page 406.

Here is a simple example of such a program. It executes the body of the loop until
it has noticed that a SIGALRM signal has arrived. This technique is useful because
it allows the iteration in progress when the signal arrives to complete before the
loop exits.

#include <signal.h>

#include <stdio.h>

#include <stdlib.h>

/* This flag controls termination of the main loop. */

volatile sig_atomic_t keep_going = 1;

/* The signal handler just clears the flag and re-enables itself. */

void

catch_alarm (int sig)

{

keep_going = 0;

signal (sig, catch_alarm);

}

void

do_stuff (void)

{

puts ("Doing stuff while waiting for alarm....");

}

398 The GNU C Library: System & Network Applications

int

main (void)

{

/* Establish a handler for SIGALRM signals. */

signal (SIGALRM, catch_alarm);

/* Set an alarm to go off in a little while. */

alarm (2);

/* Check the flag once in a while to see when to quit. */

while (keep_going)

do_stuff ();

return EXIT_SUCCESS;

}

17.4.2 Handlers That Terminate the Process

Handler functions that terminate the program are typically used to cause orderly
clean-up or recovery from program-error signals and interactive interrupts.

The cleanest way for a handler to terminate the process is to raise the same signal
that ran the handler in the first place. Here is how to do this:

volatile sig_atomic_t fatal_error_in_progress = 0;

void

fatal_error_signal (int sig)

{

/* Since this handler is established for more than one kind of signal,

it might still get invoked recursively by delivery of some other kind

of signal. Use a static variable to keep track of that. */

if (fatal_error_in_progress)

raise (sig);

fatal_error_in_progress = 1;

/* Now do the clean up actions:

- reset terminal modes

- kill child processes

- remove lock files */

...

Chapter 17: Signal Handling 399

/* Now reraise the signal. We reactivate the signal’s

default handling, which is to terminate the process.

We could just call exit or abort,

but reraising the signal sets the return status

from the process correctly. */

signal (sig, SIG_DFL);

raise (sig);

}

17.4.3 Nonlocal Control-Transfer in Handlers

You can do a nonlocal transfer of control out of a signal handler using the
setjmp and longjmp facilities (see Chapter 16 [Nonlocal Exits], page 367).

When the handler does a nonlocal control-transfer, the part of the program that
was running will not continue. If this part of the program was in the middle of
updating an important data structure, the data structure will remain inconsistent.
Since the program does not terminate, the inconsistency is likely to be noticed later
on.

There are two ways to avoid this problem. One is to block the signal for the parts
of the program that update important data structures. Blocking the signal delays its
delivery until it is unblocked, once the critical updating is finished (see Section 17.7
[Blocking Signals], page 414).

The other way is to reinitialize the crucial data structures in the signal handler,
or make their values consistent.

Here is a rather schematic example showing the reinitialization of one global
variable:

#include <signal.h>

#include <setjmp.h>

jmp_buf return_to_top_level;

volatile sig_atomic_t waiting_for_input;

void

handle_sigint (int signum)

{

/* We may have been waiting for input when the signal arrived,

but we are no longer waiting once we transfer control. */

waiting_for_input = 0;

400 The GNU C Library: System & Network Applications

longjmp (return_to_top_level, 1);

}

int

main (void)

{

...

signal (SIGINT, sigint_handler);

...

while (1) {

prepare_for_command ();

if (setjmp (return_to_top_level) == 0)

read_and_execute_command ();

}

}

/* Imagine this is a subroutine used by various commands. */

char *

read_data ()

{

if (input_from_terminal) {

waiting_for_input = 1;

...

waiting_for_input = 0;

} else {

...

}

}

17.4.4 Signals Arriving While a Handler Runs

What happens if another signal arrives while your signal-handler function is run-
ning?

When the handler for a particular signal is invoked, that signal is automatically
blocked until the handler returns. That means that if two signals of the same kind
arrive close together, the second one will be held until the first has been handled.
The handler can explicitly unblock the signal using sigprocmask, if you want to
allow more signals of this type to arrive (see Section 17.7.3 [Process Signal-Mask],
page 416).

Chapter 17: Signal Handling 401

However, your handler can still be interrupted by delivery of another kind of
signal. To avoid this, you can use the sa_mask member of the action structure
passed to sigaction to explicitly specify which signals should be blocked while
the signal handler runs. These signals are in addition to the signal for which the
handler was invoked, and any other signals that are normally blocked by the process
(see Section 17.7.5 [Blocking Signals for a Handler], page 418).

When the handler returns, the set of blocked signals is restored to the value it had
before the handler ran. So using sigprocmask inside the handler only affects
what signals can arrive during the execution of the handler itself, not what signals
can arrive once the handler returns.

Portability Note: Always use sigaction to establish a handler for a signal
that you expect to receive asynchronously, if you want your program to work prop-
erly on System V Unix. On this system, the handling of a signal whose handler was
established with signal automatically sets the signal’s action back to SIG_DFL,
and the handler must reestablish itself each time it runs. This practice, while incon-
venient, does work when signals cannot arrive in succession. However, if another
signal can arrive right away, it may arrive before the handler can reestablish itself.
Then the second signal would receive the default handling, which could terminate
the process.

17.4.5 Signals Close Together Merge into One

If multiple signals of the same type are delivered to your process before your
signal-handler has a chance to be invoked at all, the handler may only be invoked
once, as if only a single signal had arrived. In effect, the signals merge into one.
This situation can arise when the signal is blocked, or in a multiprocessing environ-
ment where the system is busy running some other processes while the signals are
delivered. This means, for example, that you cannot reliably use a signal handler
to count signals. The only distinction you can reliably make is whether at least one
signal has arrived since a given time in the past.

Here is an example of a handler for SIGCHLD that compensates for the fact that
the number of signals received may not equal the number of child processes that
generate them. It assumes that the program keeps track of all the child processes
with a chain of structures as follows:

struct process

{

struct process *next;

/* The process ID of this child. */

int pid;

/* The descriptor of the pipe or pseudoterminal

on which output comes from this child. */

int input_descriptor;

/* Nonzero if this process has stopped or terminated */

sig_atomic_t have_status;

/* The status of this child; 0 if running,

402 The GNU C Library: System & Network Applications

otherwise a status value from waitpid */

int status;

};

struct process *process_list;

This example also uses a flag to indicate whether signals have arrived since some
time in the past—whenever the program last cleared it to 0.

/* Nonzero means some child’s status has changed,

so look at process_list for the details. */

int process_status_change;

Here is the handler itself:

void

sigchld_handler (int signo)

{

int old_errno = errno;

while (1) {

register int pid;

int w;

struct process *p;

/* Keep asking for a status until we get a definitive result. */

do

{

errno = 0;

pid = waitpid (WAIT_ANY, &w, WNOHANG | WUNTRACED);

}

while (pid <= 0 && errno == EINTR);

if (pid <= 0) {

/* A real failure means there are no more

stopped or terminated child processes, so return. */

errno = old_errno;

return;

}

/* Find the process that signaled us, and record its status. */

for (p = process_list; p; p = p->next)

if (p->pid == pid) {

p->status = w;

/* Indicate that the status field

has data to look at. We do this only after storing it. */

Chapter 17: Signal Handling 403

p->have_status = 1;

/* If process has terminated, stop waiting for its output. */

if (WIFSIGNALED (w) || WIFEXITED (w))

if (p->input_descriptor)

FD_CLR (p->input_descriptor, &input_wait_mask);

/* The program should check this flag from time to time

to see if there is any news in process_list. */

++process_status_change;

}

/* Loop around to handle all the processes

that have something to tell us. */

}

}

Here is the proper way to check the flag process_status_change:
if (process_status_change) {

struct process *p;

process_status_change = 0;

for (p = process_list; p; p = p->next)

if (p->have_status) {

... Examine p->status ...

}

}

It is vital to clear the flag before examining the list; otherwise, if a signal were
delivered just before the clearing of the flag, and after the appropriate element of
the process list had been checked, the status change would go unnoticed until the
next signal arrived to set the flag again. You could, of course, avoid this problem by
blocking the signal while scanning the list, but it is much more elegant to guarantee
correctness by doing things in the right order.

The loop that checks process status avoids examining p->status until it sees
that status has been validly stored. This is to make sure that the status cannot
change in the middle of accessing it. Once p->have_status is set, it means
that the child process is stopped or terminated, and in either case, it cannot stop or
terminate again until the program has taken notice. See Section 17.4.7.3 [Atomic
Usage-Patterns], page 407, for more information about coping with interruptions
during accesses of a variable.

Here is another way you can test whether the handler has run since the last time
you checked. This technique uses a counter that is never changed outside the han-
dler. Instead of clearing the count, the program remembers the previous value and
sees whether it has changed since the previous check. The advantage of this method
is that different parts of the program can check independently, each part checking
whether there has been a signal since that part last checked.

404 The GNU C Library: System & Network Applications

sig_atomic_t process_status_change;

sig_atomic_t last_process_status_change;

...

{

sig_atomic_t prev = last_process_status_change;

last_process_status_change = process_status_change;

if (last_process_status_change != prev) {

struct process *p;

for (p = process_list; p; p = p->next)

if (p->have_status) {

... Examine p->status ...

}

}

}

17.4.6 Signal Handling and Nonreentrant Functions

Handler functions usually don’t do very much. The best practice is to write a
handler that does nothing but set an external variable that the program checks reg-
ularly, and leave all serious work to the program. This is best because the handler
can be called asynchronously, at unpredictable times—perhaps in the middle of a
primitive function, or even between the beginning and the end of a C operator that
requires multiple instructions. The data structures being manipulated might there-
fore be in an inconsistent state when the handler function is invoked. Even copying
one int variable into another can take two instructions on most machines.

This means you have to be very careful about what you do in a signal handler.
• If your handler needs to access any global variables from your program, de-

clare those variables volatile. This tells the compiler that the value of the
variable might change asynchronously, and inhibits certain optimizations that
would be invalidated by such modifications.

• If you call a function in the handler, make sure it is reentrant with respect to
signals, or else make sure that the signal cannot interrupt a call to a related
function.

A function can be nonreentrant if it uses memory that is not on the stack.
• If a function uses a static variable or a global variable, or a dynamically allo-

cated object that it finds for itself, then it is nonreentrant and any two calls to
the function can interfere.
For example, suppose that the signal handler uses gethostbyname. This
function returns its value in a static object, reusing the same object each time.
If the signal happens to arrive during a call to gethostbyname, or even
after one (while the program is still using the value), it will clobber the value
that the program asked for.

Chapter 17: Signal Handling 405

However, if the program does not use gethostbyname or any other func-
tion that returns information in the same object, or if it always blocks signals
around each use, then you are safe.
There are a large number of library functions that return values in a fixed
object, always reusing the same object in this fashion, and all of them cause
the same problem. Function descriptions in this manual always mention this
behavior.

• If a function uses and modifies an object that you supply, then it is potentially
nonreentrant; two calls can interfere if they use the same object.
This case arises when you do I/O using streams. Suppose that the signal han-
dler prints a message with fprintf. Suppose that the program was in the
middle of an fprintf call using the same stream when the signal was de-
livered. Both the signal handler’s message and the program’s data could be
corrupted, because both calls operate on the same data structure—the stream
itself.
However, if you know that the stream that the handler uses cannot possibly be
used by the program at a time when signals can arrive, then you are safe. It is
no problem if the program uses some other stream.

• On most systems, malloc and free are not reentrant, because they use a
static data-structure that records what memory blocks are free. As a result,
no library functions that allocate or free memory are reentrant. This includes
functions that allocate space to store a result.
The best way to avoid the need to allocate memory in a handler is to allocate
in advance space for signal handlers to use.
The best way to avoid freeing memory in a handler is to flag or record the
objects to be freed, and have the program check from time to time whether
anything is waiting to be freed. But this must be done with care, because
placing an object on a chain is not atomic, and if it is interrupted by another
signal handler that does the same thing, you could “lose” one of the objects.

• Any function that modifies errno is nonreentrant, but you can correct for
this. In the handler, save the original value of errno and restore it before
returning normally. This prevents errors that occur within the signal handler
from being confused with errors from system calls at the point the program is
interrupted to run the handler.
This technique is generally applicable; if you want to call in a handler a func-
tion that modifies a particular object in memory, you can make this safe by
saving and restoring that object.

• Merely reading from a memory object is safe provided that you can deal with
any of the values that might appear in the object at a time when the signal can
be delivered. Keep in mind that assignment to some data types requires more
than one instruction, which means that the handler could run “in the middle
of” an assignment to the variable if its type is not atomic (see Section 17.4.7
[Atomic Data-Access and Signal-Handling], page 406).

406 The GNU C Library: System & Network Applications

• Merely writing into a memory object is safe as long as a sudden change in the
value, at any time when the handler might run, will not disturb anything.

17.4.7 Atomic Data-Access and Signal-Handling

Whether the data in your application concerns atoms, or mere text, you have to be
careful about the fact that access to a single datum is not necessarily atomic. This
means that it can take more than one instruction to read or write a single object. In
such cases, a signal handler might be invoked in the middle of reading or writing
the object.

There are three ways you can cope with this problem. You can use data types that
are always accessed atomically; you can carefully arrange that nothing untoward
happens if an access is interrupted, or you can block all signals around any access
that had better not be interrupted (see Section 17.7 [Blocking Signals], page 414).

17.4.7.1 Problems with Nonatomic Access

Here is an example which shows what can happen if a signal handler runs in the
middle of modifying a variable. Interrupting the reading of a variable can also lead
to paradoxical results, but here we only show writing.

#include <signal.h>

#include <stdio.h>

struct two_words { int a, b; } memory;

void

handler(int signum)

{

printf ("%d,%d\n", memory.a, memory.b);

alarm (1);

}

int

main (void)

{

static struct two_words zeros = { 0, 0 }, ones = { 1, 1 };

signal (SIGALRM, handler);

memory = zeros;

alarm (1);

while (1)

{

memory = zeros;

memory = ones;

}

Chapter 17: Signal Handling 407

}

This program fills memory with zeros, ones, zeros, ones, alternating forever;
meanwhile, once per second, the alarm signal-handler prints the current contents.
(Calling printf in the handler is safe in this program because it is certainly not
being called outside the handler when the signal happens.)

Clearly, this program can print a pair of zeros or a pair of ones. But that’s not
all it can do! On most machines, it takes several instructions to store a new value
in memory, and the value is stored one word at a time. If the signal is deliv-
ered in between these instructions, the handler might find that memory.a is 0 and
memory.b is 1 (or vice versa).

On some machines it may be possible to store a new value in memory with just
one instruction that cannot be interrupted. On these machines, the handler will
always print two zeros or two ones.

17.4.7.2 Atomic Types

To avoid uncertainty about interrupting access to a variable, you can use a partic-
ular data type for which access is always atomic: sig_atomic_t. Reading and
writing this data type is guaranteed to happen in a single instruction, so there’s no
way for a handler to run “in the middle” of an access.

The type sig_atomic_t is always an integer data type, but which one it is,
and how many bits it contains, may vary from machine to machine.

Data Typesig atomic t
This is an integer data type. Objects of this type are always accessed atomically.

In practice, you can assume that int and other integer types no longer than
int are atomic. You can also assume that pointer types are atomic; that is very
convenient. Both of these assumptions are true on all of the machines that the GNU
C Library supports and on all POSIX systems we know of.

17.4.7.3 Atomic Usage-Patterns

Certain patterns of access avoid any problem even if an access is interrupted.
For example, a flag that is set by the handler, and tested and cleared by the main
program from time to time, is always safe even if access actually requires two
instructions. To show that this is so, we must consider each access that could be
interrupted, and show that there is no problem if it is interrupted.

An interrupt in the middle of testing the flag is safe because either it’s recognized
to be nonzero, in which case the precise value doesn’t matter, or it will be seen to
be nonzero the next time it’s tested.

An interrupt in the middle of clearing the flag is no problem because either the
value ends up 0, which is what happens if a signal comes in just before the flag is
cleared, or the value ends up nonzero, and subsequent events occur as if the signal

408 The GNU C Library: System & Network Applications

had come in just after the flag was cleared. As long as the code handles both of
these cases properly, it can also handle a signal in the middle of clearing the flag.
This is an example of the sort of reasoning you need to do to figure out whether
nonatomic usage is safe.

Sometimes you can insure uninterrupted access to one object by protecting its
use with another object, perhaps one whose type guarantees atomicity (see Sec-
tion 17.4.5 [Signals Close Together Merge into One], page 401 for an example).

17.5 Primitives Interrupted by Signals
A signal can arrive and be handled while an I/O primitive such as open or read

is waiting for an I/O device. If the signal handler returns, the system faces the
question: what should happen next?

POSIX specifies one approach—make the primitive fail right away. The error
code for this kind of failure is EINTR. This is flexible, but usually inconvenient.
Typically, POSIX applications that use signal handlers must check for EINTR af-
ter each library function that can return it, in order to try the call again. Often
programmers forget to check, which is a common source of error.

The GNU library provides a convenient way to retry a call after a temporary
failure, with the macro TEMP_FAILURE_RETRY:

MacroTEMP FAILURE RETRY (expression)
This macro evaluates expression once. If it fails and reports error code EINTR,
TEMP_FAILURE_RETRY evaluates it again, and over and over until the result
is not a temporary failure.
The value returned by TEMP_FAILURE_RETRY is whatever value expression
produced.

BSD avoids EINTR entirely and provides a more convenient approach: to restart
the interrupted primitive, instead of making it fail. If you choose this approach, you
need not be concerned with EINTR.

You can choose either approach with the GNU library. If you use sigaction to
establish a signal handler, you can specify how that handler should behave. If you
specify the SA_RESTART flag, return from that handler will resume a primitive;
otherwise, return from that handler will cause EINTR (see Section 17.3.5 [Flags
for sigaction], page 395).

Another way to specify the choice is with the siginterrupt function (see
Section 17.10.1 [BSD Function to Establish a Handler], page 426).

When you don’t specify with sigaction or siginterrupt what a particu-
lar handler should do, it uses a default choice. The default choice in the GNU library
depends on the feature-test macros you have defined. If you define _BSD_SOURCE
or _GNU_SOURCE before calling signal, the default is to resume primitives; oth-
erwise, the default is to make them fail with EINTR. (The library contains alternate
versions of the signal function, and the feature-test macros determine which one
you really call.) See Section 1.3.4 [Feature-Test Macros], page 8.

Chapter 17: Signal Handling 409

The description of each primitive affected by this issue lists EINTR among the
error codes it can return.

There is one situation where resumption never happens no matter which choice
you make—when a data-transfer function such as read or write is interrupted
by a signal after transferring part of the data. In this case, the function returns the
number of bytes already transferred, indicating partial success.

This might at first appear to cause unreliable behavior on record-oriented de-
vices (including datagram sockets; see Section 5.10 [Datagram Socket Operations],
page 167), where splitting one read or write into two would read or write two
records. Actually, there is no problem, because interruption after a partial transfer
cannot happen on such devices; they always transfer an entire record in one burst,
with no waiting once data transfer has started.

17.6 Generating Signals
Besides signals that are generated as a result of a hardware trap or interrupt, your

program can explicitly send signals to itself or to another process.

17.6.1 Signaling Yourself

A process can send itself a signal with the raise function. This function is
declared in ‘signal.h’.

Functionint raise (int signum)
The raise function sends the signal signum to the calling process. It returns
0 if successful and a nonzero value if it fails. About the only reason for failure
would be if the value of signum is invalid.

Functionint gsignal (int signum)
The gsignal function does the same thing as raise; it is provided only for
compatibility with SVID.

One convenient use for raise is to reproduce the default behavior of a signal
that you have trapped. For instance, suppose a user of your program types the SUSP
character (usually C-z; see Section 6.4.9 [Special Characters], page 194) to send it
an interactive stop signal (SIGTSTP), and you want to clean up some internal data
buffers before stopping. You might set this up like this:

#include <signal.h>

/* When a stop signal arrives, set the action back to the default

and then resend the signal after doing clean-up actions. */

void

tstp_handler (int sig)

{

410 The GNU C Library: System & Network Applications

signal (SIGTSTP, SIG_DFL);

/* Do clean-up actions here. */

...

raise (SIGTSTP);

}

/* When the process is continued again, restore the signal handler. */

void

cont_handler (int sig)

{

signal (SIGCONT, cont_handler);

signal (SIGTSTP, tstp_handler);

}

/* Enable both handlers during program initialization. */

int

main (void)

{

signal (SIGCONT, cont_handler);

signal (SIGTSTP, tstp_handler);

...

}

Portability Note: raise was invented by the ISO C committee. Older systems
may not support it, so using kill may be more portable.

17.6.2 Signaling Another Process

The kill function can be used to send a signal to another process. In spite of
its name, it can be used for a lot of things other than causing a process to termi-
nate. Some examples of situations where you might want to send signals between
processes are

• A parent process starts a child to perform a task—perhaps having the child
running an infinite loop—and then terminates the child when the task is no
longer needed.

• A process executes as part of a group, and needs to terminate or notify the
other processes in the group when an error or other event occurs.

• Two processes need to synchronize while working together.
This section assumes that you know a little bit about how processes work. For

more information on this subject, see Chapter 7 [Processes], page 209.
The kill function is declared in ‘signal.h’.

Chapter 17: Signal Handling 411

Functionint kill (pid_t pid, int signum)
The kill function sends the signal signum to the process or process group
specified by pid. Besides the signals listed in Section 17.2 [Standard Signals],
page 379, signum can also have a value of zero to check the validity of the pid.
The pid specifies the process or process group to receive the signal:

pid > 0 Specify the process whose identifier is pid.

pid == 0 Specify all processes in the same process group as the sender.

pid < -1 Specify the process group whose identifier is −pid.

pid == -1 If the process is privileged, send the signal to all processes except
for some special system-processes. Otherwise, send the signal to
all processes with the same effective user-ID.

A process can send a signal to itself with a call like
kill (getpid(), signum). If kill is used by a process to send
a signal to itself, and the signal is not blocked, then kill delivers at least one
signal (which might be some other pending unblocked signal instead of the
signal signum) to that process before it returns.
The return value from kill is 0 if the signal can be sent successfully. Other-
wise, no signal is sent, and a value of -1 is returned. If pid specifies sending
a signal to several processes, kill succeeds if it can send the signal to at least
one of them. There’s no way you can tell which of the processes got the signal
or whether all of them did.
The following errno error conditions are defined for this function:

EINVAL The signum argument is an invalid or unsupported number.

EPERM You do not have the privilege to send a signal to the process or any
of the processes in the process group named by pid.

ESCRH The pid argument does not refer to an existing process or group.

Functionint killpg (int pgid, int signum)
This is similar to kill, but sends signal signum to the process group pgid. This
function is provided for compatibility with BSD; using kill to do this is more
portable.

As a simple example of kill, the call kill (getpid (), sig) has the same
effect as raise (sig).

17.6.3 Permission for Using kill

There are restrictions that prevent you from using kill to send signals to any
random process. These are intended to prevent antisocial behavior such as arbitrar-
ily killing off processes belonging to another user. In typical use, kill is used
to pass signals between parent, child and sibling processes, and in these situations
you normally do have permission to send signals. The only common exception is

412 The GNU C Library: System & Network Applications

when you run a setuid program in a child process; if the program changes its real
UID as well as its effective UID, you may not have permission to send a signal. The
su program does this.

Whether a process has permission to send a signal to another process is deter-
mined by the user IDs of the two processes. This concept is discussed in detail in
Section 10.2 [The Persona of a Process], page 253.

Generally, for a process to be able to send a signal to another process, either the
sending process must belong to a privileged user (like ‘root’), or the real or effec-
tive user-ID of the sending process must match the real or effective user-ID of the
receiving process. If the receiving process has changed its effective user-ID from
the set-user-ID mode bit on its process image file, then the owner of the process im-
age file is used in place of its current effective user-ID. In some implementations, a
parent process might be able to send signals to a child process even if the user IDs
don’t match, and other implementations might enforce other restrictions.

The SIGCONT signal is a special case. It can be sent if the sender is part of the
same session as the receiver, regardless of user IDs.

17.6.4 Using kill for Communication

Here is a longer example showing how signals can be used for interprocess com-
munication. This is what the SIGUSR1 and SIGUSR2 signals are provided for.
Since these signals are fatal by default, the process that is supposed to receive them
must trap them through signal or sigaction.

In this example, a parent process forks a child process and then waits for the child
to complete its initialization. The child process tells the parent when it is ready by
sending it a SIGUSR1 signal, using the kill function.

#include <signal.h>

#include <stdio.h>

#include <sys/types.h>

#include <unistd.h>

/* When a SIGUSR1 signal arrives, set this variable. */

volatile sig_atomic_t usr_interrupt = 0;

void

synch_signal (int sig)

{

usr_interrupt = 1;

}

/* The child process executes this function. */

void

Chapter 17: Signal Handling 413

child_function (void)

{

/* Perform initialization. */

printf ("I’m here!!! My pid is %d.\n", (int) getpid ());

/* Let parent know you’re done. */

kill (getppid (), SIGUSR1);

/* Continue with execution. */

puts ("Bye, now....");

exit (0);

}

int

main (void)

{

struct sigaction usr_action;

sigset_t block_mask;

pid_t child_id;

/* Establish the signal handler. */

sigfillset (&block_mask);

usr_action.sa_handler = synch_signal;

usr_action.sa_mask = block_mask;

usr_action.sa_flags = 0;

sigaction (SIGUSR1, &usr_action, NULL);

/* Create the child process. */

child_id = fork ();

if (child_id == 0)

child_function (); /* Does not return. */

/* Busy wait for the child to send a signal. */

while (!usr_interrupt)

;

/* Now continue execution. */

puts ("That’s all, folks!");

return 0;

}

414 The GNU C Library: System & Network Applications

This example uses a busy wait, which is bad, because it wastes CPU cycles that
other programs could otherwise use. It is better to ask the system to wait until the
signal arrives (see the example in Section 17.8 [Waiting for a Signal], page 421).

17.7 Blocking Signals
Blocking a signal means telling the operating system to hold it and deliver it

later. Generally, a program does not block signals indefinitely—it might as well
ignore them by setting their actions to SIG_IGN. But it is useful to block signals
briefly, to prevent them from interrupting sensitive operations. For instance:

• You can use the sigprocmask function to block signals while you modify
global variables that are also modified by the handlers for these signals.

• You can set sa_mask in your sigaction call to block certain signals while
a particular signal-handler runs. This way, the signal handler can run without
being interrupted itself by signals.

17.7.1 Why Blocking Signals Is Useful

Temporary blocking of signals with sigprocmask gives you a way to prevent
interrupts during critical parts of your code. If signals arrive in that part of the
program, they are delivered later, after you unblock them.

One example where this is useful is for sharing data between a signal handler
and the rest of the program. If the type of the data is not sig_atomic_t (see
Section 17.4.7 [Atomic Data-Access and Signal-Handling], page 406), then the
signal handler could run when the rest of the program has only half-finished reading
or writing the data. This would lead to confusing consequences.

To make the program reliable, you can prevent the signal handler from running
while the rest of the program is examining or modifying that data—by blocking the
appropriate signal around the parts of the program that touch the data.

Blocking signals is also necessary when you want to perform a certain action
only if a signal has not arrived. Suppose that the handler for the signal sets a flag of
type sig_atomic_t; you would like to test the flag and perform the action if the
flag is not set. This is unreliable. Suppose the signal is delivered immediately after
you test the flag, but before the consequent action—then the program will perform
the action even though the signal has arrived.

The only way to test reliably for whether a signal has yet arrived is to test while
the signal is blocked.

17.7.2 Signal Sets

All of the signal-blocking functions use a data structure called a signal set to
specify what signals are affected. Thus, every activity involves two stages: creating
the signal set, and then passing it as an argument to a library function.

These facilities are declared in the header file ‘signal.h’.

Chapter 17: Signal Handling 415

Data Typesigset t
The sigset_t data type is used to represent a signal set. Internally, it may be
implemented as either an integer or structure type.
For portability, use only the functions described in this section to initialize,
change and retrieve information from sigset_t objects—don’t try to manip-
ulate them directly.

There are two ways to initialize a signal set. You can initially specify it to be
empty with sigemptyset and then add specified signals individually. Or you
can specify it to be full with sigfillset and then delete specified signals indi-
vidually.

You must always initialize the signal set with one of these two functions before
using it in any other way. Don’t try to set all the signals explicitly, because the
sigset_t object might include some other information, like a version field, that
needs to be initialized as well. In addition, it’s not wise to put into your program an
assumption that the system has no signals aside from the ones you know about.

Functionint sigemptyset (sigset_t *set)
This function initializes the signal set set to exclude all of the defined signals.
It always returns 0.

Functionint sigfillset (sigset_t *set)
This function initializes the signal set set to include all of the defined signals.
Again, the return value is 0.

Functionint sigaddset (sigset_t *set, int signum)
This function adds the signal signum to the signal set set. All sigaddset does
is modify set ; it does not block or unblock any signals.
The return value is 0 on success and -1 on failure. The following errno error
condition is defined for this function:

EINVAL The signum argument doesn’t specify a valid signal.

Functionint sigdelset (sigset_t *set, int signum)
This function removes the signal signum from the signal set set. All
sigdelset does is modify set ; it does not block or unblock any signals. The
return value and error conditions are the same as for sigaddset.

Finally, there is a function to test what signals are in a signal set:

Functionint sigismember (const sigset_t *set, int signum)
The sigismember function tests whether the signal signum is a member of
the signal set set. It returns 1 if the signal is in the set, 0 if not and -1 if there
is an error.
The following errno error condition is defined for this function:

EINVAL The signum argument doesn’t specify a valid signal.

416 The GNU C Library: System & Network Applications

17.7.3 Process Signal-Mask

The collection of signals that are currently blocked is called the signal mask.
Each process has its own signal mask. When you create a new process (see Sec-
tion 7.4 [Creating a Process], page 211), it inherits its parent’s mask. You can block
or unblock signals with total flexibility by modifying the signal mask.

The prototype for the sigprocmask function is in ‘signal.h’.
You must not use sigprocmask in multithreaded processes, because each

thread has its own signal mask and there is no single process signal-mask. Ac-
cording to POSIX, the behavior of sigprocmask in a multithreaded process is
“unspecified”. Instead, use pthread_sigmask. (See Section 18.9 [Threads and
Signal-Handling], page 447.)

Functionint sigprocmask (int how, const sigset_t *restrict
set, sigset_t *restrict oldset)

The sigprocmask function is used to examine or change the calling process’s
signal-mask. The how argument determines how the signal mask is changed,
and must be one of the following values:

SIG_BLOCK
Block the signals in set—add them to the existing mask. In other
words, the new mask is the union of the existing mask and set.

SIG_UNBLOCK
Unblock the signals in set—remove them from the existing mask.

SIG_SETMASK
Use set for the mask; ignore the previous value of the mask.

The last argument, oldset, is used to return information about the old process
signal-mask. If you just want to change the mask without looking at it, pass a
null pointer as the oldset argument. Similarly, if you want to know what’s in
the mask without changing it, pass a null pointer for set (in this case the how
argument is not significant). The oldset argument is often used to remember
the previous signal-mask in order to restore it later. Since the signal mask is
inherited over fork and exec calls, you can’t predict what its contents are
when your program starts running.
If invoking sigprocmask causes any pending signals to be unblocked, at least
one of those signals is delivered to the process before sigprocmask returns.
The order in which pending signals are delivered is not specified, but you can
control the order explicitly by making multiple sigprocmask calls to unblock
various signals one at a time.
The sigprocmask function returns 0 if successful and -1 to indicate an error.
The following errno error condition is defined for this function:

EINVAL The how argument is invalid.

Chapter 17: Signal Handling 417

You can’t block the SIGKILL and SIGSTOP signals, but if the signal set in-
cludes these, sigprocmask just ignores them instead of returning an error
status.
Remember, too, that blocking program-error signals such as SIGFPE leads to
undesirable results for signals generated by an actual program error (as opposed
to signals sent with raise or kill). This is because your program may be too
broken to be able to continue executing to a point where the signal is unblocked
again (see Section 17.2.1 [Program-Error Signals], page 379).

17.7.4 Blocking to Test for Delivery of a Signal

Now for a simple example. Suppose you establish a handler for SIGALRM sig-
nals that sets a flag whenever a signal arrives, and your main program checks this
flag from time to time and then resets it. You can prevent additional SIGALRM
signals from arriving in the meantime by wrapping the critical part of the code with
calls to sigprocmask, like this:

/* This variable is set by the SIGALRM signal-handler. */

volatile sig_atomic_t flag = 0;

int

main (void)

{

sigset_t block_alarm;

...

/* Initialize the signal mask. */

sigemptyset (&block_alarm);

sigaddset (&block_alarm, SIGALRM);

while (1)

{

/* Check if a signal has arrived; if so, reset the flag. */

sigprocmask (SIG_BLOCK, &block_alarm, NULL);

if (flag)

{

actions-if-not-arrived

flag = 0;

}

sigprocmask (SIG_UNBLOCK, &block_alarm, NULL);

...

}

418 The GNU C Library: System & Network Applications

}

17.7.5 Blocking Signals for a Handler

When a signal handler is invoked, you usually want it to be able to finish without
being interrupted by another signal. From the moment the handler starts until the
moment it finishes, you must block signals that might confuse it or corrupt its data.

When a handler function is invoked on a signal, that signal is automatically
blocked (in addition to any other signals that are already in the process’s signal
mask) during the time the handler is running. If you set up a handler for SIGTSTP,
for instance, then the arrival of that signal forces further SIGTSTP signals to wait
during the execution of the handler.

However, by default, other kinds of signals are not blocked; they can arrive dur-
ing handler execution.

The reliable way to block other kinds of signals during the execution of the han-
dler is to use the sa_mask member of the sigaction structure.

Here is an example:
#include <signal.h>

#include <stddef.h>

void catch_stop ();

void

install_handler (void)

{

struct sigaction setup_action;

sigset_t block_mask;

sigemptyset (&block_mask);

/* Block other terminal-generated signals while handler runs. */

sigaddset (&block_mask, SIGINT);

sigaddset (&block_mask, SIGQUIT);

setup_action.sa_handler = catch_stop;

setup_action.sa_mask = block_mask;

setup_action.sa_flags = 0;

sigaction (SIGTSTP, &setup_action, NULL);

}

This is more reliable than blocking the other signals explicitly in the code for
the handler. If you block signals explicitly in the handler, you can’t avoid at least a
short interval at the beginning of the handler where they are not yet blocked.

You cannot remove signals from the process’s current mask using this mech-
anism. However, you can make calls to sigprocmask within your handler to
block or unblock signals as you wish.

Chapter 17: Signal Handling 419

In any case, when the handler returns, the system restores the mask that was in
place before the handler was entered. If any signals that become unblocked by this
restoration are pending, the process will receive those signals immediately, before
returning to the code that was interrupted.

17.7.6 Checking for Pending Signals

You can find out which signals are pending at any time by calling sigpending.
This function is declared in ‘signal.h’.

Functionint sigpending (sigset_t *set)
The sigpending function stores information about pending signals in set.
If there is a pending signal that is blocked from delivery, then that signal is a
member of the returned set. You can test whether a particular signal is a member
of this set using sigismember (see Section 17.7.2 [Signal Sets], page 414).
The return value is 0 if successful and -1 on failure.

Testing whether a signal is pending is not often useful. Testing when that signal
is not blocked is almost certainly bad design.

Here is an example:
#include <signal.h>

#include <stddef.h>

sigset_t base_mask, waiting_mask;

sigemptyset (&base_mask);

sigaddset (&base_mask, SIGINT);

sigaddset (&base_mask, SIGTSTP);

/* Block user interrupts while doing other processing. */

sigprocmask (SIG_SETMASK, &base_mask, NULL);

...

/* After a while, check to see whether any signals are pending. */

sigpending (&waiting_mask);

if (sigismember (&waiting_mask, SIGINT)) {

/* The user has tried to kill the process. */

}

else if (sigismember (&waiting_mask, SIGTSTP)) {

/* The user has tried to stop the process. */

}

Remember that if there is a particular signal pending for your process, additional
signals of that same type that arrive in the meantime might be discarded. For ex-
ample, if a SIGINT signal is pending when another SIGINT signal arrives, your
program will probably only see one of them when you unblock this signal.

420 The GNU C Library: System & Network Applications

Portability Note: The sigpending function is new in POSIX.1. Older systems
have no equivalent facility.

17.7.7 Remembering a Signal to Act on Later

Instead of blocking a signal using the library facilities, you can get almost the
same results by making the handler set a flag to be tested later, when you “unblock”.
Here is an example:

/* If this flag is nonzero, don’t handle the signal right away. */

volatile sig_atomic_t signal_pending;

/* This is nonzero if a signal arrived and was not handled. */

volatile sig_atomic_t defer_signal;

void

handler (int signum)

{

if (defer_signal)

signal_pending = signum;

else

... /* “Really” handle the signal. */

}

...

void

update_mumble (int frob)

{

/* Prevent signals from having immediate effect. */

defer_signal++;

/* Now update mumble, without worrying about interruption. */

mumble.a = 1;

mumble.b = hack ();

mumble.c = frob;

/* We have updated mumble. Handle any signal that came in. */

defer_signal--;

if (defer_signal == 0 && signal_pending != 0)

raise (signal_pending);

}

Note how the particular signal that arrives is stored in signal_pending. That
way, we can handle several types of inconvenient signals with the same mechanism.

We increment and decrement defer_signal so that nested critical sec-
tions will work properly; thus, if update_mumble were called with signal_
pending already nonzero, signals would be deferred not only within update_

Chapter 17: Signal Handling 421

mumble, but also within the caller. This is also why we do not check signal_
pending if defer_signal is still nonzero.

The incrementing and decrementing of defer_signal each require more than
one instruction; it is possible for a signal to happen in the middle. But that does
not cause any problem. If the signal happens early enough to see the value from
before the increment or decrement, that is equivalent to a signal that came before
the beginning of the increment or decrement, which is a case that works properly.

It is absolutely vital to decrement defer_signal before testing signal_
pending, because this avoids a subtle bug. If we did these things in the other
order, like this:

if (defer_signal == 1 && signal_pending != 0)

raise (signal_pending);

defer_signal--;

then a signal arriving in between the if statement and the decrement would be
effectively “lost” for an indefinite amount of time. The handler would merely set
defer_signal—but the program having already tested this variable, it would
not test the variable again.

Bugs like these are called timing errors. They are especially bad because they
happen only rarely and are nearly impossible to reproduce. You can’t expect to find
them with a debugger as you would find a reproducible bug. So it is worth being
especially careful to avoid them.

(You would not be tempted to write the code in this order, given the use
of defer_signal as a counter which must be tested along with signal_
pending. After all, testing for 0 is cleaner than testing for 1. But if you did not
use defer_signal as a counter, and gave it values of 0 and 1 only, then either
order might seem equally simple. This is a further advantage of using a counter for
defer_signal: it will reduce the chance you will write the code in the wrong
order and create a subtle bug.)

17.8 Waiting for a Signal
If your program is driven by external events, or uses signals for synchronization,

then when it has nothing to do, it should probably wait until a signal arrives.

17.8.1 Using pause

The simple way to wait until a signal arrives is to call pause. Please read about
its disadvantages, in the following section, before you use it.

Functionint pause ()
The pause function suspends program execution until a signal arrives whose
action is either to execute a handler function or to terminate the process.
If the signal causes a handler function to be executed, then pause returns. This
is considered an unsuccessful return (since “successful” behavior would be to

422 The GNU C Library: System & Network Applications

suspend the program forever), so the return value is -1. Even if you specify that
other primitives should resume when a system handler returns (see Section 17.5
[Primitives Interrupted by Signals], page 408), this has no effect on pause; it
always fails when a signal is handled.
The following errno error condition is defined for this function:

EINTR The function was interrupted by delivery of a signal.

If the signal causes program termination, pause doesn’t return (obviously).
This function is a cancellation point in multithreaded programs. This is a
problem if the thread allocates some resources (like memory, file descriptors,
semaphores or whatever) at the time pause is called. If the thread gets can-
celled these resources stay allocated until the program ends. To avoid this calls
to pause should be protected using cancellation handlers.
The pause function is declared in ‘unistd.h’.

17.8.2 Problems with pause

The simplicity of pause can conceal serious timing errors that can make a pro-
gram hang mysteriously.

It is safe to use pause if the real work of your program is done by the signal
handlers themselves, and the “main program” does nothing but call pause. Each
time a signal is delivered, the handler will do the next batch of work that is to be
done, and then return, so that the main loop of the program can call pause again.

You can’t safely use pause to wait until one more signal arrives, and then re-
sume real work. Even if you arrange for the signal handler to cooperate by setting
a flag, you still can’t use pause reliably. Here is an example of this problem:

/* usr_interrupt is set by the signal handler. */

if (!usr_interrupt)

pause ();

/* Do work once the signal arrives. */

...

This has a bug—the signal could arrive after the variable usr_interrupt is
checked, but before the call to pause. If no further signals arrive, the process
would never wake up again.

You can put an upper limit on the excess waiting by using sleep in a loop
instead of using pause.5 Here is what this looks like:

/* usr_interrupt is set by the signal handler.

while (!usr_interrupt)

sleep (1);

/* Do work once the signal arrives. */

5 For more about sleep, see Loosemore et al., “Sleeping”.

Chapter 17: Signal Handling 423

...

For some purposes, that is good enough. But with a little more complexity, you
can wait reliably until a particular signal-handler is run, using sigsuspend.

17.8.3 Using sigsuspend

The clean and reliable way to wait for a signal to arrive is to block it and then use
sigsuspend. By using sigsuspend in a loop, you can wait for certain kinds
of signals, while letting other kinds of signals be handled by their handlers.

Functionint sigsuspend (const sigset_t *set)
This function replaces the process’s signal-mask with set and then suspends the
process until a signal is delivered whose action is either to terminate the process
or invoke a signal-handling function. In other words, the program is effectively
suspended until one of the signals that is not a member of set arrives.
If the process is woken up by delivery of a signal that invokes a handler function,
and the handler function returns, then sigsuspend also returns.
The mask remains set only as long as sigsuspend is waiting. The function
sigsuspend always restores the previous signal-mask when it returns.
The return value and error conditions are the same as for pause.

With sigsuspend, you can replace the pause or sleep loop in the previous
section with something completely reliable:

sigset_t mask, oldmask;

...

/* Set up the mask of signals to temporarily block. */

sigemptyset (&mask);

sigaddset (&mask, SIGUSR1);

...

/* Wait for a signal to arrive. */

sigprocmask (SIG_BLOCK, &mask, &oldmask);

while (!usr_interrupt)

sigsuspend (&oldmask);

sigprocmask (SIG_UNBLOCK, &mask, NULL);

This last piece of code is a little tricky. The key point to remember here is
that when sigsuspend returns, it resets the process’s signal-mask to the original
value, the value from before the call to sigsuspend—in this case, the SIGUSR1
signal is once again blocked. The second call to sigprocmask is necessary to
explicitly unblock this signal.

You may be wondering why the while loop is necessary at all, since the pro-
gram is apparently only waiting for one SIGUSR1 signal. The answer is that the

424 The GNU C Library: System & Network Applications

mask passed to sigsuspend permits the process to be woken up by the delivery
of other kinds of signals, as well—for example, job-control signals. If the process
is woken up by a signal that doesn’t set usr_interrupt, it just suspends itself
again until the “right” kind of signal eventually arrives.

This technique takes a few more lines of preparation, but that is needed just once
for each kind of wait criterion you want to use. The code that actually waits is just
four lines.

17.9 Using a Separate Signal-Stack
A signal stack is a special area of memory to be used as the execution stack dur-

ing signal handlers. It should be fairly large, to avoid any danger that it will over-
flow in turn; the macro SIGSTKSZ is defined to a canonical size for signal stacks.
You can use malloc to allocate the space for the stack. Then call sigaltstack
or sigstack to tell the system to use that space for the signal stack.

You don’t need to write signal handlers differently in order to use a signal stack.
Switching from one stack to the other happens automatically. (Some non-GNU
debuggers on some machines may get confused if you examine a stack trace while
a handler that uses the signal stack is running.)

There are two interfaces for telling the system to use a separate signal stack.
sigstack is the older interface, which comes from 4.2 BSD. sigaltstack is
the newer interface, and comes from 4.4 BSD. The sigaltstack interface has
the advantage that it does not require your program to know which direction the
stack grows, which depends on the specific machine and operating system.

Data Typestack t
This structure describes a signal stack. It contains the following members:

void *ss_sp
This points to the base of the signal stack.

size_t ss_size
This is the size (in bytes) of the signal stack that ‘ss_sp’ points
to. You should set this to however much space you allocated for
the stack.
There are two macros defined in ‘signal.h’ that you should use
in calculating this size:

SIGSTKSZ
This is the canonical size for a signal stack. It is
judged to be sufficient for normal uses.

MINSIGSTKSZ
This is the amount of signal stack-space the operating
system needs just to implement signal delivery. The
size of a signal stack must be greater than this.

Chapter 17: Signal Handling 425

For most cases, just using SIGSTKSZ for ss_size
is sufficient. But if you know how much stack space
your program’s signal handlers will need, you may
want to use a different size. In this case, you should
allocate MINSIGSTKSZ additional bytes for the sig-
nal stack and increase ss_size accordingly.

int ss_flags
This field contains the bit-wise OR of these flags:

SS_DISABLE
This tells the system that it should not use the signal
stack.

SS_ONSTACK
This is set by the system, and indicates that the signal
stack is currently in use. If this bit is not set, then
signals will be delivered on the normal user stack.

Functionint sigaltstack (const stack_t *restrict stack,
stack_t *restrict oldstack)

The sigaltstack function specifies an alternate stack for use during signal
handling. When a signal is received by the process and its action indicates that
the signal stack is used, the system arranges a switch to the currently installed
signal-stack while the handler for that signal is executed.
If oldstack is not a null pointer, information about the currently installed signal-
stack is returned in the location it points to. If stack is not a null pointer, then
this is installed as the new stack for use by signal handlers.
The return value is 0 on success and -1 on failure. If sigaltstack fails, it
sets errno to one of these values:

EINVAL You tried to disable a stack that was in fact currently in use.

ENOMEM The size of the alternate stack was too small. It must be greater
than MINSIGSTKSZ.

Here is the older sigstack interface. You should use sigaltstack instead
on systems that have it.

Data Typestruct sigstack
This structure describes a signal stack. It contains the following members:

void *ss_sp
This is the stack pointer. If the stack grows downward on your
machine, this should point to the top of the area you allocated. If
the stack grows upward, it should point to the bottom.

int ss_onstack
This field is true if the process is currently using this stack.

426 The GNU C Library: System & Network Applications

Functionint sigstack (const struct sigstack *stack, struct
sigstack *oldstack)

The sigstack function specifies an alternate stack for use during signal han-
dling. When a signal is received by the process and its action indicates that
the signal stack is used, the system arranges a switch to the currently installed
signal-stack while the handler for that signal is executed.
If oldstack is not a null pointer, information about the currently installed signal-
stack is returned in the location it points to. If stack is not a null pointer, then
this is installed as the new stack for use by signal handlers.
The return value is 0 on success and -1 on failure.

17.10 BSD Signal-Handling
This section describes alternative signal-handling functions derived from BSD

Unix. These facilities were an advance, in their time; today, they are mostly obso-
lete, and supported mainly for compatibility with BSD Unix.

There are many similarities between the BSD and POSIX signal-handling facili-
ties, because the POSIX facilities were inspired by the BSD facilities. Besides hav-
ing different names for all the functions to avoid conflicts, the main differences
between the two are

• BSD Unix represents signal masks as an int bit mask, rather than as a
sigset_t object.

• The BSD facilities use a different default for whether an interrupted primitive
should fail or resume. The POSIX facilities make system calls fail unless you
specify that they should resume. With the BSD facility, the default is to make
system calls resume unless you say they should fail (see Section 17.5 [Primi-
tives Interrupted by Signals], page 408).

The BSD facilities are declared in ‘signal.h’.

17.10.1 BSD Function to Establish a Handler

Data Typestruct sigvec
This data type is the BSD equivalent of struct sigaction (see Sec-
tion 17.3.2 [Advanced Signal-Handling], page 392); it is used to specify signal
actions to the sigvec function. It contains the following members:
sighandler_t sv_handler

This is the handler function.
int sv_mask

This is the mask of additional signals to be blocked while the han-
dler function is being called.

int sv_flags
This is a bit mask used to specify various flags that affect the
behavior of the signal. You can also refer to this field as sv_
onstack.

Chapter 17: Signal Handling 427

These symbolic constants can be used to provide values for the sv_flags field
of a sigvec structure. This field is a bit-mask value, so you bit-wise-OR the flags
of interest to you together.

Macroint SV ONSTACK
If this bit is set in the sv_flags field of a sigvec structure, it means to use
the signal stack when delivering the signal.

Macroint SV INTERRUPT
If this bit is set in the sv_flags field of a sigvec structure, it means that
system calls interrupted by this kind of signal should not be restarted if the han-
dler returns; instead, the system calls should return with a EINTR error status
(see Section 17.5 [Primitives Interrupted by Signals], page 408).

Macroint SV RESETHAND
If this bit is set in the sv_flags field of a sigvec structure, it means to reset
the action for the signal back to SIG_DFL when the signal is received.

Functionint sigvec (int signum, const struct sigvec
*action,struct sigvec *old-action)

This function is the equivalent of sigaction (see Section 17.3.2 [Advanced
Signal-Handling], page 392); it installs the action action for the signal signum,
returning information about the previous action in effect for that signal in old-
action.

Functionint siginterrupt (int signum, int failflag)
This function specifies which approach to use when certain primitives are in-
terrupted by handling signal signum. If failflag is false, signal signum restarts
primitives. If failflag is true, handling signum causes these primitives to fail
with error code EINTR (see Section 17.5 [Primitives Interrupted by Signals],
page 408).

17.10.2 BSD Functions for Blocking Signals

Macroint sigmask (int signum)
This macro returns a signal mask that has the bit for signal signum set. You can
bit-wise-OR the results of several calls to sigmask together to specify more
than one signal. For example:

(sigmask (SIGTSTP) | sigmask (SIGSTOP)

| sigmask (SIGTTIN) | sigmask (SIGTTOU))

specifies a mask that includes all the job-control stop signals.

Functionint sigblock (int mask)
This function is equivalent to sigprocmask (see Section 17.7.3 [Process
Signal-Mask], page 416) with a how argument of SIG_BLOCK—it adds the

428 The GNU C Library: System & Network Applications

signals specified by mask to the calling process’s set of blocked signals. The
return value is the previous set of blocked signals.

Functionint sigsetmask (int mask)
This function equivalent to sigprocmask (see Section 17.7.3 [Process Signal-
Mask], page 416) with a how argument of SIG_SETMASK—it sets the calling
process’s signal mask to mask. The return value is the previous set of blocked
signals.

Functionint sigpause (int mask)
This function is the equivalent of sigsuspend (see Section 17.8 [Waiting for
a Signal], page 421)—it sets the calling process’s signal mask to mask, and waits
for a signal to arrive. On return, the previous set of blocked signals is restored.

Chapter 18: POSIX Threads 429

18 POSIX Threads

This chapter describes the pthreads (POSIX threads) library. This library provides
support functions for multithreaded programs: thread primitives, synchronization
objects, and so forth. It also implements POSIX 1003.1b semaphores (not to be
confused with System V semaphores).

The threads operations (‘pthread_*’) do not use errno. Instead they return an
error code directly. The semaphore operations do use errno.

18.1 Basic Thread Operations
These functions are the thread equivalents of fork, exit and wait.

Functionint pthread create (pthread_t * thread,
pthread_attr_t * attr, void * (*start routine)(void *),
void * arg)

pthread_create creates a new thread of control that executes concurrently
with the calling thread. The new thread calls the function start routine, passing
it arg as first argument. The new thread terminates either explicitly, by calling
pthread_exit, or implicitly, by returning from the start routine function.
The latter case is equivalent to calling pthread_exit with the result returned
by start routine as exit code.
The attr argument specifies thread attributes to be applied to the new thread
(see Section 18.2 [Thread Attributessection Thread Attributes], page 430). The
attr argument can also be NULL, in which case default attributes are used: the
created thread is joinable (not detached) and has an ordinary (not real-time)
scheduling policy.
On success, the identifier of the newly created thread is stored in the location
pointed by the thread argument, and a 0 is returned. On error, a nonzero error
code is returned.
This function may return the following errors

EAGAIN There are not enough system resources to create a process for the
new thread, or more than PTHREAD_THREADS_MAX threads are
already active.

Functionvoid pthread exit (void *retval)
pthread_exit terminates the execution of the calling thread. All clean-up
handlers (see Section 18.4 [Clean-Up Handlers], page 435) that have been set
for the calling thread with pthread_cleanup_push are executed in reverse
order (the most recently pushed handler is executed first). Finalization functions
for thread-specific data are then called for all keys that have non-NULL values
associated with them in the calling thread (see Section 18.8 [Thread-Specific
Data], page 445). Finally, execution of the calling thread is stopped.

430 The GNU C Library: System & Network Applications

The retval argument is the return value of the thread. It can be retrieved from
another thread using pthread_join.
The pthread_exit function never returns.

Functionint pthread cancel (pthread_t thread)
pthread_cancel sends a cancellation request to the thread denoted by
the thread argument. If there is no such thread, pthread_cancel fails
and returns ESRCH. Otherwise, it returns 0 (see Section 18.3 [Cancellation],
page 433).

Functionint pthread join (pthread_t th, void **thread_return)
pthread_join suspends the execution of the calling thread until the thread
identified by th terminates, either by calling pthread_exit or by being can-
celed.
If thread return is not NULL, the return value of th is stored in the location
pointed to by thread return. The return value of th is either the argument it gave
to pthread_exit, or PTHREAD_CANCELED if th was canceled.
The joined thread th must be in the joinable state—it must not have been de-
tached using pthread_detach or the PTHREAD_CREATE_DETACHED at-
tribute to pthread_create.
When a joinable thread terminates, its memory resources (thread descriptor and
stack) are not deallocated until another thread performs pthread_join on
it. Therefore, pthread_join must be called once for each joinable thread
created to avoid memory leaks.
At most one thread can wait for the termination of a given thread. Calling
pthread_join on a thread th on which another thread is already waiting
for termination returns an error.
pthread_join is a cancellation point. If a thread is canceled while sus-
pended in pthread_join, the thread execution resumes immediately and the
cancellation is executed without waiting for the th thread to terminate. If can-
cellation occurs during pthread_join, the th thread remains not joined.
On success, the return value of th is stored in the location pointed to by
thread return, and 0 is returned. On error, one of the following values is re-
turned:

ESRCH No thread could be found corresponding to that specified by th.

EINVAL The th thread has been detached, or another thread is already wait-
ing on termination of th.

EDEADLK The th argument refers to the calling thread.

18.2 Thread Attributessection Thread Attributes
Threads have a number of attributes that may be set at creation time. This is done

by filling a thread-attribute object attr of type pthread_attr_t, then passing it

Chapter 18: POSIX Threads 431

as second argument to pthread_create. Passing NULL is equivalent to passing
a thread-attribute object with all attributes set to their default values.

Attribute objects are consulted only when creating a new thread. The same
attribute-object can be used for creating several threads. Modifying an attribute ob-
ject after a call to pthread_create does not change the attributes of the thread
previously created.

Functionint pthread attr init (pthread_attr_t *attr)
pthread_attr_init initializes the thread-attribute object attr and fills it
with default values for the attributes. (The default values for each attribute are
listed below.)
Each attribute attrname (see below for a list of all attributes) can be individually
set using the function pthread_attr_setattrname and retrieved using the
function pthread_attr_getattrname .

Functionint pthread attr destroy (pthread_attr_t *attr)
pthread_attr_destroy destroys the attribute object pointed to by attr,
releasing any resources associated with it. attr is left in an undefined state, and
you must not use it again in a call to any pthreads function until it has been
reinitialized.

Functionint pthread attr setattr (pthread_attr_t *obj, int
value)

Set attribute attr to value in the attribute object pointed to by obj. See below for
a list of possible attributes and the values they can take.
On success, these functions return 0. If value is not meaningful for the attr being
modified, they will return the error code EINVAL. Some of the functions have
other failure modes; see below.

Functionint pthread attr getattr (const pthread_attr_t *obj,
int *value)

Store the current setting of attr in obj into the variable pointed to by value.
These functions always return 0.

The following thread attributes are supported:

‘detachstate’
Choose whether the thread is created in the joinable state (value
PTHREAD_CREATE_JOINABLE) or in the detached state
(PTHREAD_CREATE_DETACHED). The default is PTHREAD_
CREATE_JOINABLE.
In the joinable state, another thread can synchronize on the thread
termination and recover its termination code using pthread_join,

432 The GNU C Library: System & Network Applications

but some of the thread resources are kept allocated after the thread
terminates, and reclaimed only when another thread performs
pthread_join on that thread.
In the detached state, the thread resources are immediately freed when
it terminates, but pthread_join cannot be used to synchronize on
the thread termination.
A thread created in the joinable state can later be put in the detached
thread using pthread_detach.

‘schedpolicy’
Select the scheduling policy for the thread, one of SCHED_OTHER
(regular, non-real-time scheduling), SCHED_RR (real-time, round-
robin) or SCHED_FIFO (real-time, first-in first-out). The default is
SCHED_OTHER.
The real-time scheduling policies SCHED_RR and SCHED_FIFO are
available only to processes with superuser privileges. pthread_
attr_setschedparam will fail and return ENOTSUP if you try
to set a real-time policy when you are unprivileged.
The scheduling policy of a thread can be changed after creation with
pthread_setschedparam.

‘schedparam’
Change the scheduling parameter (the scheduling priority) for the
thread. The default is 0.
This attribute is not significant if the scheduling policy is SCHED_
OTHER; it only matters for the real-time policies SCHED_RR and
SCHED_FIFO.
The scheduling priority of a thread can be changed after creation with
pthread_setschedparam.

‘inheritsched’
Choose whether the scheduling policy and scheduling parameter for
the newly created thread are determined by the values of the sched-
policy and schedparam attributes (value PTHREAD_EXPLICIT_
SCHED) or are inherited from the parent thread (value PTHREAD_
INHERIT_SCHED). The default is PTHREAD_EXPLICIT_SCHED.

‘scope’ Choose the scheduling-contention scope for the created thread. The
default is PTHREAD_SCOPE_SYSTEM, meaning that the threads
contend for CPU time with all processes running on the machine. In
particular, thread priorities are interpreted relative to the priorities of
all other processes on the machine. The other possibility, PTHREAD_
SCOPE_PROCESS, means that scheduling contention occurs only be-
tween the threads of the running process—thread priorities are inter-
preted relative to the priorities of the other threads of the process,
regardless of the priorities of other processes.

Chapter 18: POSIX Threads 433

PTHREAD_SCOPE_PROCESS is not supported in LinuxThreads. If
you try to set the scope to this value, pthread_attr_setscope
will fail and return ENOTSUP.

‘stackaddr’
Provide an address for an application-managed stack. The size of the
stack must be at least PTHREAD_STACK_MIN.

‘stacksize’
Change the size of the stack created for the thread. The value defines
the minimum-stack size, in bytes.
If the value exceeds the system’s maximum stack-size, or is smaller
than PTHREAD_STACK_MIN, pthread_attr_setstacksize
will fail and return EINVAL.

‘stack’ Provide both the address and size of an application-managed stack to
use for the new thread. The base of the memory area is stackaddr with
the size of the memory area, stacksize, measured in bytes.
If the value of stacksize is less than PTHREAD_STACK_MIN, or
greater than the system’s maximum stack size, or if the value of stack-
addr lacks the proper alignment, pthread_attr_setstack will
fail and return EINVAL.

‘guardsize’
Change the minimum size in bytes of the guard area for the thread’s
stack. The default size is a single page. If this value is set, it will be
rounded up to the nearest page size. If the value is set to 0, a guard
area will not be created for this thread. The space allocated for the
guard area is used to catch stack overflow. Therefore, when allocating
large structures on the stack, a larger guard area may be required to
catch a stack overflow.
If the caller is managing their own stacks (if the stackaddr attribute
has been set), then the guardsize attribute is ignored.
If the value exceeds the stacksize, pthread_atrr_
setguardsize will fail and return EINVAL.

18.3 Cancellation
Cancellation is the mechanism by which a thread can terminate the execution of

another thread. More precisely, a thread can send a cancellation request to another
thread. Depending on its settings, the target thread can then either ignore the re-
quest, honor it immediately, or defer it till it reaches a cancellation point. When
threads are first created by pthread_create, they always defer cancellation
requests.

When a thread eventually honors a cancellation request, it behaves as if
pthread_exit(PTHREAD_CANCELED) was called. All clean-up handlers
are executed in reverse order, finalization functions for thread-specific data are

434 The GNU C Library: System & Network Applications

called, and finally the thread stops executing. If the canceled thread was joinable,
the return value PTHREAD_CANCELED is provided to whichever thread calls
pthread join on it (see Section 18.1 [Basic Thread Operations], page 429).

Cancellation points are the points where the thread checks for pending
cancellation-requests and performs them. The POSIX threads functions
pthread_join, pthread_cond_wait, pthread_cond_timedwait,
pthread_testcancel, sem_wait and sigwait are cancellation points. In
addition, these system calls are cancellation points:
accept open sendmsg
close pause sendto
connect read system
fcntl recv tcdrain
fsync recvfrom wait
lseek recvmsg waitpid
msync send write
nanosleep

All library functions that call these functions (such as printf) are also cancella-
tion points.

Functionint pthread setcancelstate (int state, int *oldstate)
pthread_setcancelstate changes the cancellation state for the calling
thread—that is, whether cancellation requests are ignored or not. The state ar-
gument is the new cancellation state—either PTHREAD_CANCEL_ENABLE to
enable cancellation, or PTHREAD_CANCEL_DISABLE to disable cancellation
(cancellation requests are ignored).
If oldstate is not NULL, the previous cancellation-state is stored in the loca-
tion pointed to by oldstate, and can thus be restored later by another call to
pthread_setcancelstate.
If the state argument is not PTHREAD_CANCEL_ENABLE or PTHREAD_
CANCEL_DISABLE, pthread_setcancelstate fails and returns
EINVAL. Otherwise, it returns 0.

Functionint pthread setcanceltype (int type, int *oldtype)
pthread_setcanceltype changes the type of responses to cancellation
requests for the calling thread: asynchronous (immediate) or deferred. The
type argument is the new cancellation-type—either PTHREAD_CANCEL_
ASYNCHRONOUS to cancel the calling thread as soon as the cancellation request
is received, or PTHREAD_CANCEL_DEFERRED to keep the cancellation
request pending until the next cancellation-point. If oldtype is not NULL, the
previous cancellation-state is stored in the location pointed to by oldtype, and
can thus be restored later by another call to pthread_setcanceltype.
If the type argument is not PTHREAD_CANCEL_DEFERRED or PTHREAD_
CANCEL_ASYNCHRONOUS, pthread_setcanceltype fails and returns
EINVAL. Otherwise, it returns 0.

Chapter 18: POSIX Threads 435

Functionvoid pthread testcancel (void)
pthread_testcancel does nothing except testing for pending cancellation
and executing it. Its purpose is to introduce explicit checks for cancellation in
long sequences of code that do not call cancellation point functions otherwise.

18.4 Clean-Up Handlers
Clean-up handlers are functions that get called when a thread terminates, either

by calling pthread_exit or because of cancellation. Clean-up handlers are
installed and removed following a stack-like discipline.

The purpose of clean-up handlers is to free the resources that a thread may hold
at the time it terminates. In particular, if a thread exits or is canceled while it owns a
locked mutex, the mutex will remain locked forever and prevent other threads from
executing normally. The best way to avoid this is, just before locking the mutex, to
install a clean-up handler whose effect is to unlock the mutex. Clean-up handlers
can be used similarly to free blocks allocated with malloc or close file descriptors
on thread termination.

Here is how to lock a mutex mut in such a way that it will be unlocked if the
thread is canceled while mut is locked:

pthread_cleanup_push(pthread_mutex_unlock, (void *) &mut);

pthread_mutex_lock(&mut);

/* do some work */

pthread_mutex_unlock(&mut);

pthread_cleanup_pop(0);

Equivalently, the last two lines can be replaced by:
pthread_cleanup_pop(1);

Notice that the code above is safe only in deferred-cancellation mode (see
pthread_setcanceltype). In asynchronous-cancellation mode, a cancel-
lation can occur between pthread_cleanup_push and pthread_mutex_
lock, or between pthread_mutex_unlock and pthread_cleanup_pop,
resulting in both cases in the thread trying to unlock a mutex not locked by the
current thread. This is the main reason why asynchronous cancellation is difficult
to use.

If the code above must also work in asynchronous-cancellation mode, then it
must switch to deferred mode for locking and unlocking the mutex:

pthread_setcanceltype(PTHREAD_CANCEL_DEFERRED, &oldtype);

pthread_cleanup_push(pthread_mutex_unlock, (void *) &mut);

pthread_mutex_lock(&mut);

/* do some work */

pthread_cleanup_pop(1);

pthread_setcanceltype(oldtype, NULL);

The code above can be rewritten in a more compact and efficient way, using the
nonportable functions pthread_cleanup_push_defer_np and pthread_
cleanup_pop_restore_np:

436 The GNU C Library: System & Network Applications

pthread_cleanup_push_defer_np(pthread_mutex_unlock, (void *) &mut);

pthread_mutex_lock(&mut);

/* do some work */

pthread_cleanup_pop_restore_np(1);

Functionvoid pthread cleanup push (void (*routine) (void *),
void *arg)

pthread_cleanup_push installs the routine function with argument arg as
a clean-up handler. From this point on to the matching pthread_cleanup_
pop, the function routine will be called with arguments arg when the thread
terminates, either through pthread_exit or by cancellation. If several clean-
up handlers are active at that point, they are called in LIFO order—the most
recently installed handler is called first.

Functionvoid pthread cleanup pop (int execute)
pthread_cleanup_pop removes the most recently installed clean-up han-
dler. If the execute argument is not 0, it also executes the handler, by calling the
routine function with arguments arg. If the execute argument is 0, the handler
is only removed but not executed.

Matching pairs of pthread_cleanup_push and pthread_cleanup_
pop must occur in the same function, at the same level of block nesting. Ac-
tually, pthread_cleanup_push and pthread_cleanup_pop are macros,
and the expansion of pthread_cleanup_push introduces an open brace {
with the matching closing brace } being introduced by the expansion of the match-
ing pthread_cleanup_pop.

Functionvoid pthread cleanup push defer np (void (*routine)
(void *), void *arg)

pthread_cleanup_push_defer_np is a nonportable extension that
combines pthread_cleanup_push and pthread_setcanceltype.
It pushes a clean-up handler just as pthread_cleanup_push does, but
also saves the current cancellation type and sets it to deferred cancellation. This
ensures that the clean-up mechanism is effective even if the thread was initially
in asynchronous cancellation mode.

Functionvoid pthread cleanup pop restore np (int execute)
pthread_cleanup_pop_restore_np pops a clean-up handler
introduced by pthread_cleanup_push_defer_np, and restores the
cancellation type to its value at the time pthread_cleanup_push_
defer_np was called.

pthread_cleanup_push_defer_np and pthread_cleanup_
pop_restore_np must occur in matching pairs, at the same level of block
nesting.

The sequence:

Chapter 18: POSIX Threads 437

pthread_cleanup_push_defer_np(routine, arg);

...

pthread_cleanup_pop_defer_np(execute);

is functionally equivalent to (but more compact and efficient than):
{

int oldtype;

pthread_setcanceltype(PTHREAD_CANCEL_DEFERRED, &oldtype);

pthread_cleanup_push(routine, arg);

...

pthread_cleanup_pop(execute);

pthread_setcanceltype(oldtype, NULL);

}

18.5 Mutexes
A mutex is a MUTual EXclusion device, and is useful for protecting shared data-

structures from concurrent modifications, and implementing critical sections and
monitors.

A mutex has two possible states: unlocked (not owned by any thread), and locked
(owned by one thread). A mutex can never be owned by two different threads
simultaneously. A thread attempting to lock a mutex that is already locked by
another thread is suspended until the owning thread unlocks the mutex first.

None of the mutex functions is a cancellation point, not even pthread_
mutex_lock, in spite of the fact that it can suspend a thread for arbitrary dura-
tions. This way, the status of mutexes at cancellation points is predictable, allowing
cancellation handlers to unlock precisely those mutexes that need to be unlocked
before the thread stops executing. Consequently, threads using deferred cancella-
tion should never hold a mutex for extended periods of time.

It is not safe to call mutex functions from a signal handler. In particular, calling
pthread_mutex_lock or pthread_mutex_unlock from a signal handler
may deadlock the calling thread.

Functionint pthread mutex init (pthread_mutex_t *mutex,
const pthread_mutexattr_t *mutexattr)

pthread_mutex_init initializes the mutex object pointed to by mutex ac-
cording to the mutex attributes specified in mutexattr. If mutexattr is NULL,
default attributes are used instead.
The LinuxThreads implementation supports only one mutex attribute, the mutex
type, which is either “fast”, “recursive”, or “error checking”. The type of a
mutex determines whether it can be locked again by a thread that already owns
it. The default type is “fast”.
Variables of type pthread_mutex_t can also be initialized statically,
using the constants PTHREAD_MUTEX_INITIALIZER (for timed mutexes),
PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP (for recursive

438 The GNU C Library: System & Network Applications

mutexes), PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP (for fast
mutexes) and PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP (for
error-checking mutexes).
pthread_mutex_init always returns 0.

Functionint pthread mutex lock (pthread_mutex_t *mutex))
pthread_mutex_lock locks the given mutex. If the mutex is currently un-
locked, it becomes locked and owned by the calling thread, and pthread_
mutex_lock returns immediately. If the mutex is already locked by another
thread, pthread_mutex_lock suspends the calling thread until the mutex
is unlocked.
If the mutex is already locked by the calling thread, the behavior of pthread_
mutex_lock depends on the type of the mutex. If the mutex is of the “fast”
type, the calling thread is suspended. It will remain suspended forever, be-
cause no other thread can unlock the mutex. If the mutex is of the “error-
checking” type, pthread_mutex_lock returns immediately with the error
code EDEADLK. If the mutex is of the “recursive” type, pthread_mutex_
lock succeeds and returns immediately, recording the number of times the
calling thread has locked the mutex. An equal number of pthread_mutex_
unlock operations must be performed before the mutex returns to the unlocked
state.

Functionint pthread mutex trylock (pthread_mutex_t *mutex)
pthread_mutex_trylock behaves identically to pthread_mutex_
lock, except that it does not block the calling thread if the mutex is already
locked by another thread (or by the calling thread in the case of a “fast” mutex).
Instead, pthread_mutex_trylock returns immediately with the error
code EBUSY.

Functionint pthread mutex timedlock (pthread_mutex_t
*mutex, const struct timespec *abstime)

The pthread_mutex_timedlock is similar to the pthread_mutex_
lock function, but instead of blocking for in indefinite time if the mutex
is locked by another thread, it returns when the time specified in abstime is
reached.
This function can only be used on standard (“timed”) and “error-checking” mu-
texes. It behaves just like pthread_mutex_lock for all other types.
If the mutex is successfully locked, the function returns 0. If the time specified
in abstime is reached without the mutex being locked, ETIMEDOUT is returned.
This function was introduced in the POSIX.1d revision of the POSIX standard.

Functionint pthread mutex unlock (pthread_mutex_t *mutex)
pthread_mutex_unlock unlocks the given mutex. The mutex is assumed
to be locked and owned by the calling thread on entrance to pthread_
mutex_unlock. If the mutex is of the “fast” type, pthread_mutex_
unlock always returns it to the unlocked state. If it is of the “recursive” type,

Chapter 18: POSIX Threads 439

it decrements the locking count of the mutex (number of pthread_mutex_
lock operations performed on it by the calling thread), and only when this
count reaches 0 is the mutex actually unlocked.
On “error-checking” mutexes, pthread_mutex_unlock actually checks at
run-time that the mutex is locked on entrance, and that it was locked by the same
thread that is now calling pthread_mutex_unlock. If these conditions are
not met, pthread_mutex_unlock returns EPERM, and the mutex remains
unchanged. “Fast” and “recursive” mutexes perform no such checks, thus al-
lowing a locked mutex to be unlocked by a thread other than its owner. This is
nonportable behavior and must not be relied upon.

Functionint pthread mutex destroy (pthread_mutex_t *mutex)
pthread_mutex_destroy destroys a mutex object, freeing the resources it
might hold. The mutex must be unlocked on entrance. In the LinuxThreads im-
plementation, no resources are associated with mutex objects, thus pthread_
mutex_destroy actually does nothing except check that the mutex is un-
locked.
If the mutex is locked by some thread, pthread_mutex_destroy returns
EBUSY. Otherwise, it returns 0.

If any of the above functions (except pthread_mutex_init) is applied to an
uninitialized mutex, they will simply return EINVAL and do nothing.

A shared global-variable x can be protected by a mutex as follows:
int x;

pthread_mutex_t mut = PTHREAD_MUTEX_INITIALIZER;

All accesses and modifications to x should be bracketed by calls to pthread_
mutex_lock and pthread_mutex_unlock as follows:

pthread_mutex_lock(&mut);

/* operate on x */

pthread_mutex_unlock(&mut);

Mutex attributes can be specified at mutex creation time, by passing a mutex-
attribute object as second argument to pthread_mutex_init. Passing NULL
is equivalent to passing a mutex attribute object with all attributes set to their default
values.

Functionint pthread mutexattr init (pthread_mutexattr_t *attr)

pthread_mutexattr_init initializes the mutex-attribute object attr and
fills it with default values for the attributes.
This function always returns 0.

440 The GNU C Library: System & Network Applications

Functionint pthread mutexattr destroy (pthread_mutexattr_t
*attr)

pthread_mutexattr_destroy destroys a mutex-attribute object, which
must not be reused until it is reinitialized. pthread_mutexattr_destroy
does nothing in the LinuxThreads implementation.

This function always returns 0.

LinuxThreads supports only one mutex attribute: the mutex type, which is ei-
ther PTHREAD_MUTEX_ADAPTIVE_NP for “fast” mutexes, PTHREAD_MUTEX_
RECURSIVE_NP for “recursive” mutexes, PTHREAD_MUTEX_TIMED_NP for
“timed” mutexes or PTHREAD_MUTEX_ERRORCHECK_NP for “error-checking”
mutexes. As the NP suffix indicates, this is a nonportable extension to the POSIX
standard and should not be employed in portable programs.

The mutex type determines what happens if a thread attempts to lock a mutex it
already owns with pthread_mutex_lock. If the mutex is of the “fast” type,
pthread_mutex_lock simply suspends the calling thread forever. If the mu-
tex is of the “error-checking” type, pthread_mutex_lock returns immediately
with the error code EDEADLK. If the mutex is of the “recursive” type, the call to
pthread_mutex_lock returns immediately with a success return code. The
number of times the thread owning the mutex has locked it is recorded in the mu-
tex. The owning thread must call pthread_mutex_unlock the same number
of times before the mutex returns to the unlocked state.

The default mutex type is “timed”, that is, PTHREAD_MUTEX_TIMED_NP.

Functionint pthread mutexattr settype (pthread_mutexattr_t
*attr, int type)

pthread_mutexattr_settype sets the mutex type attribute in attr to the
value specified by type.

If type is not PTHREAD_MUTEX_ADAPTIVE_NP, PTHREAD_MUTEX_
RECURSIVE_NP, PTHREAD_MUTEX_TIMED_NP or PTHREAD_MUTEX_
ERRORCHECK_NP, this function will return EINVAL and leave attr
unchanged.

The standard Unix98 identifiers PTHREAD_MUTEX_DEFAULT, PTHREAD_
MUTEX_NORMAL, PTHREAD_MUTEX_RECURSIVE and PTHREAD_MUTEX_
ERRORCHECK are also permitted.

Functionint pthread mutexattr gettype (const
pthread_mutexattr_t *attr, int *type)

pthread_mutexattr_gettype retrieves the current value of the mutex
type attribute in attr and stores it in the location pointed to by type.

This function always returns 0.

Chapter 18: POSIX Threads 441

18.6 Condition Variables
A condition (short for “condition variable”) is a synchronization device that al-

lows threads to suspend execution until some predicate on shared data is satisfied.
The basic operations on conditions are signal the condition (when the predicate
becomes true), and wait for the condition, suspending the thread execution until
another thread signals the condition.

A condition variable must always be associated with a mutex, to avoid the race
condition where a thread prepares to wait on a condition variable and another thread
signals the condition just before the first thread actually waits on it.

Functionint pthread cond init (pthread_cond_t *cond,
pthread_condattr_t *cond_attr)

pthread_cond_init initializes the condition variable cond, using the con-
dition attributes specified in cond attr, or default attributes if cond attr is NULL.
The LinuxThreads implementation supports no attributes for conditions, hence
the cond attr parameter is actually ignored.
Variables of type pthread_cond_t can also be initialized statically, using
the constant PTHREAD_COND_INITIALIZER.
This function always returns 0.

Functionint pthread cond signal (pthread_cond_t *cond)
pthread_cond_signal restarts one of the threads that are waiting on the
condition variable cond. If no threads are waiting on cond, nothing happens.
If several threads are waiting on cond, exactly one is restarted, but it is not
specified which.
This function always returns 0.

Functionint pthread cond broadcast (pthread_cond_t *cond)
pthread_cond_broadcast restarts all the threads that are waiting on the
condition variable cond. Nothing happens if no threads are waiting on cond.
This function always returns 0.

Functionint pthread cond wait (pthread_cond_t *cond,
pthread_mutex_t *mutex)

pthread_cond_wait atomically unlocks the mutex (as per pthread_
unlock_mutex) and waits for the condition variable cond to be signaled.
The thread execution is suspended and does not consume any CPU time until the
condition variable is signaled. The mutex must be locked by the calling thread
on entrance to pthread_cond_wait. Before returning to the calling thread,
pthread_cond_wait reacquires mutex (as per pthread_lock_mutex).
Unlocking the mutex and suspending on the condition variable is done atomi-
cally. Thus, if all threads always acquire the mutex before signaling the con-
dition, this guarantees that the condition cannot be signaled (and thus ignored)

442 The GNU C Library: System & Network Applications

between the time a thread locks the mutex and the time it waits on the condition
variable.
This function always returns 0.

Functionint pthread cond timedwait (pthread_cond_t *cond,
pthread_mutex_t *mutex, const struct timespec
*abstime)

pthread_cond_timedwait atomically unlocks mutex and waits on cond,
as pthread_cond_wait does, but it also bounds the duration of the wait. If
cond has not been signaled before time abstime, the mutex mutex is reacquired
and pthread_cond_timedwait returns the error code ETIMEDOUT. The
wait can also be interrupted by a signal; in that case, pthread_cond_
timedwait returns EINTR.
The abstime parameter specifies an absolute time, with the same origin as time
and gettimeofday: an abstime of 0 corresponds to 00:00:00 GMT, January
1, 1970.

Functionint pthread cond destroy (pthread_cond_t *cond)
pthread_cond_destroy destroys the condition variable cond, freeing the
resources it might hold. If any threads are waiting on the condition variable,
pthread_cond_destroy leaves cond untouched and returns EBUSY. Oth-
erwise it returns 0, and cond must not be used again until it is reinitialized.
In the LinuxThreads implementation, no resources are associated with condition
variables, so pthread_cond_destroy actually does nothing.

pthread_cond_wait and pthread_cond_timedwait are cancellation
points. If a thread is canceled while suspended in one of these functions, the thread
immediately resumes execution, relocks the mutex specified by mutex, and finally
executes the cancellation. Consequently, clean-up handlers are assured that mutex
is locked when they are called.

It is not safe to call the condition variable functions from a signal handler. In
particular, calling pthread_cond_signal or pthread_cond_broadcast
from a signal handler may deadlock the calling thread.

Consider two shared variables x and y, protected by the mutex mut, and a condi-
tion variable cond that is to be signaled whenever x becomes greater than y.

int x,y;

pthread_mutex_t mut = PTHREAD_MUTEX_INITIALIZER;

pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

Waiting until x is greater than y is performed as follows:
pthread_mutex_lock(&mut);

while (x <= y) {

pthread_cond_wait(&cond, &mut);

}

/* operate on x and y */

Chapter 18: POSIX Threads 443

pthread_mutex_unlock(&mut);

Modifications on x and y that may cause x to become greater than y should
signal the condition if needed:

pthread_mutex_lock(&mut);

/* modify x and y */

if (x > y) pthread_cond_broadcast(&cond);

pthread_mutex_unlock(&mut);

If it can be proved that at most one waiting thread needs to be awakened (for in-
stance, if there are only two threads communicating through x and y), pthread_
cond_signal can be used as a slightly more efficient alternative to pthread_
cond_broadcast. When in doubt, use pthread_cond_broadcast.

To wait for x to becomes greater than y with a time-out of 5 seconds, do:
struct timeval now;

struct timespec timeout;

int retcode;

pthread_mutex_lock(&mut);

gettimeofday(&now);

timeout.tv_sec = now.tv_sec + 5;

timeout.tv_nsec = now.tv_usec * 1000;

retcode = 0;

while (x <= y && retcode != ETIMEDOUT) {

retcode = pthread_cond_timedwait(&cond, &mut, &timeout);

}

if (retcode == ETIMEDOUT) {

/* timeout occurred */

} else {

/* operate on x and y */

}

pthread_mutex_unlock(&mut);

Condition attributes can be specified at condition-creation time, by passing a
condition-attribute object as a second argument to pthread_cond_init. Pass-
ing NULL is equivalent to passing a condition-attribute object with all attributes set
to their default values.

The LinuxThreads implementation supports no attributes for conditions. The
functions on condition attributes are included only for compliance with the POSIX
standard.

Functionint pthread condattr init (pthread_condattr_t *attr)
Functionint pthread condattr destroy (pthread_condattr_t

*attr)
pthread_condattr_init initializes the condition-attribute object attr and
fills it with default values for the attributes. pthread_condattr_destroy
destroys the condition-attribute object attr.

444 The GNU C Library: System & Network Applications

Both functions do nothing in the LinuxThreads implementation.
pthread_condattr_init and pthread_condattr_destroy
always return 0.

18.7 POSIX Semaphores
Semaphores are counters for resources shared between threads. The basic op-

erations on semaphores are increment the counter atomically, and wait until the
counter is nonnull and decrement it atomically.

Semaphores have a maximum value past which they cannot be incremented. The
macro SEM_VALUE_MAX is defined to be this maximum value. In the GNU C
Library, SEM_VALUE_MAX is equal to INT_MAX (see Section A.5.2 [Range of an
Integer Type], page 465), but it may be much smaller on other systems.

The pthreads library implements POSIX 1003.1b semaphores. These should not
be confused with System V semaphores (ipc, semctl and semop).

All the semaphore functions and macros are defined in ‘semaphore.h’.

Functionint sem init (sem_t *sem, int pshared, unsigned int
value)

sem_init initializes the semaphore object pointed to by sem. The count as-
sociated with the semaphore is set initially to value. The pshared argument
indicates whether the semaphore is local to the current process (pshared is 0) or
is to be shared between several processes (pshared is not 0).
On success, sem_init returns 0. On failure, it returns -1 and sets errno to one
of the following values:

EINVAL value exceeds the maximum counter-value SEM_VALUE_MAX.

ENOSYS pshared is not 0. LinuxThreads currently does not support process-
shared semaphores. This will eventually change.

Functionint sem destroy (sem_t * sem)
sem_destroy destroys a semaphore object, freeing the resources it might
hold. If any threads are waiting on the semaphore when sem_destroy is
called, it fails and sets errno to EBUSY.
In the LinuxThreads implementation, no resources are associated with
semaphore objects, thus sem_destroy actually does nothing except
check that no thread is waiting on the semaphore. This will change when
process-shared semaphores are implemented.

Functionint sem wait (sem_t * sem)
sem_wait suspends the calling thread until the semaphore pointed to by sem
has nonzero count. It then atomically decreases the semaphore count.
sem_wait is a cancellation point. It always returns 0.

Chapter 18: POSIX Threads 445

Functionint sem trywait (sem_t * sem)
sem_trywait is a nonblocking variant of sem_wait. If the semaphore
pointed to by sem has nonzero count, the count is atomically decreased and
sem_trywait immediately returns 0. If the semaphore count is 0, sem_
trywait immediately returns -1 and sets errno to EAGAIN.

Functionint sem post (sem_t * sem)
sem_post atomically increases the count of the semaphore pointed to by sem.
This function never blocks.
On processors supporting atomic compare-and-swap (Intel 486, Pentium and
later, Alpha, PowerPC, MIPS II, Motorola 68k, Ultrasparc), the sem_post
function can safely be called from signal handlers. This is the only thread-
synchronization function provided by POSIX threads that is async-signal safe.
On the Intel 386 and earlier Sparc chips, the current LinuxThreads implemen-
tation of sem_post is not async-signal safe, because the hardware does not
support the required atomic operations.
sem_post always succeeds and returns 0, unless the semaphore count would
exceed SEM_VALUE_MAX after being incremented. In that case, sem_post
returns -1 and sets errno to EINVAL. The semaphore count is left unchanged.

Functionint sem getvalue (sem_t * sem, int * sval)
sem_getvalue stores in the location pointed to by sval the current count of
the semaphore sem. It always returns 0.

18.8 Thread-Specific Data
Programs often need global or static variables that have different values in dif-

ferent threads. Since threads share one memory space, this cannot be achieved with
regular variables. Thread-specific data is the POSIX threads answer to this need.

Each thread possesses a private memory-block, the thread-specific data area, or
TSD area for short. This area is indexed by TSD keys. The TSD area associates
values of type void * to TSD keys. TSD keys are common to all threads, but the
value associated with a given TSD key can be different in each thread.

For concreteness, the TSD areas can be viewed as arrays of void * pointers, TSD
keys as integer indices into these arrays, and the value of a TSD key as the value of
the corresponding array-element in the calling thread.

When a thread is created, its TSD area initially associates NULL with all keys.

Functionint pthread key create (pthread_key_t *key, void
(*destr_function) (void *))

pthread_key_create allocates a new TSD key. The key is stored in the
location pointed to by key. There is a limit of PTHREAD_KEYS_MAX on the
number of keys allocated at a given time. The value initially associated with the
returned key is NULL in all currently executing threads.

446 The GNU C Library: System & Network Applications

The destr function argument, if not NULL, specifies a destructor function as-
sociated with the key. When a thread terminates via pthread_exit or by
cancellation, destr function is called on the value associated with the key in that
thread. The destr function is not called if a key is deleted with pthread_
key_delete or a value is changed with pthread_setspecific. The
order in which destructor functions are called at thread-termination time is un-
specified.
Before the destructor function is called, the NULL value is associated with the
key in the current thread. A destructor function might, however, re-associate
non-NULL values to that key or some other key. To deal with this, if after all the
destructors have been called for all non-NULL values, there are still some non-
NULL values with associated destructors, then the process is repeated. The Lin-
uxThreads implementation stops the process after PTHREAD_DESTRUCTOR_
ITERATIONS iterations, even if some non-NULL values with associated de-
scriptors remain. Other implementations may loop indefinitely.
pthread_key_create returns 0 unless PTHREAD_KEYS_MAX keys have
already been allocated, in which case it fails and returns EAGAIN.

Functionint pthread key delete (pthread_key_t key)
pthread_key_delete deallocates a TSD key. It does not check whether
non-NULL values are associated with that key in the currently executing threads,
nor call the destructor function associated with the key.
If there is no such key key, it returns EINVAL. Otherwise, it returns 0.

Functionint pthread setspecific (pthread_key_t key, const void
*pointer)

pthread_setspecific changes the value associated with key in the call-
ing thread, storing the given pointer instead.
If there is no such key key, it returns EINVAL. Otherwise, it returns 0.

Functionvoid * pthread getspecific (pthread_key_t key)
pthread_getspecific returns the value currently associated with key in
the calling thread.
If there is no such key key, it returns NULL.

The following code fragment allocates a thread-specific array of 100 characters,
with automatic reclamation at thread exit:

/* Key for the thread-specific buffer */

static pthread_key_t buffer_key;

/* Once-only initialization of the key */

static pthread_once_t buffer_key_once = PTHREAD_ONCE_INIT;

/* Allocate the thread-specific buffer. */

void buffer_alloc(void)

Chapter 18: POSIX Threads 447

{

pthread_once(&buffer_key_once, buffer_key_alloc);

pthread_setspecific(buffer_key, malloc(100));

}

/* Return the thread-specific buffer */

char * get_buffer(void)

{

return (char *) pthread_getspecific(buffer_key);

}

/* Allocate the key. */

static void buffer_key_alloc()

{

pthread_key_create(&buffer_key, buffer_destroy);

}

/* Free the thread-specific buffer */

static void buffer_destroy(void * buf)

{

free(buf);

}

18.9 Threads and Signal-Handling
Functionint pthread sigmask (int how, const sigset_t

*newmask, sigset_t *oldmask)
pthread_sigmask changes the signal mask for the calling thread as de-
scribed by the how and newmask arguments. If oldmask is not NULL, the
previous signal-mask is stored in the location pointed to by oldmask.
The meaning of the how and newmask arguments is the same as for
sigprocmask. If how is SIG_SETMASK, the signal mask is set to newmask.
If how is SIG_BLOCK, the signals specified to newmask are added to the
current signal-mask. If how is SIG_UNBLOCK, the signals specified to
newmask are removed from the current signal mask.
Recall that signal masks are set on a per-thread basis, but signal actions and
signal handlers, as set with sigaction, are shared between all threads.
The pthread_sigmask function returns 0 on success and one of the follow-
ing error codes on error:

EINVAL how is not one of SIG_SETMASK, SIG_BLOCK or
SIG_UNBLOCK.

EFAULT newmask or oldmask point to invalid addresses.

448 The GNU C Library: System & Network Applications

Functionint pthread kill (pthread_t thread, int signo)
pthread_kill sends signal number signo to the thread thread. The signal is
delivered and handled as described in Chapter 17 [Signal Handling], page 377.
pthread_kill returns 0 on success and one of the following error codes on
error:

EINVAL signo is not a valid signal-number.

ESRCH The thread thread does not exist (e.g. it has already terminated).

Functionint sigwait (const sigset_t *set, int *sig)
sigwait suspends the calling thread until one of the signals in set is delivered
to the calling thread. It then stores the number of the signal received in the lo-
cation pointed to by sig and returns. The signals in set must be blocked and not
ignored on entrance to sigwait. If the delivered signal has a signal-handler
function attached, that function is not called.
sigwait is a cancellation point. It always returns 0.

For sigwait to work reliably, the signals being waited for must be blocked in
all threads, not only in the calling thread, since otherwise the POSIX semantics for
signal delivery do not guarantee that it’s the thread doing the sigwait that will
receive the signal. The best way to achieve this is block those signals before any
threads are created, and never unblock them in the program other than by calling
sigwait.

Signal handling in LinuxThreads departs significantly from the POSIX standard.
According to the standard, “asynchronous” (external) signals are addressed to the
whole process (the collection of all threads), which then delivers them to one par-
ticular thread. The thread that actually receives the signal is any thread that does
not currently block the signal.

In LinuxThreads, each thread is actually a kernel process with its own PID, so
external signals are always directed to one particular thread. If, for instance, another
thread is blocked in sigwait on that signal, it will not be restarted.

The LinuxThreads implementation of sigwait installs dummy signal-handlers
for the signals in set for the duration of the wait. Since signal handlers are shared
between all threads, other threads must not attach their own signal-handlers to these
signals, or alternatively they should all block these signals (which is recommended
anyway).

18.10 Threads and Fork
It’s not intuitively obvious what should happen when a multithreaded POSIX pro-

cess calls fork. Not only are the semantics tricky, but you may need to write
code that does the right thing at fork time even if that code doesn’t use the fork
function. Moreover, you need to be aware of interaction between fork and some
library features like pthread_once and stdio streams.

Chapter 18: POSIX Threads 449

When fork is called by one of the threads of a process, it creates a new process
that is a copy of the calling process. Effectively, in addition to copying certain
system objects, the function takes a snapshot of the memory areas of the parent
process, and creates identical areas in the child. To make matters more complicated,
with threads it’s possible for two or more threads to concurrently call fork to create
two or more child processes.

The child process has a copy of the address space of the parent, but it does not
inherit any of its threads. Execution of the child process is carried out by a new
thread that returns from the fork function with a return value of 0; it is the only
thread in the child process. Because threads are not inherited across fork, issues
arise. At the time of the call to fork, threads in the parent process other than the
one calling fork may have been executing critical regions of code. As a result,
the child process may get a copy of objects that are not in a well-defined state. This
potential problem affects all components of the program.

Any program component that will continue being used in a child process must
correctly handle its state during fork. For this purpose, the POSIX interface pro-
vides the special function pthread_atfork for installing pointers to handler
functions that are called from within fork.

Functionint pthread atfork (void (*prepare)(void), void
(*parent)(void), void (*child)(void))

pthread_atfork registers handler functions to be called just before and just
after a new process is created with fork. The prepare handler will be called
from the parent process, just before the new process is created. The parent
handler will be called from the parent process, just before fork returns. The
child handler will be called from the child process, just before fork returns.
pthread_atfork returns 0 on success and a nonzero error-code on error.
One or more of the three handlers prepare, parent and child can be given as
NULL, meaning that no handler needs to be called at the corresponding point.
pthread_atfork can be called several times to install several sets of han-
dlers. At fork time, the prepare handlers are called in LIFO order (last added
with pthread_atfork, first called before fork), while the parent and child
handlers are called in FIFO order (first added, first called).
If there is insufficient memory available to register the handlers, pthread_
atfork fails and returns ENOMEM. Otherwise, it returns 0.
The functions fork and pthread_atfork must not be regarded as reentrant
from the context of the handlers. That is to say, if a pthread_atfork handler
invoked from within fork calls pthread_atfork or fork, the behavior is
undefined.
Registering a triplet of handlers is an atomic operation with respect to fork. If
new handlers are registered at about the same time as a fork occurs, either all
three handlers will be called, or none of them will be called.
The handlers are inherited by the child process, and there is no way to remove
them, short of using exec to load a new process-image.

450 The GNU C Library: System & Network Applications

To understand the purpose of pthread_atfork, recall that fork duplicates
the whole memory space, including mutexes in their current locking-state, but only
the calling thread—other threads are not running in the child process. The mutexes
are not usable after the fork and must be initialized with pthread_mutex_
init in the child process. This is a limitation of the current implementation and
might or might not be present in future versions.

To avoid this, install handlers with pthread_atfork as follows. Have the
prepare handler lock the mutexes (in locking order), and the parent handler un-
lock the mutexes. The child handler should reset the mutexes using pthread_
mutex_init, as well as any other synchronization objects such as condition vari-
ables.

Locking the global mutexes before the fork ensures that all other threads are
locked out of the critical regions of code protected by those mutexes. Thus when
fork takes a snapshot of the parent’s address space, that snapshot will copy valid,
stable data. Resetting the synchronization objects in the child process will ensure
they are properly cleansed of any artifacts from the threading subsystem of the
parent process. For example, a mutex may inherit a wait queue of threads waiting
for the lock; this wait queue makes no sense in the child process. Initializing the
mutex takes care of this.

18.11 Streams and Fork

The GNU standard I/O library has an internal mutex that guards the internal
linked list of all standard C FILE objects. This mutex is properly taken care of
during fork so that the child receives an intact copy of the list. This allows the
fopen function, and related stream-creating functions, to work correctly in the
child process, since these functions need to insert into the list.

However, the individual stream locks are not completely taken care of. Thus
unless the multithreaded application takes special precautions in its use of fork,
the child process might not be able to safely use the streams that it inherited from
the parent. In general, for any given open stream in the parent that is to be used
by the child process, the application must ensure that that stream is not in use by
another thread when fork is called. Otherwise an inconsistent copy of the stream
object be produced. An easy way to ensure this is to use flockfile to lock
the stream prior to calling fork and then unlock it with funlockfile inside
the parent process, provided that the parent’s threads properly honor these locks.
Nothing special needs to be done in the child process, since the library internally
resets all stream locks.

Note that the stream locks are not shared between the parent and child. For ex-
ample, even if you ensure that, say, the stream stdout is properly treated and can
be safely used in the child, the stream locks do not provide an exclusion mechanism
between the parent and child. If both processes write to stdout, strangely inter-
leaved output may result regardless of the explicit use of flockfile or implicit
locks.

Chapter 18: POSIX Threads 451

Also note that these provisions are a GNU extension; other systems might not
provide any way for streams to be used in the child of a multithreaded process.
POSIX requires that such a child process confine itself to calling only asynchronous-
safe functions, which excludes much of the library, including standard I/O.

18.12 Miscellaneous Thread Functions
Functionpthread_t pthread self (void)

pthread_self returns the thread identifier for the calling thread.

Functionint pthread equal (pthread_t thread1, pthread_t
thread2)

pthread_equal determines if two thread-identifiers refer to the same thread.
A nonzero value is returned if thread1 and thread2 refer to the same thread.
Otherwise, 0 is returned.

Functionint pthread detach (pthread_t th)
pthread_detach puts the thread th in the detached state. This guarantees
that the memory resources consumed by th will be freed immediately when
th terminates. However, this prevents other threads from synchronizing on the
termination of th using pthread_join.
A thread can be created initially in the detached state, using the detachstate
attribute to pthread_create. In contrast, pthread_detach applies to
threads created in the joinable state, and which need to be put in the detached
state later.
After pthread_detach completes, subsequent attempts to perform
pthread_join on th will fail. If another thread is already joining the thread
th at the time pthread_detach is called, pthread_detach does nothing
and leaves th in the joinable state.
On success, 0 is returned. On error, one of the following codes is returned:

ESRCH No thread could be found corresponding to that specified by th.

EINVAL The thread th is already in the detached state.

Functionvoid pthread kill other threads np (void)
pthread_kill_other_threads_np is a nonportable LinuxThreads ex-
tension. It causes all threads in the program to terminate immediately, except the
calling thread, which proceeds normally. It is intended to be called just before a
thread calls one of the exec functions, e.g. execve.
Termination of the other threads is not performed through pthread_cancel
and completely bypasses the cancellation mechanism. Hence, the current set-
tings for cancellation state and cancellation type are ignored, and the clean-up
handlers are not executed in the terminated threads.
According to POSIX 1003.1c, a successful exec* in one of the threads should
automatically terminate all other threads in the program. This behavior is

452 The GNU C Library: System & Network Applications

not yet implemented in LinuxThreads. Calling pthread_kill_other_
threads_np before exec* achieves much of the same behavior, except that
if exec* ultimately fails, then all other threads are already killed.

Functionint pthread once (pthread_once_t *once_control, void
(*init routine) (void))

The purpose of pthread_once is to ensure that a piece of initialization code
is executed at most one time. The once control argument points to a static or
extern variable statically initialized to PTHREAD_ONCE_INIT.
The first time pthread_once is called with a given once control argument,
it calls init routine with no argument and changes the value of the once control
variable to record that initialization has been performed. Subsequent calls to
pthread_once with the same once_control argument do nothing.
If a thread is cancelled while executing init routine, the state of the once control
variable is reset so that a future call to pthread_once will call the routine
again.
If the process forks while one or more threads are executing pthread_once
initialization routines, the states of their respective once control variables will
appear to be reset in the child process so that if the child calls pthread_once,
the routines will be executed.
pthread_once always returns 0.

Functionint pthread setschedparam (pthread_t target_thread,
int policy, const struct sched_param *param)

pthread_setschedparam sets the scheduling parameters for the thread
target thread as indicated by policy and param. policy can be either SCHED_
OTHER (regular, non-real-time scheduling), SCHED_RR (real-time, round-
robin) or SCHED_FIFO (real-time, first-in first-out). param specifies the
scheduling priority for the two real-time policies (see Section 14.3.4 [Tradi-
tional Scheduling], page 349).
The real-time scheduling policies SCHED_RR and SCHED_FIFO are available
only to processes with superuser privileges.
On success, pthread_setschedparam returns 0. On error it returns one of
the following codes:

EINVAL policy is not one of SCHED_OTHER, SCHED_RR or SCHED_
FIFO, or the priority value specified by param is not valid for
the specified policy.

EPERM Real-time scheduling was requested, but the calling process does
not have sufficient privileges.

ESRCH The target thread is invalid or has already terminated.

EFAULT param points outside the process memory space.

Chapter 18: POSIX Threads 453

Functionint pthread getschedparam (pthread_t target_thread,
int *policy, struct sched_param *param)

pthread_getschedparam retrieves the scheduling policy and scheduling
parameters for the thread target thread and stores them in the locations pointed
to by policy and param, respectively.
pthread_getschedparam returns 0 on success, or one of the following
error codes on failure:

ESRCH The target thread is invalid or has already terminated.

EFAULT policy or param point outside the process memory space.

Functionint pthread setconcurrency (int level)
pthread_setconcurrency is unused in LinuxThreads due to the lack of
a mapping of user threads to kernel threads. It exists for source compatibility.
It does store the value level so that it can be returned by a subsequent call to
pthread_getconcurrency. However, it takes no other action.

Functionint pthread getconcurrency ()
pthread_getconcurrency is unused in LinuxThreads due to the lack of
a mapping of user threads to kernel threads. It exists for source compatibility.
However, it will return the value that was set by the last call to pthread_
setconcurrency.

454 The GNU C Library: System & Network Applications

Appendix A: C Language Facilities in the Library 455

Appendix A C Language Facilities in the
Library

Some of the facilities implemented by the C library really should be thought
of as parts of the C language itself. These facilities ought to be documented in
the C Language Manual, not in the library manual; but since we don’t have the
language manual yet, and documentation for these features has been written, we
are publishing it here.

A.1 Explicitly Checking Internal Consistency
When you’re writing a program, it’s often a good idea to put in checks at strategic

places for “impossible” errors or violations of basic assumptions. These kinds of
checks are helpful in debugging problems with the interfaces between different
parts of the program, for example.

The assert macro, defined in the header file ‘assert.h’, provides a con-
venient way to abort the program while printing a message about where in the
program the error was detected.

Once you think your program is debugged, you can disable the error checks
performed by the assert macro by recompiling with the macro NDEBUG defined.
This means you don’t actually have to change the program source code to disable
these checks.

But disabling these consistency checks is undesirable unless they make the pro-
gram significantly slower. All else being equal, more error checking is good no
matter who is running the program. A wise user would rather have a program
crash, visibly, than have it return nonsense without indicating anything might be
wrong.

Macrovoid assert (int expression)
Verify the programmer’s belief that expression is nonzero at this point in the
program.
If NDEBUG is not defined, assert tests the value of expression. If it is false
(0), assert aborts the program after printing a message of the form:1

‘file’:linenum: function: Assertion ‘expression’ failed.

on the standard error stream stderr.2 The file name and line number are taken
from the C preprocessor macros __FILE__ and __LINE__ and specify where
the call to assert was made. When using the GNU C Compiler, the name of
the function that calls assert is taken from the built-in variable __PRETTY_
FUNCTION__; with older compilers, the function name and following colon
are omitted.

1 See Loosemore et al., “Aborting a Program” (see chap. 1, n. 1).
2 Ibid., “Standard Streams”.

456 The GNU C Library: System & Network Applications

If the preprocessor macro NDEBUG is defined before ‘assert.h’ is included,
the assert macro is defined to do absolutely nothing.
Warning: Even the argument expression expression is not evaluated if NDEBUG
is in effect. So never use assert with arguments that involve side effects.
For example, assert (++i > 0); is a bad idea, because i will not be incre-
mented if NDEBUG is defined.

Sometimes the “impossible” condition you want to check for is an error return
from an operating system function. Then it is useful to display not only where the
program crashes, but also what error was returned. The assert_perror macro
makes this easy.

Macrovoid assert perror (int errnum)
This is similar to assert, but it verifies that errnum is 0.
If NDEBUG is not defined, assert_perror tests the value of errnum. If it is
nonzero, assert_perror aborts the program after printing a message of the
form:

‘file’:linenum: function: error text

on the standard error stream. The file name, line number, and function name are
as for assert. The error text is the result of strerror (errnum).3

Like assert, if NDEBUG is defined before ‘assert.h’ is included, the
assert_perror macro does absolutely nothing. It does not evaluate the
argument, so errnum should not have any side effects. It is best for errnum to
be just a simple variable reference; often it will be errno.
This macro is a GNU extension.

Usage Note: The assert facility is designed for detecting internal inconsis-
tency; it is not suitable for reporting invalid input or improper usage by the user of
the program.

The information in the diagnostic messages printed by the assert and
assert_perror macro is intended to help you, the programmer, track down
the cause of a bug, but is not really useful for telling a user of your program why
his input was invalid or why a command could not be carried out. What’s more,
your program should not abort when given invalid input, as assert would do—it
should exit with nonzero status4 after printing its error messages, or perhaps read
another command or move on to the next input file.5

A.2 Variadic Functions
ISO C defines a syntax for declaring a function to take a variable number or

type of arguments. (Such functions are referred to as varargs functions or variadic

3 Ibid., “Error Messages”.
4 Ibid., “Exit Status”.
5 For more information on printing error messages for problems that do not represent bugs in the

program see Loosemore et al., “Error Messages”.

Appendix A: C Language Facilities in the Library 457

functions.) However, the language itself provides no mechanism for such functions
to access their nonrequired arguments; instead, you use the variable arguments
macros defined in ‘stdarg.h’.

This section describes how to declare variadic functions, how to write them, and
how to call them properly.

Compatibility Note: Many older C dialects provide a similar, but incompati-
ble, mechanism for defining functions with variable numbers of arguments, using
‘varargs.h’.

A.2.1 Why Variadic Functions Are Used

Ordinary C functions take a fixed number of arguments. When you define a
function, you specify the data type for each argument. Every call to the function
should supply the expected number of arguments, with types that can be converted
to the specified ones. Thus, if the function ‘foo’ is declared with int foo (int,
char *); then you must call it with two arguments: a number (any kind will do)
and a string pointer.

But some functions perform operations that can meaningfully accept an unlim-
ited number of arguments.

In some cases, a function can handle any number of values by operating on all of
them as a block. For example, consider a function that allocates a one-dimensional
array with malloc to hold a specified set of values. This operation makes sense
for any number of values, as long as the length of the array corresponds to that num-
ber. Without facilities for variable arguments, you would have to define a separate
function for each possible array size.

The library function printf6 is an example of another class of function where
variable arguments are useful. This function prints its arguments (which can vary
in type as well as number) under the control of a format template string.

These are good reasons to define a variadic function that can handle as many
arguments as the caller chooses to pass.

Some functions such as open take a fixed set of arguments, but occasionally
ignore the last few. Strict adherence to ISO C requires these functions to be defined
as variadic; in practice, however, the GNU C Compiler and most other C compilers
let you define such a function to take a fixed set of arguments—the most it can ever
use—and then only declare the function as variadic (or not declare its arguments at
all).

A.2.2 How Variadic Functions Are Defined and Used

Defining and using a variadic function involves three steps:
• Define the function as variadic, using an ellipsis (‘...’) in the argument list,

and using special macros to access the variable arguments (see Section A.2.2.2
[Receiving the Argument Values], page 458).

6 Ibid., “Formatted Output.”

458 The GNU C Library: System & Network Applications

• Declare the function as variadic, using a prototype with an ellipsis (‘...’), in
all the files that call it (see Section A.2.2.1 [Syntax for Variable Arguments],
page 458).

• Call the function by writing the fixed arguments followed by the addi-
tional variable arguments (see Section A.2.2.4 [Calling Variadic Functions],
page 460).

A.2.2.1 Syntax for Variable Arguments

A function that accepts a variable number of arguments must be declared with
a prototype that says so. You write the fixed arguments as usual, and then tack
on ‘...’ to indicate the possibility of additional arguments. The syntax of ISO C
requires at least one fixed argument before the ‘...’. For example:

int

func (const char *a, int b, ...)

{

...

}

defines a function func that returns an int and takes two required arguments, a
const char * and an int. These are followed by any number of anonymous
arguments.

Portability Note: For some C compilers, the last required argument must not be
declared register in the function definition. Furthermore, this argument’s type
must be self-promoting—the default promotions must not change its type. This
rules out array and function types, as well as float, char (whether signed or not)
and short int (whether signed or not). This is actually an ISO C requirement.

A.2.2.2 Receiving the Argument Values

Ordinary fixed arguments have individual names, and you can use these names
to access their values. But optional arguments have no names—nothing but ‘...’.
How can you access them?

The only way to access them is sequentially, in the order they were written,
and you must use special macros from ‘stdarg.h’ in the following three-step
process:

1. You initialize an argument pointer variable of type va_list using va_
start. The argument pointer, when initialized, points to the first optional
argument.

2. You access the optional arguments by successive calls to va_arg. The first
call to va_arg gives you the first optional argument, the next call gives you
the second, and so on.
You can stop at any time if you wish to ignore any remaining optional argu-
ments. It is perfectly all right for a function to access fewer arguments than

Appendix A: C Language Facilities in the Library 459

were supplied in the call, but you will get garbage values if you try to access
too many arguments.

3. You indicate that you are finished with the argument pointer variable by calling
va_end.
In practice, with most C compilers, calling va_end does nothing. This is
always true in the GNU C Compiler. But you might as well call va_end, just
in case your program is someday compiled with a peculiar compiler.

See Section A.2.2.5 [Argument-Access Macros], page 460, for the full defini-
tions of va_start, va_arg and va_end.

Steps 1 and 3 must be performed in the function that accepts the optional argu-
ments. However, you can pass the va_list variable as an argument to another
function and perform all or part of step 2 there.

You can perform the entire sequence of three steps multiple times within a single
function invocation. If you want to ignore the optional arguments, you can do these
steps zero times.

You can have more than one argument pointer variable if you like. You can
initialize each variable with va_start when you wish, and then you can fetch
arguments with each argument pointer as you wish. Each argument pointer variable
will sequence through the same set of argument values, but at its own pace.

Portability Note: With some compilers, once you pass an argument pointer
value to a subroutine, you must not keep using the same argument pointer value
after that subroutine returns. For full portability, you should just pass it to va_
end. This is actually an ISO C requirement, but most ANSI C compilers work
happily regardless.

A.2.2.3 How Many Arguments Were Supplied

There is no general way for a function to determine the number and type of the
optional arguments it was called with. So whoever designs the function typically
designs a convention for the caller to specify the number and type of arguments. It
is up to you to define an appropriate calling convention for each variadic function
and write all calls accordingly.

One kind of calling convention is to pass the number of optional arguments as
one of the fixed arguments. This convention works provided all of the optional
arguments are of the same type.

A similar alternative is to have one of the required arguments be a bit mask, with
a bit for each possible purpose for which an optional argument might be supplied.
You would test the bits in a predefined sequence; if the bit is set, fetch the value of
the next argument, otherwise use a default value.

A required argument can be used as a pattern to specify both the number and
types of the optional arguments. The format-string argument to printf is one
example of this.7

7 Ibid., “Formatted Output Functions”.

460 The GNU C Library: System & Network Applications

Another possibility is to pass an “end-marker” value as the last optional argu-
ment. For example, for a function that manipulates an arbitrary number of pointer
arguments, a null pointer might indicate the end of the argument list. (This assumes
that a null pointer isn’t otherwise meaningful to the function.) The execl function
works in just this way (see Section 7.5 [Executing a File], page 212).

A.2.2.4 Calling Variadic Functions

You don’t have to do anything special to call a variadic function. Just put the ar-
guments (required arguments, followed by optional ones) inside parentheses, sepa-
rated by commas, as usual. But you must declare the function with a prototype and
know how the argument values are converted.

In principle, functions that are defined to be variadic must also be declared to be
variadic using a function prototype whenever you call them (see Section A.2.2.1
[Syntax for Variable Arguments], page 458). This is because some C compilers use
a different calling convention to pass the same set of argument values to a function
depending on whether that function takes variable arguments or fixed arguments.

In practice, the GNU C Compiler always passes a given set of argument types in
the same way regardless of whether they are optional or required. So, as long as the
argument types are self-promoting, you can safely omit declaring them. Usually
it is a good idea to declare the argument types for variadic functions, and indeed
for all functions. But there are a few functions that are convenient to not have to
declare as variadic—for example, open and printf.

Since the prototype doesn’t specify types for optional arguments, in a call to a
variadic function the default argument promotions are performed on the optional
argument values. This means the objects of type char or short int (whether
signed or not) are promoted to either int or unsigned int, as appropriate; and
that objects of type float are promoted to type double. So, if the caller passes
a char as an optional argument, it is promoted to an int, and the function can
access it with va_arg (ap, int).

Conversion of the required arguments is controlled by the function prototype in
the usual way—the argument expression is converted to the declared argument type
as if it were being assigned to a variable of that type.

A.2.2.5 Argument-Access Macros

Here are descriptions of the macros used to retrieve variable arguments. These
macros are defined in the header file ‘stdarg.h’.

Data Typeva list
The type va_list is used for argument pointer variables.

Macrovoid va start (va_list ap, last-required)
This macro initializes the argument pointer variable ap to point to the first of
the optional arguments of the current function; last-required must be the last
required argument to the function.

Appendix A: C Language Facilities in the Library 461

See Section A.2.3.1 [Old-Style Variadic Functions], page 462, for an alternate
definition of va_start found in the header file ‘varargs.h’.

Macrotype va arg (va_list ap, type)
The va_arg macro returns the value of the next optional argument, and modi-
fies the value of ap to point to the subsequent argument. Thus, successive uses
of va_arg return successive optional arguments.
The type of the value returned by va_arg is type as specified in the call.
type must be a self-promoting type (not char or short int or float) that
matches the type of the actual argument.

Macrovoid va end (va_list ap)
This ends the use of ap. After a va_end call, further va_arg calls with the
same ap may not work. You should invoke va_end before returning from the
function in which va_start was invoked with the same ap argument.
In the GNU C Library, va_end does nothing, and you need not ever use it
except for reasons of portability.

Sometimes you have to parse the list of parameters more than once or you want
to remember a certain position in the parameter list. To do this, you will have to
make a copy of the current value of the argument. But va_list is an opaque type
and you cannot necessarily assign the value of one variable of type va_list to
another variable of the same type.

Macrovoid va copy (va_list dest, va_list src)
The __va_copy macro allows copying of objects of type va_list even if
this is not an integral type. The argument pointer in dest is initialized to point
to the same argument as the pointer in src.
This macro is a GNU extension, but we hope it will also be available in the next
update of the ISO C standard.

If you want to use __va_copy, you should always be prepared for the possi-
bility that this macro will not be available. On architectures where a simple as-
signment is invalid, you hope __va_copy will be available, so you should always
write something like this:

{

va_list ap, save;

...

#ifdef __va_copy

__va_copy (save, ap);

#else

save = ap;

#endif

...

}

462 The GNU C Library: System & Network Applications

A.2.3 Example of a Variadic Function

Here is a complete sample function that accepts a variable number of arguments.
The first argument to the function is the count of remaining arguments, which are
added up and the result returned. While trivial, this function is sufficient to illustrate
how to use the variable arguments facility.

#include <stdarg.h>

#include <stdio.h>

int

add_em_up (int count,...)

{

va_list ap;

int i, sum;

va_start (ap, count); /* Initialize the argument list. */

sum = 0;

for (i = 0; i < count; i++)

sum += va_arg (ap, int); /* Get the next argument value. */

va_end (ap); /* Clean up. */

return sum;

}

int

main (void)

{

/* This call prints 16. */

printf ("%d\n", add_em_up (3, 5, 5, 6));

/* This call prints 55. */

printf ("%d\n", add_em_up (10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10));

return 0;

}

A.2.3.1 Old-Style Variadic Functions

Before ISO C, programmers used a slightly different facility for writing variadic
functions. The GNU C Compiler still supports it; currently, it is more portable than
the ISO C facility, since support for ISO C is still not universal. The header file that
defines the old-fashioned variadic facility is called ‘varargs.h’.

Appendix A: C Language Facilities in the Library 463

Using ‘varargs.h’ is almost the same as using ‘stdarg.h’. There is no
difference in how you call a variadic function (see Section A.2.2.4 [Calling Variadic
Functions], page 460). The only difference is in how you define them. First of all,
you must use old-style nonprototype syntax, like this:

tree

build (va_alist)

va_dcl

{

Secondly, you must give va_start only one argument, like this:
va_list p;

va_start (p);

These are the special macros used for defining old-style variadic functions:

Macrova alist
This macro stands for the argument name list required in a variadic function.

Macrova dcl
This macro declares the implicit argument or arguments for a variadic function.

Macrovoid va start (va_list ap)
This macro, as defined in ‘varargs.h’, initializes the argument pointer vari-
able ap to point to the first argument of the current function.

The other argument macros, va_arg and va_end, are the same in
‘varargs.h’ as in ‘stdarg.h’ (see Section A.2.2.5 [Argument-Access
Macros], page 460 for details).

It does not work to include both ‘varargs.h’ and ‘stdarg.h’ in the same
compilation—they define va_start in conflicting ways.

A.3 Null-Pointer Constant
The null-pointer constant is guaranteed not to point to any real object. You can

assign it to any pointer variable, since it has type void *. The preferred way to
write a null-pointer constant is with NULL.

Macrovoid * NULL
This is a null-pointer constant.

You can also use 0 or (void *)0 as a null-pointer constant, but using NULL is
cleaner because it makes the purpose of the constant more evident.

If you use the null-pointer constant as a function argument, then for complete
portability you should make sure that the function has a prototype declaration. Oth-
erwise, if the target machine has two different pointer representations, the compiler
won’t know which representation to use for that argument. You can avoid the prob-
lem by explicitly casting the constant to the proper pointer-type, but we recommend
instead adding a prototype for the function you are calling.

464 The GNU C Library: System & Network Applications

A.4 Important Data-Types
The result of subtracting two pointers in C is always an integer, but the precise

data-type varies from C compiler to C compiler. Likewise, the data type of the
result of sizeof also varies between compilers. ISO defines standard aliases for
these two types, so you can refer to them in a portable fashion. They are defined in
the header file ‘stddef.h’.

Data Typeptrdiff t
This is the signed integer type of the result of subtracting two pointers. For
example, with the declaration char *p1, *p2;, the expression p2 - p1 is of
type ptrdiff_t. This will probably be one of the standard signed integer
types (short int, int or long int), but might be a nonstandard type that
exists only for this purpose.

Data Typesize t
This is an unsigned integer type used to represent the sizes of objects. The
result of the sizeof operator is of this type, and functions such as malloc8

and memcpy9 accept arguments of this type to specify object sizes.
Usage Note: size_t is the preferred way to declare any arguments or vari-
ables that hold the size of an object.

In the GNU system, size_t is equivalent to either unsigned int or
unsigned long int. These types have identical properties on the GNU system
and, for most purposes, you can use them interchangeably. However, they are
distinct as data types, which makes a difference in certain contexts.

For example, when you specify the type of a function argument in a function
prototype, it makes a difference which one you use. If the system header files
declare malloc with an argument of type size_t and you declare malloc with
an argument of type unsigned int, you will get a compilation error if size_t
happens to be unsigned long int on your system. To avoid any possibility of
error, when a function argument or value is supposed to have type size_t, never
declare its type in any other way.

Compatibility Note: Implementations of C before the advent of ISO C generally
used unsigned int for representing object sizes and int for pointer subtraction
results. They did not necessarily define either size_t or ptrdiff_t. Unix
systems did define size_t, in ‘sys/types.h’, but the definition was usually a
signed type.

A.5 Data-Type Measurements
Most of the time, if you choose the proper C data-type for each object in your

program, you need not be concerned with just how it is represented or how many

8 Ibid., “Unconstrained Allocation”.
9 Ibid., “Copying and Concatenation”.

Appendix A: C Language Facilities in the Library 465

bits it uses. When you do need such information, the C language itself does not
provide a way to get it. The header files ‘limits.h’ and ‘float.h’ contain
macros that give you this information in full detail.

A.5.1 Computing the Width of an Integer Data Type

The most common reason that a program needs to know how many bits are in an
integer type is for using an array of long int as a bit vector. You can access the
bit at index n with:

vector[n / LONGBITS] & (1 << (n % LONGBITS))

provided you define LONGBITS as the number of bits in a long int.
There is no operator in the C language that can give you the number of bits in an

integer data type. But you can compute it from the macro CHAR_BIT, defined in
the header file ‘limits.h’.

CHAR_BIT
This is the number of bits in a char—8, on most systems. The value
has type int.
You can compute the number of bits in any data type type like this:

sizeof (type) * CHAR_BIT

A.5.2 Range of an Integer Type

Suppose you need to store an integer value that can range from 0 to 1,000,000.
Which is the smallest type you can use? There is no general rule; it depends on
the C compiler and target machine. You can use the ‘MIN’ and ‘MAX’ macros in
‘limits.h’ to determine which type will work.

Each signed integer type has a pair of macros that give the smallest and largest
values that it can hold. Each unsigned integer type has one such macro, for the
maximum value; the minimum value is, of course, 0.

The values of these macros are all integer constant expressions. The ‘MAX’ and
‘MIN’ macros for char and short int types have values of type int. The
‘MAX’ and ‘MIN’ macros for the other types have values of the same type described
by the macro—thus, ULONG_MAX has type unsigned long int.

SCHAR_MIN
This is the minimum value that can be represented by a
signed char.

SCHAR_MAX
UCHAR_MAX

These are the maximum values that can be represented by a
signed char and unsigned char, respectively.

CHAR_MIN
This is the minimum value that can be represented by a char. It’s
equal to SCHAR_MIN if char is signed, or 0 otherwise.

466 The GNU C Library: System & Network Applications

CHAR_MAX
This is the maximum value that can be represented by a char. It’s
equal to SCHAR_MAX if char is signed, or UCHAR_MAX otherwise.

SHRT_MIN
This is the minimum value that can be represented by a
signed short int. On most machines that the GNU C Library
runs on, short integers are 16-bit quantities.

SHRT_MAX
USHRT_MAX

These are the maximum values that can be represented by a
signed short int and unsigned short int, respectively.

INT_MIN

This is the minimum value that can be represented by a signed int.
On most machines that the GNU C system runs on, an int is a 32-bit
quantity.

INT_MAX
UINT_MAX

These are the maximum values that can be represented by, respec-
tively, the type signed int and the type unsigned int.

LONG_MIN
This is the minimum value that can be represented by a
signed long int. On most machines that the GNU C system runs
on, long integers are 32-bit quantities, the same size as int.

LONG_MAX
ULONG_MAX

These are the maximum values that can be represented by a
signed long int and unsigned long int, respectively.

LONG_LONG_MIN
This is the minimum value that can be represented by a
signed long long int. On most machines that the GNU C
system runs on, long long integers are 64-bit quantities.

LONG_LONG_MAX
ULONG_LONG_MAX

These are the maximum values that can be represented by a signed
long long int and unsigned long long int, respectively.

WCHAR_MAX
This is the maximum value that can be represented by a wchar_t.10

10 Ibid., “Introduction to Extended Characters”.

Appendix A: C Language Facilities in the Library 467

The header file ‘limits.h’ also defines some additional constants that param-
eterize various operating-system and file-system limits. These constants are de-
scribed in Chapter 12 [System-Configuration Parameters], page 303.

A.5.3 Floating-Type Macros

The specific representation of floating-point numbers varies from machine to
machine. Because floating-point numbers are represented internally as approxi-
mate quantities, algorithms for manipulating floating-point data often need to take
account of the precise details of the machine’s floating-point representation.

Some of the functions in the C library itself need this information; for example,
the algorithms for printing and reading floating-point numbers11 and for calculating
trigonometric and irrational functions12 use it to avoid round-off error and loss of
accuracy. User programs that implement numerical analysis techniques also often
need this information in order to minimize or compute error bounds.

The header file ‘float.h’ describes the format used by your machine.

A.5.3.1 Floating-Point Representation Concepts

This section introduces the terminology for describing floating-point representa-
tions.

You are probably already familiar with most of these concepts in terms of scien-
tific or exponential notation for floating-point numbers. For example, the number
123456.0 could be expressed in exponential notation as 1.23456e+05, a short-
hand notation indicating that the mantissa 1.23456 is multiplied by the base 10
raised to power 5.

More formally, the internal representation of a floating-point number can be char-
acterized in terms of the following parameters:

• The sign is either -1 or 1.
• The base or radix for exponentiation is an integer greater than 1. This is a

constant for a particular representation.
• The exponent to which the base is raised: the upper and lower bounds of the

exponent value are constants for a particular representation.
Sometimes, in the actual bits representing the floating-point number, the ex-
ponent is biased by adding a constant to it, to make it always be represented
as an unsigned quantity. This is only important if you have some reason to
pick apart the bit fields making up the floating-point number by hand, which
is something for which the GNU library provides no support. So this is ignored
in the discussion that follows.

• The mantissa or significand is an unsigned integer that is a part of each
floating-point number.

11 Ibid., “Input/Output on Streams”.
12 Ibid., “Mathematics”.

468 The GNU C Library: System & Network Applications

• The precision of the mantissa: If the base of the representation is b, then the
precision is the number of base-b digits in the mantissa. This is a constant for
a particular representation.
Many floating-point representations have an implicit hidden bit in the man-
tissa. This is a bit that is present virtually in the mantissa, but not stored in
memory because its value is always 1 in a normalized number. The precision
figure (see above) includes any hidden bits.
Again, the GNU library provides no facilities for dealing with such low-level
aspects of the representation.

The mantissa of a floating-point number represents an implicit fraction whose
denominator is the base raised to the power of the precision. Since the largest
representable mantissa is 1 less than this denominator, the value of the fraction is
always strictly less than 1. The mathematical value of a floating-point number is
then the product of this fraction, the sign, and the base raised to the exponent.

We say that the floating-point number is normalized if the fraction is at least
1/b , where b is the base. In other words, the mantissa would be too large to fit
if it were multiplied by the base. Nonnormalized numbers are sometimes called
denormal ; they contain less precision than the representation normally can hold.

If the number is not normalized, then you can subtract 1 from the exponent while
multiplying the mantissa by the base, and get another floating-point number with
the same value. Normalization consists of doing this repeatedly until the number
is normalized. Two distinct normalized floating-point numbers cannot be equal in
value.

There is an exception to this rule: if the mantissa is 0, it is considered normalized.
Another exception happens on certain machines where the exponent is as small as
the representation can hold. Then it is impossible to subtract 1 from the exponent,
so a number may be normalized even if its fraction is less than 1/b .

A.5.3.2 Floating-Point Parameters

These macro definitions can be accessed by including the header file ‘float.h’
in your program.

Macro names starting with ‘FLT_’ refer to the float type, while names begin-
ning with ‘DBL_’ refer to the double type, and names beginning with ‘LDBL_’
refer to the long double type. (If GCC does not support long double as a
distinct data-type on a target machine, then the values for the ‘LDBL_’ constants
are equal to the corresponding constants for the double type.)

Of these macros, only FLT_RADIX is guaranteed to be a constant expression.
The other macros listed here cannot be reliably used in places that require constant
expressions, such as ‘#if’ preprocessing directives or in the dimensions of static
arrays.

Although the ISO C standard specifies minimum and maximum values for most
of these parameters, the GNU C implementation uses whatever values describe the
floating-point representation of the target machine. So in principle, GNU C actually

Appendix A: C Language Facilities in the Library 469

satisfies the ISO C requirements only if the target machine is suitable. In practice,
all the machines currently supported are suitable.

FLT_ROUNDS
This value characterizes the rounding mode for floating-point addi-
tion. The following values indicate standard rounding-modes:
-1 The mode is indeterminable.

0 Rounding is toward 0.

1 Rounding is to the nearest number.

2 Rounding is toward positive infinity.

3 Rounding is toward negative infinity.

Any other value represents a machine-dependent nonstandard
rounding-mode.
On most machines, the value is 1, in accordance with the IEEE stan-
dard for floating-point.
Here is a table showing how certain values round for each possi-
ble value of FLT_ROUNDS, if the other aspects of the representation
match the IEEE single-precision standard.

0 1 2 3

1.00000003 1.0 1.0 1.00000012 1.0

1.00000007 1.0 1.00000012 1.00000012 1.0

-1.00000003 -1.0 -1.0 -1.0 -1.00000012

-1.00000007 -1.0 -1.00000012 -1.0 -1.00000012

FLT_RADIX
This is the value of the base, or radix, of the exponent representation.
This is guaranteed to be a constant expression, unlike the other macros
described in this section. The value is 2 on all machines we know of
except the IBM 360 and derivatives.

FLT_MANT_DIG
This is the number of base-FLT_RADIX digits in the floating-point
mantissa for the float data type. The following expression yields
1.0 (even though mathematically it should not) due to the limited
number of mantissa digits:

float radix = FLT_RADIX;

1.0f + 1.0f / radix / radix / ... / radix

where radix appears FLT_MANT_DIG times.

DBL_MANT_DIG
LDBL_MANT_DIG

This is the number of base-FLT_RADIX digits in the floating-point
mantissa for the data types double and long double, respectively.

470 The GNU C Library: System & Network Applications

FLT_DIG

This is the number of decimal digits of precision for the float data
type. Technically, if p and b are the precision and base (respectively)
for the representation, then the decimal precision q is the maximum
number of decimal digits such that any floating-point number with q
base-10 digits can be rounded to a floating-point number with p base
b digits and back again, without change to the q decimal digits.
The value of this macro is supposed to be at least 6, to satisfy ISO C.

DBL_DIG
LDBL_DIG

These are similar to FLT_DIG, but for the data types double and
long double, respectively. The values of these macros are sup-
posed to be at least 10.

FLT_MIN_EXP
This is the smallest possible exponent value for type float. More
precisely, is the minimum negative integer such that the value FLT_
RADIX raised to this power minus 1 can be represented as a normal-
ized floating-point number of type float.

DBL_MIN_EXP
LDBL_MIN_EXP

These are similar to FLT_MIN_EXP, but for the data types double
and long double, respectively.

FLT_MIN_10_EXP
This is the minimum negative integer such that 10 raised to this power
minus 1 can be represented as a normalized floating-point number of
type float. This is supposed to be -37 or even less.

DBL_MIN_10_EXP
LDBL_MIN_10_EXP

These are similar to FLT_MIN_10_EXP, but for the data types
double and long double, respectively.

FLT_MAX_EXP
This is the largest possible exponent value for type float. More
precisely, this is the maximum positive integer such that value FLT_
RADIX raised to this power minus 1 can be represented as a floating-
point number of type float.

DBL_MAX_EXP
LDBL_MAX_EXP

These are similar to FLT_MAX_EXP, but for the data types double
and long double, respectively.

Appendix A: C Language Facilities in the Library 471

FLT_MAX_10_EXP
This is the maximum positive integer such that 10 raised to this power
minus 1 can be represented as a normalized floating-point number of
type float. This is supposed to be at least 37.

DBL_MAX_10_EXP
LDBL_MAX_10_EXP

These are similar to FLT_MAX_10_EXP, but for the data types
double and long double, respectively.

FLT_MAX

The value of this macro is the maximum number representable in type
float. It is supposed to be at least 1E+37. The value has type
float.

The smallest representable number is - FLT_MAX.

DBL_MAX
LDBL_MAX

These are similar to FLT_MAX, but for the data types double and
long double, respectively. The type of the macro’s value is the
same as the type it describes.

FLT_MIN

The value of this macro is the minimum normalized positive floating-
point number that is representable in type float. It is supposed to
be no more than 1E-37.

DBL_MIN
LDBL_MIN

These are similar to FLT_MIN, but for the data types double and
long double, respectively. The type of the macro’s value is the
same as the type it describes.

FLT_EPSILON
This is the minimum positive floating-point number of type float
such that 1.0 + FLT_EPSILON != 1.0 is true. It’s supposed to be
no greater than 1E-5.

DBL_EPSILON
LDBL_EPSILON

These are similar to FLT_EPSILON, but for the data types double
and long double, respectively. The type of the macro’s value is
the same as the type it describes. The values are not supposed to be
greater than 1E-9.

472 The GNU C Library: System & Network Applications

A.5.3.3 IEEE Floating-Point

Here is an example showing how the floating-type measurements come out for
the most common floating-point representation, specified by the IEEE Standard for
Binary Floating-Point Arithmetic (ANSI/IEEE Std 754-1985). Nearly all computers
designed since the 1980s use this format.

The IEEE single-precision float representation uses a base of 2. There is a sign
bit, a mantissa with 23 bits plus 1 hidden bit (so the total precision is 24 base-2
digits), and an 8-bit exponent that can represent values in the range -125 to 128,
inclusive.

So, for an implementation that uses this representation for the float data type,
appropriate values for the corresponding parameters are

FLT_RADIX 2

FLT_MANT_DIG 24

FLT_DIG 6

FLT_MIN_EXP -125

FLT_MIN_10_EXP -37

FLT_MAX_EXP 128

FLT_MAX_10_EXP +38

FLT_MIN 1.17549435E-38F

FLT_MAX 3.40282347E+38F

FLT_EPSILON 1.19209290E-07F

Here are the values for the double data type:
DBL_MANT_DIG 53

DBL_DIG 15

DBL_MIN_EXP -1021

DBL_MIN_10_EXP -307

DBL_MAX_EXP 1024

DBL_MAX_10_EXP 308

DBL_MAX 1.7976931348623157E+308

DBL_MIN 2.2250738585072014E-308

DBL_EPSILON 2.2204460492503131E-016

A.5.4 Structure Field Offset Measurement

You can use offsetof to measure the location within a structure type of a
particular structure member.

Macrosize_t offsetof (type, member)
This expands to a integer constant expression that is the offset of the structure
member named member in a the structure type type. For example, offsetof
(struct s, elem) is the offset, in bytes, of the member elem in a struct
s.

Appendix A: C Language Facilities in the Library 473

This macro won’t work if member is a bit field; you get an error from the C
compiler in that case.

474 The GNU C Library: System & Network Applications

Appendix B: Summary of Library Facilities 475

Appendix B Summary of Library Facilities
This appendix is a complete list of the facilities declared within the header files

supplied with the GNU C Library. Each entry also lists the standard or other source
from which each facility is derived, and tells you where in the manual you can find
more information about how to use it.
int accept (int socket, struct sockaddr *addr, socklen_t *length ptr)

‘sys/socket.h’ (BSD): Section 5.9.3 [Accepting Connections], page 155.

int access (const char *filename, int how)
‘unistd.h’ (POSIX.1): Section 3.9.8 [Testing Permission to Access a File],
page 106.

ACCOUNTING
‘utmp.h’ (SVID): Section 10.12.1 [Manipulating the User-Accounting Database],
page 265.

int addmntent (FILE *stream, const struct mntent *mnt)
‘mntent.h’ (BSD): Section 11.3.1.2 [The ‘mtab’ File], page 292.

AF_FILE

‘sys/socket.h’ (GNU): Section 5.3.1 [Address Formats], page 128.

AF_INET

‘sys/socket.h’ (BSD): Section 5.3.1 [Address Formats], page 128.

AF_INET6

‘sys/socket.h’ (IPv6 Basic API): Section 5.3.1 [Address Formats], page 128.

AF_LOCAL

‘sys/socket.h’ (POSIX): Section 5.3.1 [Address Formats], page 128.

AF_UNIX

‘sys/socket.h’ (BSD, Unix98): Section 5.3.1 [Address Formats], page 128.

AF_UNSPEC

‘sys/socket.h’ (BSD): Section 5.3.1 [Address Formats], page 128.

int aio_cancel (int fildes, struct aiocb *aiocbp)
‘aio.h’ (POSIX.1b): Section 2.10.4 [Cancellation of AIO Operations], page 52.

int aio_cancel64 (int fildes, struct aiocb64 *aiocbp)
‘aio.h’ (Unix98): Section 2.10.4 [Cancellation of AIO Operations], page 52.

int aio_error (const struct aiocb *aiocbp)
‘aio.h’ (POSIX.1b): Section 2.10.2 [Getting the Status of AIO Operations],
page 49.

int aio_error64 (const struct aiocb64 *aiocbp)
‘aio.h’ (Unix98): Section 2.10.2 [Getting the Status of AIO Operations], page 49.

int aio_fsync (int op, struct aiocb *aiocbp)
‘aio.h’ (POSIX.1b): Section 2.10.3 [Getting into a Consistent State], page 50.

int aio_fsync64 (int op, struct aiocb64 *aiocbp)
‘aio.h’ (Unix98): Section 2.10.3 [Getting into a Consistent State], page 50.

476 The GNU C Library: System & Network Applications

void aio_init (const struct aioinit *init)
‘aio.h’ (GNU): Section 2.10.5 [How to Optimize the AIO Implementation],
page 53.

int aio_read (struct aiocb *aiocbp)
‘aio.h’ (POSIX.1b): Section 2.10.1 [Asynchronous Read and Write Operations],
page 45.

int aio_read64 (struct aiocb *aiocbp)
‘aio.h’ (Unix98): Section 2.10.1 [Asynchronous Read and Write Operations],
page 45.

ssize_t aio_return (const struct aiocb *aiocbp)
‘aio.h’ (POSIX.1b): Section 2.10.2 [Getting the Status of AIO Operations],
page 49.

int aio_return64 (const struct aiocb64 *aiocbp)
‘aio.h’ (Unix98): Section 2.10.2 [Getting the Status of AIO Operations], page 49.

int aio_suspend (const struct aiocb *const list[], int nent, const struct
timespec *timeout)

‘aio.h’ (POSIX.1b): Section 2.10.3 [Getting into a Consistent State], page 50.

int aio_suspend64 (const struct aiocb64 *const list[], int nent, const
struct timespec *timeout)

‘aio.h’ (Unix98): Section 2.10.3 [Getting into a Consistent State], page 50.

int aio_write (struct aiocb *aiocbp)
‘aio.h’ (POSIX.1b): Section 2.10.1 [Asynchronous Read and Write Operations],
page 45.

int aio_write64 (struct aiocb *aiocbp)
‘aio.h’ (Unix98): Section 2.10.1 [Asynchronous Read and Write Operations],
page 45.

int alphasort (const void *a, const void *b)
‘dirent.h’ (BSD/SVID): Section 3.2.6 [Scanning the Content of a Directory],
page 79.

int alphasort64 (const void *a, const void *b)
‘dirent.h’ (GNU): Section 3.2.6 [Scanning the Content of a Directory], page 79.

tcflag_t ALTWERASE
‘termios.h’ (BSD): Section 6.4.7 [Local Modes], page 189.

int ARG_MAX
‘limits.h’ (POSIX.1): Section 12.1 [General Capacity-Limits], page 303.

void assert (int expression)
‘assert.h’ (ISO): Section A.1 [Explicitly Checking Internal Consistency],
page 455.

void assert_perror (int errnum)
‘assert.h’ (GNU): Section A.1 [Explicitly Checking Internal Consistency],
page 455.

B0

‘termios.h’ (POSIX.1): Section 6.4.8 [Line Speed], page 192.

Appendix B: Summary of Library Facilities 477

B110

‘termios.h’ (POSIX.1): Section 6.4.8 [Line Speed], page 192.

B115200

‘termios.h’ (GNU): Section 6.4.8 [Line Speed], page 192.

B1200

‘termios.h’ (POSIX.1): Section 6.4.8 [Line Speed], page 192.

B134

‘termios.h’ (POSIX.1): Section 6.4.8 [Line Speed], page 192.

B150

‘termios.h’ (POSIX.1): Section 6.4.8 [Line Speed], page 192.

B1800

‘termios.h’ (POSIX.1): Section 6.4.8 [Line Speed], page 192.

B19200

‘termios.h’ (POSIX.1): Section 6.4.8 [Line Speed], page 192.

B200

‘termios.h’ (POSIX.1): Section 6.4.8 [Line Speed], page 192.

B230400

‘termios.h’ (GNU): Section 6.4.8 [Line Speed], page 192.

B2400

‘termios.h’ (POSIX.1): Section 6.4.8 [Line Speed], page 192.

B300

‘termios.h’ (POSIX.1): Section 6.4.8 [Line Speed], page 192.

B38400

‘termios.h’ (POSIX.1): Section 6.4.8 [Line Speed], page 192.

B460800

‘termios.h’ (GNU): Section 6.4.8 [Line Speed], page 192.

B4800

‘termios.h’ (POSIX.1): Section 6.4.8 [Line Speed], page 192.

B50

‘termios.h’ (POSIX.1): Section 6.4.8 [Line Speed], page 192.

B57600

‘termios.h’ (GNU): Section 6.4.8 [Line Speed], page 192.

B600

‘termios.h’ (POSIX.1): Section 6.4.8 [Line Speed], page 192.

B75

‘termios.h’ (POSIX.1): Section 6.4.8 [Line Speed], page 192.

B9600

‘termios.h’ (POSIX.1): Section 6.4.8 [Line Speed], page 192.

478 The GNU C Library: System & Network Applications

int BC_BASE_MAX
‘limits.h’ (POSIX.2): Section 12.10 [Utility Program Capacity-Limits],
page 323.

int BC_DIM_MAX
‘limits.h’ (POSIX.2): Section 12.10 [Utility Program Capacity-Limits],
page 323.

int BC_SCALE_MAX
‘limits.h’ (POSIX.2): Section 12.10 [Utility Program Capacity-Limits],
page 323.

int BC_STRING_MAX
‘limits.h’ (POSIX.2): Section 12.10 [Utility Program Capacity-Limits],
page 323.

int bind (int socket, struct sockaddr *addr, socklen_t length)
‘sys/socket.h’ (BSD): Section 5.3.2 [Setting the Address of a Socket], page 129.

blkcnt64_t
‘sys/types.h’ (Unix98): Section 3.9.1 [The Meaning of the File Attributes],
page 93.

blkcnt_t

‘sys/types.h’ (Unix98): Section 3.9.1 [The Meaning of the File Attributes],
page 93.

BOOT_TIME

‘utmp.h’ (SVID): Section 10.12.1 [Manipulating the User-Accounting Database],
page 265.

BOOT_TIME

‘utmpx.h’ (XPG4.2): Section 10.12.2 [XPG User-Accounting Database Functions],
page 270.

tcflag_t BRKINT
‘termios.h’ (POSIX.1): Section 6.4.4 [Input Modes], page 185.

_BSD_SOURCE
(GNU): Section 1.3.4 [Feature-Test Macros], page 8.

char * canonicalize_file_name (const char *name)
‘stdlib.h’ (GNU): Section 3.5 [Symbolic Links], page 87.

int cbc_crypt (char *key, char *blocks, unsigned len, unsigned mode, char
*ivec)

‘rpc/des_crypt.h’ (SUNRPC): Section 13.4 [DES Encryption], page 331.

cc_t

‘termios.h’ (POSIX.1): Section 6.4.1 [Terminal Mode Data Types], page 181.

tcflag_t CCTS_OFLOW
‘termios.h’ (BSD): Section 6.4.6 [Control Modes], page 187.

speed_t cfgetispeed (const struct termios *termios-p)
‘termios.h’ (POSIX.1): Section 6.4.8 [Line Speed], page 192.

speed_t cfgetospeed (const struct termios *termios-p)
‘termios.h’ (POSIX.1): Section 6.4.8 [Line Speed], page 192.

Appendix B: Summary of Library Facilities 479

void cfmakeraw (struct termios *termios-p)
‘termios.h’ (BSD): Section 6.4.10 [Noncanonical Input], page 198.

int cfsetispeed (struct termios *termios-p, speed_t speed)
‘termios.h’ (POSIX.1): Section 6.4.8 [Line Speed], page 192.

int cfsetospeed (struct termios *termios-p, speed_t speed)
‘termios.h’ (POSIX.1): Section 6.4.8 [Line Speed], page 192.

int cfsetspeed (struct termios *termios-p, speed_t speed)
‘termios.h’ (BSD): Section 6.4.8 [Line Speed], page 192.

CHAR_BIT

‘limits.h’ (ISO): Section A.5.1 [Computing the Width of an Integer Data Type],
page 465.

CHAR_MAX

‘limits.h’ (ISO): Section A.5.2 [Range of an Integer Type], page 465.

CHAR_MIN

‘limits.h’ (ISO): Section A.5.2 [Range of an Integer Type], page 465.

int chdir (const char *filename)
‘unistd.h’ (POSIX.1): Section 3.1 [Working Directory], page 71.

int CHILD_MAX
‘limits.h’ (POSIX.1): Section 12.1 [General Capacity-Limits], page 303.

int chmod (const char *filename, mode_t mode)
‘sys/stat.h’ (POSIX.1): Section 3.9.7 [Assigning File Permissions], page 104.

int chown (const char *filename, uid_t owner, gid_t group)
‘unistd.h’ (POSIX.1): Section 3.9.4 [File Owner], page 101.

tcflag_t CIGNORE
‘termios.h’ (BSD): Section 6.4.6 [Control Modes], page 187.

tcflag_t CLOCAL
‘termios.h’ (POSIX.1): Section 6.4.6 [Control Modes], page 187.

int close (int filedes)
‘unistd.h’ (POSIX.1): Section 2.1 [Opening and Closing Files], page 17.

int closedir (DIR *dirstream)
‘dirent.h’ (POSIX.1): Section 3.2.3 [Reading and Closing a Directory Stream],
page 76.

void closelog (void)
‘syslog.h’ (BSD): Section 15.2.3 [closelog], page 365.

int COLL_WEIGHTS_MAX
‘limits.h’ (POSIX.2): Section 12.10 [Utility Program Capacity-Limits],
page 323.

size_t confstr (int parameter, char *buf, size_t len)
‘unistd.h’ (POSIX.2): Section 12.12 [String-Valued Parameters], page 324.

int connect (int socket, struct sockaddr *addr, socklen_t length)
‘sys/socket.h’ (BSD): Section 5.9.1 [Making a Connection], page 153.

480 The GNU C Library: System & Network Applications

void CPU_CLR (int cpu, cpu_set_t *set)
‘sched.h’ (GNU): Section 14.3.5 [Limiting Execution to Certain CPUs], page 352.

int CPU_ISSET (int cpu, const cpu_set_t *set)
‘sched.h’ (GNU): Section 14.3.5 [Limiting Execution to Certain CPUs], page 352.

void CPU_SET (int cpu, cpu_set_t *set)
‘sched.h’ (GNU): Section 14.3.5 [Limiting Execution to Certain CPUs], page 352.

int CPU_SETSIZE
‘sched.h’ (GNU): Section 14.3.5 [Limiting Execution to Certain CPUs], page 352.

cpu_set_t

‘sched.h’ (GNU): Section 14.3.5 [Limiting Execution to Certain CPUs], page 352.

void CPU_ZERO (cpu_set_t *set)
‘sched.h’ (GNU): Section 14.3.5 [Limiting Execution to Certain CPUs], page 352.

tcflag_t CREAD
‘termios.h’ (POSIX.1): Section 6.4.6 [Control Modes], page 187.

int creat (const char *filename, mode_t mode)
‘fcntl.h’ (POSIX.1): Section 2.1 [Opening and Closing Files], page 17.

int creat64 (const char *filename, mode_t mode)
‘fcntl.h’ (Unix98): Section 2.1 [Opening and Closing Files], page 17.

tcflag_t CRTS_IFLOW
‘termios.h’ (BSD): Section 6.4.6 [Control Modes], page 187.

char * crypt (const char *key, const char *salt)
‘crypt.h’ (BSD, SVID): Section 13.3 [Encrypting Passwords], page 329.

char * crypt_r (const char *key, const char *salt, struct crypt_data * data)
‘crypt.h’ (GNU): Section 13.3 [Encrypting Passwords], page 329.

tcflag_t CS5
‘termios.h’ (POSIX.1): Section 6.4.6 [Control Modes], page 187.

tcflag_t CS6
‘termios.h’ (POSIX.1): Section 6.4.6 [Control Modes], page 187.

tcflag_t CS7
‘termios.h’ (POSIX.1): Section 6.4.6 [Control Modes], page 187.

tcflag_t CS8
‘termios.h’ (POSIX.1): Section 6.4.6 [Control Modes], page 187.

tcflag_t CSIZE
‘termios.h’ (POSIX.1): Section 6.4.6 [Control Modes], page 187.

_CS_LFS64_CFLAGS
‘unistd.h’ (Unix98): Section 12.12 [String-Valued Parameters], page 324.

_CS_LFS64_LDFLAGS
‘unistd.h’ (Unix98): Section 12.12 [String-Valued Parameters], page 324.

_CS_LFS64_LIBS
‘unistd.h’ (Unix98): Section 12.12 [String-Valued Parameters], page 324.

_CS_LFS64_LINTFLAGS
‘unistd.h’ (Unix98): Section 12.12 [String-Valued Parameters], page 324.

Appendix B: Summary of Library Facilities 481

_CS_LFS_CFLAGS
‘unistd.h’ (Unix98): Section 12.12 [String-Valued Parameters], page 324.

_CS_LFS_LDFLAGS
‘unistd.h’ (Unix98): Section 12.12 [String-Valued Parameters], page 324.

_CS_LFS_LIBS
‘unistd.h’ (Unix98): Section 12.12 [String-Valued Parameters], page 324.

_CS_LFS_LINTFLAGS
‘unistd.h’ (Unix98): Section 12.12 [String-Valued Parameters], page 324.

_CS_PATH

‘unistd.h’ (POSIX.2): Section 12.12 [String-Valued Parameters], page 324.

tcflag_t CSTOPB
‘termios.h’ (POSIX.1): Section 6.4.6 [Control Modes], page 187.

char * ctermid (char *string)
‘stdio.h’ (POSIX.1): Section 8.7.1 [Identifying the Controlling Terminal],
page 238.

char * cuserid (char *string)
‘stdio.h’ (POSIX.1): Section 10.11 [Identifying Who Is Logged In], page 264.

DBL_DIG

‘float.h’ (ISO): Section A.5.3.2 [Floating-Point Parameters], page 468.

DBL_EPSILON
‘float.h’ (ISO): Section A.5.3.2 [Floating-Point Parameters], page 468.

DBL_MANT_DIG
‘float.h’ (ISO): Section A.5.3.2 [Floating-Point Parameters], page 468.

DBL_MAX

‘float.h’ (ISO): Section A.5.3.2 [Floating-Point Parameters], page 468.

DBL_MAX_10_EXP
‘float.h’ (ISO): Section A.5.3.2 [Floating-Point Parameters], page 468.

DBL_MAX_EXP
‘float.h’ (ISO): Section A.5.3.2 [Floating-Point Parameters], page 468.

DBL_MIN

‘float.h’ (ISO): Section A.5.3.2 [Floating-Point Parameters], page 468.

DBL_MIN_10_EXP
‘float.h’ (ISO): Section A.5.3.2 [Floating-Point Parameters], page 468.

DBL_MIN_EXP
‘float.h’ (ISO): Section A.5.3.2 [Floating-Point Parameters], page 468.

DEAD_PROCESS
‘utmp.h’ (SVID): Section 10.12.1 [Manipulating the User-Accounting Database],
page 265.

DEAD_PROCESS
‘utmpx.h’ (XPG4.2): Section 10.12.2 [XPG User-Accounting Database Functions],
page 270.

482 The GNU C Library: System & Network Applications

DES_DECRYPT
‘rpc/des_crypt.h’ (SUNRPC): Section 13.4 [DES Encryption], page 331.

DES_ENCRYPT
‘rpc/des_crypt.h’ (SUNRPC): Section 13.4 [DES Encryption], page 331.

DESERR_BADPARAM
‘rpc/des_crypt.h’ (SUNRPC): Section 13.4 [DES Encryption], page 331.

DESERR_HWERROR
‘rpc/des_crypt.h’ (SUNRPC): Section 13.4 [DES Encryption], page 331.

DESERR_NOHWDEVICE
‘rpc/des_crypt.h’ (SUNRPC): Section 13.4 [DES Encryption], page 331.

DESERR_NONE
‘rpc/des_crypt.h’ (SUNRPC): Section 13.4 [DES Encryption], page 331.

int DES_FAILED (int err)
‘rpc/des_crypt.h’ (SUNRPC): Section 13.4 [DES Encryption], page 331.

DES_HW

‘rpc/des_crypt.h’ (SUNRPC): Section 13.4 [DES Encryption], page 331.

void des_setparity (char *key)
‘rpc/des_crypt.h’ (SUNRPC): Section 13.4 [DES Encryption], page 331.

DES_SW

‘rpc/des_crypt.h’ (SUNRPC): Section 13.4 [DES Encryption], page 331.

dev_t

‘sys/types.h’ (POSIX.1): Section 3.9.1 [The Meaning of the File Attributes],
page 93.

DIR

‘dirent.h’ (POSIX.1): Section 3.2.2 [Opening a Directory Stream], page 75.

int dirfd (DIR *dirstream)
‘dirent.h’ (GNU): Section 3.2.2 [Opening a Directory Stream], page 75.

mode_t DTTOIF (int dtype)
‘dirent.h’ (BSD): Section 3.2.1 [Format of a Directory Entry], page 73.

int dup (int old)
‘unistd.h’ (POSIX.1): Section 2.12 [Duplicating Descriptors], page 55.

int dup2 (int old, int new)
‘unistd.h’ (POSIX.1): Section 2.12 [Duplicating Descriptors], page 55.

int ecb_crypt (char *key, char *blocks, unsigned len, unsigned mode)
‘rpc/des_crypt.h’ (SUNRPC): Section 13.4 [DES Encryption], page 331.

tcflag_t ECHO
‘termios.h’ (POSIX.1): Section 6.4.7 [Local Modes], page 189.

tcflag_t ECHOCTL
‘termios.h’ (BSD): Section 6.4.7 [Local Modes], page 189.

tcflag_t ECHOE
‘termios.h’ (POSIX.1): Section 6.4.7 [Local Modes], page 189.

Appendix B: Summary of Library Facilities 483

tcflag_t ECHOK
‘termios.h’ (POSIX.1): Section 6.4.7 [Local Modes], page 189.

tcflag_t ECHOKE
‘termios.h’ (BSD): Section 6.4.7 [Local Modes], page 189.

tcflag_t ECHONL
‘termios.h’ (POSIX.1): Section 6.4.7 [Local Modes], page 189.

tcflag_t ECHOPRT
‘termios.h’ (BSD): Section 6.4.7 [Local Modes], page 189.

EMPTY

‘utmp.h’ (SVID): Section 10.12.1 [Manipulating the User-Accounting Database],
page 265.

EMPTY

‘utmpx.h’ (XPG4.2): Section 10.12.2 [XPG User-Accounting Database Functions],
page 270.

void encrypt (char *block, int edflag)
‘crypt.h’ (BSD, SVID): Section 13.4 [DES Encryption], page 331.

void encrypt_r (char *block, int edflag, struct crypt_data * data)
‘crypt.h’ (GNU): Section 13.4 [DES Encryption], page 331.

void endfsent (void)
‘fstab.h’ (BSD): Section 11.3.1.1 [The ‘fstab’ File], page 290.

void endgrent (void)
‘grp.h’ (SVID, BSD): Section 10.14.3 [Scanning the List of All Groups], page 278.

void endhostent (void)
‘netdb.h’ (BSD): Section 5.6.2.4 [Host Names], page 141.

int endmntent (FILE *stream)
‘mntent.h’ (BSD): Section 11.3.1.2 [The ‘mtab’ File], page 292.

void endnetent (void)
‘netdb.h’ (BSD): Section 5.13 [Networks Database], page 176.

void endnetgrent (void)
‘netdb.h’ (BSD): Section 10.16.2 [Looking Up One Netgroup], page 282.

void endprotoent (void)
‘netdb.h’ (BSD): Section 5.6.6 [Protocols Database], page 147.

void endpwent (void)
‘pwd.h’ (SVID, BSD): Section 10.13.3 [Scanning the List of All Users], page 275.

void endservent (void)
‘netdb.h’ (BSD): Section 5.6.4 [The Services Database], page 145.

void endutent (void)
‘utmp.h’ (SVID): Section 10.12.1 [Manipulating the User-Accounting Database],
page 265.

void endutxent (void)
‘utmpx.h’ (XPG4.2): Section 10.12.2 [XPG User-Accounting Database Functions],
page 270.

484 The GNU C Library: System & Network Applications

int EQUIV_CLASS_MAX
‘limits.h’ (POSIX.2): Section 12.10 [Utility Program Capacity-Limits],
page 323.

int execl (const char *filename, const char *arg0, ...)
‘unistd.h’ (POSIX.1): Section 7.5 [Executing a File], page 212.

int execle (const char *filename, const char *arg0, char *const env[], ...)
‘unistd.h’ (POSIX.1): Section 7.5 [Executing a File], page 212.

int execlp (const char *filename, const char *arg0, ...)
‘unistd.h’ (POSIX.1): Section 7.5 [Executing a File], page 212.

int execv (const char *filename, char *const argv[])
‘unistd.h’ (POSIX.1): Section 7.5 [Executing a File], page 212.

int execve (const char *filename, char *const argv[], char *const env[])
‘unistd.h’ (POSIX.1): Section 7.5 [Executing a File], page 212.

int execvp (const char *filename, char *const argv[])
‘unistd.h’ (POSIX.1): Section 7.5 [Executing a File], page 212.

int EXPR_NEST_MAX
‘limits.h’ (POSIX.2): Section 12.10 [Utility Program Capacity-Limits],
page 323.

int fchdir (int filedes)
‘unistd.h’ (XPG): Section 3.1 [Working Directory], page 71.

int fchmod (int filedes, int mode)
‘sys/stat.h’ (BSD): Section 3.9.7 [Assigning File Permissions], page 104.

int fchown (int filedes, int owner, int group)
‘unistd.h’ (BSD): Section 3.9.4 [File Owner], page 101.

int fclean (FILE *stream)
‘stdio.h’ (GNU): Section 2.5.3 [Cleaning Streams], page 30.

int fcntl (int filedes, int command, ...)
‘fcntl.h’ (POSIX.1): Section 2.11 [Control Operations on Files], page 54.

int fdatasync (int fildes)
‘unistd.h’ (POSIX): Section 2.9 [Synchronizing I/O Operations], page 40.

int FD_CLOEXEC
‘fcntl.h’ (POSIX.1): Section 2.13 [File-Descriptor Flags], page 57.

void FD_CLR (int filedes, fd_set *set)
‘sys/types.h’ (BSD): Section 2.8 [Waiting for Input or Output], page 37.

int FD_ISSET (int filedes, const fd_set *set)
‘sys/types.h’ (BSD): Section 2.8 [Waiting for Input or Output], page 37.

FILE * fdopen (int filedes, const char *opentype)
‘stdio.h’ (POSIX.1): Section 2.4 [Descriptors and Streams], page 28.

fd_set

‘sys/types.h’ (BSD): Section 2.8 [Waiting for Input or Output], page 37.

void FD_SET (int filedes, fd_set *set)
‘sys/types.h’ (BSD): Section 2.8 [Waiting for Input or Output], page 37.

Appendix B: Summary of Library Facilities 485

int FD_SETSIZE
‘sys/types.h’ (BSD): Section 2.8 [Waiting for Input or Output], page 37.

int F_DUPFD
‘fcntl.h’ (POSIX.1): Section 2.12 [Duplicating Descriptors], page 55.

void FD_ZERO (fd_set *set)
‘sys/types.h’ (BSD): Section 2.8 [Waiting for Input or Output], page 37.

int F_GETFD
‘fcntl.h’ (POSIX.1): Section 2.13 [File-Descriptor Flags], page 57.

int F_GETFL
‘fcntl.h’ (POSIX.1): Section 2.14.4 [Getting and Setting File Status Flags],
page 63.

struct group * fgetgrent (FILE *stream)
‘grp.h’ (SVID): Section 10.14.3 [Scanning the List of All Groups], page 278.

int fgetgrent_r (FILE *stream, struct group *result buf, char *buffer, size_t
buflen, struct group **result)

‘grp.h’ (GNU): Section 10.14.3 [Scanning the List of All Groups], page 278.

int F_GETLK
‘fcntl.h’ (POSIX.1): Section 2.15 [File Locks], page 64.

int F_GETOWN
‘fcntl.h’ (BSD): Section 2.16 [Interrupt-Driven Input], page 68.

struct passwd * fgetpwent (FILE *stream)
‘pwd.h’ (SVID): Section 10.13.3 [Scanning the List of All Users], page 275.

int fgetpwent_r (FILE *stream, struct passwd *result buf, char *buffer, size_t
buflen, struct passwd **result)

‘pwd.h’ (GNU): Section 10.13.3 [Scanning the List of All Users], page 275.

int FILENAME_MAX
‘stdio.h’ (ISO): Section 12.6 [Limits on File-System Capacity], page 318.

int fileno (FILE *stream)
‘stdio.h’ (POSIX.1): Section 2.4 [Descriptors and Streams], page 28.

int fileno_unlocked (FILE *stream)
‘stdio.h’ (GNU): Section 2.4 [Descriptors and Streams], page 28.

FLT_DIG

‘float.h’ (ISO): Section A.5.3.2 [Floating-Point Parameters], page 468.

FLT_EPSILON
‘float.h’ (ISO): Section A.5.3.2 [Floating-Point Parameters], page 468.

FLT_MANT_DIG
‘float.h’ (ISO): Section A.5.3.2 [Floating-Point Parameters], page 468.

FLT_MAX

‘float.h’ (ISO): Section A.5.3.2 [Floating-Point Parameters], page 468.

FLT_MAX_10_EXP
‘float.h’ (ISO): Section A.5.3.2 [Floating-Point Parameters], page 468.

486 The GNU C Library: System & Network Applications

FLT_MAX_EXP
‘float.h’ (ISO): Section A.5.3.2 [Floating-Point Parameters], page 468.

FLT_MIN

‘float.h’ (ISO): Section A.5.3.2 [Floating-Point Parameters], page 468.

FLT_MIN_10_EXP
‘float.h’ (ISO): Section A.5.3.2 [Floating-Point Parameters], page 468.

FLT_MIN_EXP
‘float.h’ (ISO): Section A.5.3.2 [Floating-Point Parameters], page 468.

FLT_RADIX

‘float.h’ (ISO): Section A.5.3.2 [Floating-Point Parameters], page 468.

FLT_ROUNDS
‘float.h’ (ISO): Section A.5.3.2 [Floating-Point Parameters], page 468.

tcflag_t FLUSHO
‘termios.h’ (BSD): Section 6.4.7 [Local Modes], page 189.

int F_OK

‘unistd.h’ (POSIX.1): Section 3.9.8 [Testing Permission to Access a File],
page 106.

pid_t fork (void)
‘unistd.h’ (POSIX.1): Section 7.4 [Creating a Process], page 211.

int forkpty (int *amaster, char *name, struct termios *termp, struct winsize
*winp)

‘pty.h’ (BSD): Section 6.8.2 [Opening a Pseudoterminal Pair], page 207.

long int fpathconf (int filedes, int parameter)
‘unistd.h’ (POSIX.1): Section 12.9 [Using pathconf], page 321.

FPE_DECOVF_TRAP
‘signal.h’ (BSD): Section 17.2.1 [Program-Error Signals], page 379.

FPE_FLTDIV_FAULT
‘signal.h’ (BSD): Section 17.2.1 [Program-Error Signals], page 379.

FPE_FLTDIV_TRAP
‘signal.h’ (BSD): Section 17.2.1 [Program-Error Signals], page 379.

FPE_FLTOVF_FAULT
‘signal.h’ (BSD): Section 17.2.1 [Program-Error Signals], page 379.

FPE_FLTOVF_TRAP
‘signal.h’ (BSD): Section 17.2.1 [Program-Error Signals], page 379.

FPE_FLTUND_FAULT
‘signal.h’ (BSD): Section 17.2.1 [Program-Error Signals], page 379.

FPE_FLTUND_TRAP
‘signal.h’ (BSD): Section 17.2.1 [Program-Error Signals], page 379.

FPE_INTDIV_TRAP
‘signal.h’ (BSD): Section 17.2.1 [Program-Error Signals], page 379.

FPE_INTOVF_TRAP
‘signal.h’ (BSD): Section 17.2.1 [Program-Error Signals], page 379.

Appendix B: Summary of Library Facilities 487

FPE_SUBRNG_TRAP
‘signal.h’ (BSD): Section 17.2.1 [Program-Error Signals], page 379.

F_RDLCK

‘fcntl.h’ (POSIX.1): Section 2.15 [File Locks], page 64.

int F_SETFD
‘fcntl.h’ (POSIX.1): Section 2.13 [File-Descriptor Flags], page 57.

int F_SETFL
‘fcntl.h’ (POSIX.1): Section 2.14.4 [Getting and Setting File Status Flags],
page 63.

int F_SETLK
‘fcntl.h’ (POSIX.1): Section 2.15 [File Locks], page 64.

int F_SETLKW
‘fcntl.h’ (POSIX.1): Section 2.15 [File Locks], page 64.

int F_SETOWN
‘fcntl.h’ (BSD): Section 2.16 [Interrupt-Driven Input], page 68.

int fstat (int filedes, struct stat *buf)
‘sys/stat.h’ (POSIX.1): Section 3.9.2 [Reading the Attributes of a File],
page 97.

int fstat64 (int filedes, struct stat64 *buf)
‘sys/stat.h’ (Unix98): Section 3.9.2 [Reading the Attributes of a File], page 97.

int fsync (int fildes)
‘unistd.h’ (POSIX): Section 2.9 [Synchronizing I/O Operations], page 40.

int ftruncate (int fd, off_t length)
‘unistd.h’ (POSIX): Section 3.9.10 [File Size], page 110.

int ftruncate64 (int id, off64_t length)
‘unistd.h’ (Unix98): Section 3.9.10 [File Size], page 110.

int ftw (const char *filename, __ftw_func_t func, int descriptors)
‘ftw.h’ (SVID): Section 3.3 [Working with Directory Trees], page 81.

int ftw64 (const char *filename, __ftw64_func_t func, int descriptors)
‘ftw.h’ (Unix98): Section 3.3 [Working with Directory Trees], page 81.

__ftw64_func_t
‘ftw.h’ (GNU): Section 3.3 [Working with Directory Trees], page 81.

__ftw_func_t
‘ftw.h’ (GNU): Section 3.3 [Working with Directory Trees], page 81.

F_UNLCK

‘fcntl.h’ (POSIX.1): Section 2.15 [File Locks], page 64.

int futimes (int *fd, struct timeval tvp[2])
‘sys/time.h’ (BSD): Section 3.9.9 [File Times], page 108.

F_WRLCK

‘fcntl.h’ (POSIX.1): Section 2.15 [File Locks], page 64.

488 The GNU C Library: System & Network Applications

long int get_avphys_pages (void)
‘sys/sysinfo.h’ (GNU): Section 14.4.2 [How to Get Information About the
Memory Subsystem?], page 355.

int getcontext (ucontext_t *ucp)
‘ucontext.h’ (SVID): Section 16.4 [Complete Context Control], page 370.

char * get_current_dir_name (void)
‘unistd.h’ (GNU): Section 3.1 [Working Directory], page 71.

char * getcwd (char *buffer, size_t size)
‘unistd.h’ (POSIX.1): Section 3.1 [Working Directory], page 71.

int getdomainnname (char *name, size_t length)
‘unistd.h’ (Unknown origin): Section 11.1 [Host Identification], page 285.

gid_t getegid (void)
‘unistd.h’ (POSIX.1): Section 10.5 [Reading the Persona of a Process], page 255.

uid_t geteuid (void)
‘unistd.h’ (POSIX.1): Section 10.5 [Reading the Persona of a Process], page 255.

struct fstab * getfsent (void)
‘fstab.h’ (BSD): Section 11.3.1.1 [The ‘fstab’ File], page 290.

struct fstab * getfsfile (const char *name)
‘fstab.h’ (BSD): Section 11.3.1.1 [The ‘fstab’ File], page 290.

struct fstab * getfsspec (const char *name)
‘fstab.h’ (BSD): Section 11.3.1.1 [The ‘fstab’ File], page 290.

gid_t getgid (void)
‘unistd.h’ (POSIX.1): Section 10.5 [Reading the Persona of a Process], page 255.

struct group * getgrent (void)
‘grp.h’ (SVID, BSD): Section 10.14.3 [Scanning the List of All Groups], page 278.

int getgrent_r (struct group *result buf, char *buffer, size_t buflen, struct
group **result)

‘grp.h’ (GNU): Section 10.14.3 [Scanning the List of All Groups], page 278.

struct group * getgrgid (gid_t gid)
‘grp.h’ (POSIX.1): Section 10.14.2 [Looking Up One Group], page 277.

int getgrgid_r (gid_t gid, struct group *result buf, char *buffer, size_t buflen,
struct group **result)

‘grp.h’ (POSIX.1c): Section 10.14.2 [Looking Up One Group], page 277.

struct group * getgrnam (const char *name)
‘grp.h’ (SVID, BSD): Section 10.14.2 [Looking Up One Group], page 277.

int getgrnam_r (const char *name, struct group *result buf, char *buffer,
size_t buflen, struct group **result)

‘grp.h’ (POSIX.1c): Section 10.14.2 [Looking Up One Group], page 277.

int getgrouplist (const char *user, gid_t group, gid_t *groups, int *ngroups)
‘grp.h’ (BSD): Section 10.7 [Setting the Group IDs], page 257.

int getgroups (int count, gid_t *groups)
‘unistd.h’ (POSIX.1): Section 10.5 [Reading the Persona of a Process], page 255.

Appendix B: Summary of Library Facilities 489

struct hostent * gethostbyaddr (const char *addr, size_t length, int format)
‘netdb.h’ (BSD): Section 5.6.2.4 [Host Names], page 141.

int gethostbyaddr_r (const char *addr, size_t length, int format, struct
hostent *restrict result buf, char *restrict buf, size_t buflen, struct
hostent **restrict result, int *restrict h errnop)

‘netdb.h’ (GNU): Section 5.6.2.4 [Host Names], page 141.

struct hostent * gethostbyname (const char *name)
‘netdb.h’ (BSD): Section 5.6.2.4 [Host Names], page 141.

struct hostent * gethostbyname2 (const char *name, int af)
‘netdb.h’ (IPv6 Basic API): Section 5.6.2.4 [Host Names], page 141.

int gethostbyname2_r (const char *name, int af, struct hostent *restrict
result buf, char *restrict buf, size_t buflen, struct hostent **restrict result,
int *restrict h errnop)

‘netdb.h’ (GNU): Section 5.6.2.4 [Host Names], page 141.

int gethostbyname_r (const char *restrict name, struct hostent *restrict
result buf, char *restrict buf, size_t buflen, struct hostent **restrict result,
int *restrict h errnop)

‘netdb.h’ (GNU): Section 5.6.2.4 [Host Names], page 141.

struct hostent * gethostent (void)
‘netdb.h’ (BSD): Section 5.6.2.4 [Host Names], page 141.

long int gethostid (void)
‘unistd.h’ (BSD): Section 11.1 [Host Identification], page 285.

int gethostname (char *name, size_t size)
‘unistd.h’ (BSD): Section 11.1 [Host Identification], page 285.

int getloadavg (double loadavg[], int nelem)
‘stdlib.h’ (BSD): Section 14.5 [Learn About the Processors Available], page 356.

char * getlogin (void)
‘unistd.h’ (POSIX.1): Section 10.11 [Identifying Who Is Logged In], page 264.

struct mntent * getmntent (FILE *stream)
‘mntent.h’ (BSD): Section 11.3.1.2 [The ‘mtab’ File], page 292.

struct mntent * getmntent_r (FILE *stream, struct mentent *result, char
*buffer, int bufsize)

‘mntent.h’ (BSD): Section 11.3.1.2 [The ‘mtab’ File], page 292.

struct netent * getnetbyaddr (unsigned long int net, int type)
‘netdb.h’ (BSD): Section 5.13 [Networks Database], page 176.

struct netent * getnetbyname (const char *name)
‘netdb.h’ (BSD): Section 5.13 [Networks Database], page 176.

struct netent * getnetent (void)
‘netdb.h’ (BSD): Section 5.13 [Networks Database], page 176.

int getnetgrent (char **hostp, char **userp, char **domainp)
‘netdb.h’ (BSD): Section 10.16.2 [Looking Up One Netgroup], page 282.

int getnetgrent_r (char **hostp, char **userp, char **domainp, char *buffer,
int buflen)

‘netdb.h’ (GNU): Section 10.16.2 [Looking Up One Netgroup], page 282.

490 The GNU C Library: System & Network Applications

int get_nprocs (void)
‘sys/sysinfo.h’ (GNU): Section 14.5 [Learn About the Processors Available],
page 356.

int get_nprocs_conf (void)
‘sys/sysinfo.h’ (GNU): Section 14.5 [Learn About the Processors Available],
page 356.

int getpagesize (void)
‘unistd.h’ (BSD): Section 14.4.2 [How to Get Information About the Memory
Subsystem?], page 355.

char * getpass (const char *prompt)
‘unistd.h’ (BSD): Section 13.2 [Reading Passwords], page 328.

int getpeername (int socket, struct sockaddr *addr, socklen_t *length-ptr)
‘sys/socket.h’ (BSD): Section 5.9.4 [Who Is Connected to Me?], page 157.

int getpgid (pid_t pid)
‘unistd.h’ (SVID): Section 8.7.2 [Process-Group Functions], page 239.

pid_t getpgrp (pid_t pid)
‘unistd.h’ (BSD): Section 8.7.2 [Process-Group Functions], page 239.

pid_t getpgrp (void)
‘unistd.h’ (POSIX.1): Section 8.7.2 [Process-Group Functions], page 239.

long int get_phys_pages (void)
‘sys/sysinfo.h’ (GNU): Section 14.4.2 [How to Get Information About the
Memory Subsystem?], page 355.

pid_t getpid (void)
‘unistd.h’ (POSIX.1): Section 7.3 [Process Identification], page 210.

pid_t getppid (void)
‘unistd.h’ (POSIX.1): Section 7.3 [Process Identification], page 210.

int getpriority (int class, int id)
‘sys/resource.h’ (BSD,POSIX): Section 14.3.4.2 [Functions for Traditional
Scheduling], page 350.

struct protoent * getprotobyname (const char *name)
‘netdb.h’ (BSD): Section 5.6.6 [Protocols Database], page 147.

struct protoent * getprotobynumber (int protocol)
‘netdb.h’ (BSD): Section 5.6.6 [Protocols Database], page 147.

struct protoent * getprotoent (void)
‘netdb.h’ (BSD): Section 5.6.6 [Protocols Database], page 147.

int getpt (void)
‘stdlib.h’ (GNU): Section 6.8.1 [Allocating Pseudoterminals], page 205.

struct passwd * getpwent (void)
‘pwd.h’ (POSIX.1): Section 10.13.3 [Scanning the List of All Users], page 275.

int getpwent_r (struct passwd *result buf, char *buffer, int buflen, struct
passwd **result)

‘pwd.h’ (GNU): Section 10.13.3 [Scanning the List of All Users], page 275.

Appendix B: Summary of Library Facilities 491

struct passwd * getpwnam (const char *name)
‘pwd.h’ (POSIX.1): Section 10.13.2 [Looking Up One User], page 274.

int getpwnam_r (const char *name, struct passwd *result buf, char *buffer,
size_t buflen, struct passwd **result)

‘pwd.h’ (POSIX.1c): Section 10.13.2 [Looking Up One User], page 274.

struct passwd * getpwuid (uid_t uid)
‘pwd.h’ (POSIX.1): Section 10.13.2 [Looking Up One User], page 274.

int getpwuid_r (uid_t uid, struct passwd *result buf, char *buffer, size_t
buflen, struct passwd **result)

‘pwd.h’ (POSIX.1c): Section 10.13.2 [Looking Up One User], page 274.

int getrlimit (int resource, struct rlimit *rlp)
‘sys/resource.h’ (BSD): Section 14.2 [Limiting Resource Usage], page 338.

int getrlimit64 (int resource, struct rlimit64 *rlp)
‘sys/resource.h’ (Unix98): Section 14.2 [Limiting Resource Usage], page 338.

int getrusage (int processes, struct rusage *rusage)
‘sys/resource.h’ (BSD): Section 14.1 [Resource Usage], page 335.

struct servent * getservbyname (const char *name, const char *proto)
‘netdb.h’ (BSD): Section 5.6.4 [The Services Database], page 145.

struct servent * getservbyport (int port, const char *proto)
‘netdb.h’ (BSD): Section 5.6.4 [The Services Database], page 145.

struct servent * getservent (void)
‘netdb.h’ (BSD): Section 5.6.4 [The Services Database], page 145.

pid_t getsid (pid_t pid)
‘unistd.h’ (SVID): Section 8.7.2 [Process-Group Functions], page 239.

int getsockname (int socket, struct sockaddr *addr, socklen_t *length-ptr)
‘sys/socket.h’ (BSD): Section 5.3.3 [Reading the Address of a Socket],
page 130.

int getsockopt (int socket, int level, int optname, void *optval, socklen_t
*optlen-ptr)

‘sys/socket.h’ (BSD): Section 5.12.1 [Socket Option Functions], page 173.

uid_t getuid (void)
‘unistd.h’ (POSIX.1): Section 10.5 [Reading the Persona of a Process], page 255.

mode_t getumask (void)
‘sys/stat.h’ (GNU): Section 3.9.7 [Assigning File Permissions], page 104.

struct utmp * getutent (void)
‘utmp.h’ (SVID): Section 10.12.1 [Manipulating the User-Accounting Database],
page 265.

int getutent_r (struct utmp *buffer, struct utmp **result)
‘utmp.h’ (GNU): Section 10.12.1 [Manipulating the User-Accounting Database],
page 265.

struct utmp * getutid (const struct utmp *id)
‘utmp.h’ (SVID): Section 10.12.1 [Manipulating the User-Accounting Database],
page 265.

492 The GNU C Library: System & Network Applications

int getutid_r (const struct utmp *id, struct utmp *buffer, struct utmp
**result)

‘utmp.h’ (GNU): Section 10.12.1 [Manipulating the User-Accounting Database],
page 265.

struct utmp * getutline (const struct utmp *line)
‘utmp.h’ (SVID): Section 10.12.1 [Manipulating the User-Accounting Database],
page 265.

int getutline_r (const struct utmp *line, struct utmp *buffer, struct utmp
**result)

‘utmp.h’ (GNU): Section 10.12.1 [Manipulating the User-Accounting Database],
page 265.

int getutmp (const struct utmpx *utmpx, struct utmp *utmp)
‘utmp.h’ (GNU): Section 10.12.2 [XPG User-Accounting Database Functions],
page 270.

int getutmpx (const struct utmp *utmp, struct utmpx *utmpx)
‘utmp.h’ (GNU): Section 10.12.2 [XPG User-Accounting Database Functions],
page 270.

struct utmpx * getutxent (void)
‘utmpx.h’ (XPG4.2): Section 10.12.2 [XPG User-Accounting Database Functions],
page 270.

struct utmpx * getutxid (const struct utmpx *id)
‘utmpx.h’ (XPG4.2): Section 10.12.2 [XPG User-Accounting Database Functions],
page 270.

struct utmpx * getutxline (const struct utmpx *line)
‘utmpx.h’ (XPG4.2): Section 10.12.2 [XPG User-Accounting Database Functions],
page 270.

char * getwd (char *buffer)
‘unistd.h’ (BSD): Section 3.1 [Working Directory], page 71.

gid_t

‘sys/types.h’ (POSIX.1): Section 10.5 [Reading the Persona of a Process],
page 255.

_GNU_SOURCE
(GNU): Section 1.3.4 [Feature-Test Macros], page 8.

int grantpt (int filedes)
‘stdlib.h’ (SVID, XPG4.2): Section 6.8.1 [Allocating Pseudoterminals],
page 205.

int gsignal (int signum)
‘signal.h’ (SVID): Section 17.6.1 [Signaling Yourself], page 409.

int gtty (int filedes, struct sgttyb *attributes)
‘sgtty.h’ (BSD): Section 6.5 [BSD Terminal Modes], page 200.

char * hasmntopt (const struct mntent *mnt, const char *opt)
‘mntent.h’ (BSD): Section 11.3.1.2 [The ‘mtab’ File], page 292.

HOST_NOT_FOUND
‘netdb.h’ (BSD): Section 5.6.2.4 [Host Names], page 141.

Appendix B: Summary of Library Facilities 493

uint32_t htonl (uint32_t hostlong)
‘netinet/in.h’ (BSD): Section 5.6.5 [Byte-Order Conversion], page 147.

uint16_t htons (uint16_t hostshort)
‘netinet/in.h’ (BSD): Section 5.6.5 [Byte-Order Conversion], page 147.

tcflag_t HUPCL
‘termios.h’ (POSIX.1): Section 6.4.6 [Control Modes], page 187.

tcflag_t ICANON
‘termios.h’ (POSIX.1): Section 6.4.7 [Local Modes], page 189.

tcflag_t ICRNL
‘termios.h’ (POSIX.1): Section 6.4.4 [Input Modes], page 185.

tcflag_t IEXTEN
‘termios.h’ (POSIX.1): Section 6.4.7 [Local Modes], page 189.

void if_freenameindex (struct if_nameindex *ptr)
‘net/if.h’ (IPv6 basic API): Section 5.4 [Interface Naming], page 130.

char * if_indextoname (unsigned int ifindex, char *ifname)
‘net/if.h’ (IPv6 basic API): Section 5.4 [Interface Naming], page 130.

struct if_nameindex * if_nameindex (void)
‘net/if.h’ (IPv6 basic API): Section 5.4 [Interface Naming], page 130.

unsigned int if_nametoindex (const char *ifname)
‘net/if.h’ (IPv6 basic API): Section 5.4 [Interface Naming], page 130.

size_t IFNAMSIZ
‘net/if.h’ (net/if.h): Section 5.4 [Interface Naming], page 130.

int IFTODT (mode_t mode)
‘dirent.h’ (BSD): Section 3.2.1 [Format of a Directory Entry], page 73.

tcflag_t IGNBRK
‘termios.h’ (POSIX.1): Section 6.4.4 [Input Modes], page 185.

tcflag_t IGNCR
‘termios.h’ (POSIX.1): Section 6.4.4 [Input Modes], page 185.

tcflag_t IGNPAR
‘termios.h’ (POSIX.1): Section 6.4.4 [Input Modes], page 185.

tcflag_t IMAXBEL
‘termios.h’ (BSD): Section 6.4.4 [Input Modes], page 185.

struct in6_addr in6addr_any
‘netinet/in.h’ (IPv6 basic API): Section 5.6.2.2 [Host-Address Data Type],
page 138.

struct in6_addr in6addr_loopback
‘netinet/in.h’ (IPv6 basic API): Section 5.6.2.2 [Host-Address Data Type],
page 138.

uint32_t INADDR_ANY
‘netinet/in.h’ (BSD): Section 5.6.2.2 [Host-Address Data Type], page 138.

uint32_t INADDR_BROADCAST
‘netinet/in.h’ (BSD): Section 5.6.2.2 [Host-Address Data Type], page 138.

494 The GNU C Library: System & Network Applications

uint32_t INADDR_LOOPBACK
‘netinet/in.h’ (BSD): Section 5.6.2.2 [Host-Address Data Type], page 138.

uint32_t INADDR_NONE
‘netinet/in.h’ (BSD): Section 5.6.2.2 [Host-Address Data Type], page 138.

uint32_t inet_addr (const char *name)
‘arpa/inet.h’ (BSD): Section 5.6.2.3 [Host-Address Functions], page 139.

int inet_aton (const char *name, struct in_addr *addr)
‘arpa/inet.h’ (BSD): Section 5.6.2.3 [Host-Address Functions], page 139.

uint32_t inet_lnaof (struct in_addr addr)
‘arpa/inet.h’ (BSD): Section 5.6.2.3 [Host-Address Functions], page 139.

struct in_addr inet_makeaddr (uint32_t net, uint32_t local)
‘arpa/inet.h’ (BSD): Section 5.6.2.3 [Host-Address Functions], page 139.

uint32_t inet_netof (struct in_addr addr)
‘arpa/inet.h’ (BSD): Section 5.6.2.3 [Host-Address Functions], page 139.

uint32_t inet_network (const char *name)
‘arpa/inet.h’ (BSD): Section 5.6.2.3 [Host-Address Functions], page 139.

char * inet_ntoa (struct in_addr addr)
‘arpa/inet.h’ (BSD): Section 5.6.2.3 [Host-Address Functions], page 139.

const char * inet_ntop (int af, const void *cp, char *buf, size_t len)
‘arpa/inet.h’ (IPv6 basic API): Section 5.6.2.3 [Host-Address Functions],
page 139.

int inet_pton (int af, const char *cp, void *buf)
‘arpa/inet.h’ (IPv6 basic API): Section 5.6.2.3 [Host-Address Functions],
page 139.

int initgroups (const char *user, gid_t group)
‘grp.h’ (BSD): Section 10.7 [Setting the Group IDs], page 257.

INIT_PROCESS
‘utmp.h’ (SVID): Section 10.12.1 [Manipulating the User-Accounting Database],
page 265.

INIT_PROCESS
‘utmpx.h’ (XPG4.2): Section 10.12.2 [XPG User-Accounting Database Functions],
page 270.

tcflag_t INLCR
‘termios.h’ (POSIX.1): Section 6.4.4 [Input Modes], page 185.

int innetgr (const char *netgroup, const char *host, const char *user, const
char *domain)

‘netdb.h’ (BSD): Section 10.16.3 [Testing for Netgroup Membership], page 283.

ino64_t

‘sys/types.h’ (Unix98): Section 3.9.1 [The Meaning of the File Attributes],
page 93.

ino_t

‘sys/types.h’ (POSIX.1): Section 3.9.1 [The Meaning of the File Attributes],
page 93.

Appendix B: Summary of Library Facilities 495

tcflag_t INPCK
‘termios.h’ (POSIX.1): Section 6.4.4 [Input Modes], page 185.

INT_MAX

‘limits.h’ (ISO): Section A.5.2 [Range of an Integer Type], page 465.

INT_MIN

‘limits.h’ (ISO): Section A.5.2 [Range of an Integer Type], page 465.

int ioctl (int filedes, int command, ...)
‘sys/ioctl.h’ (BSD): Section 2.17 [Generic I/O Control Operations], page 69.

int IPPORT_RESERVED
‘netinet/in.h’ (BSD): Section 5.6.3 [Internet Ports], page 144.

int IPPORT_USERRESERVED
‘netinet/in.h’ (BSD): Section 5.6.3 [Internet Ports], page 144.

int isatty (int filedes)
‘unistd.h’ (POSIX.1): Section 6.1 [Identifying Terminals], page 179.

tcflag_t ISIG
‘termios.h’ (POSIX.1): Section 6.4.7 [Local Modes], page 189.

_ISOC99_SOURCE
(GNU): Section 1.3.4 [Feature-Test Macros], page 8.

tcflag_t ISTRIP
‘termios.h’ (POSIX.1): Section 6.4.4 [Input Modes], page 185.

tcflag_t IXANY
‘termios.h’ (BSD): Section 6.4.4 [Input Modes], page 185.

tcflag_t IXOFF
‘termios.h’ (POSIX.1): Section 6.4.4 [Input Modes], page 185.

tcflag_t IXON
‘termios.h’ (POSIX.1): Section 6.4.4 [Input Modes], page 185.

jmp_buf

‘setjmp.h’ (ISO): Section 16.2 [Details of Nonlocal Exits], page 369.

int kill (pid_t pid, int signum)
‘signal.h’ (POSIX.1): Section 17.6.2 [Signaling Another Process], page 410.

int killpg (int pgid, int signum)
‘signal.h’ (BSD): Section 17.6.2 [Signaling Another Process], page 410.

int L_ctermid
‘stdio.h’ (POSIX.1): Section 8.7.1 [Identifying the Controlling Terminal],
page 238.

int L_cuserid
‘stdio.h’ (POSIX.1): Section 10.11 [Identifying Who Is Logged In], page 264.

int LINE_MAX
‘limits.h’ (POSIX.2): Section 12.10 [Utility Program Capacity-Limits],
page 323.

int link (const char *oldname, const char *newname)
‘unistd.h’ (POSIX.1): Section 3.4 [Hard Links], page 85.

496 The GNU C Library: System & Network Applications

int LINK_MAX
‘limits.h’ (POSIX.1): Section 12.6 [Limits on File-System Capacity], page 318.

int lio_listio (int mode, struct aiocb *const list[], int nent, struct
sigevent *sig)

‘aio.h’ (POSIX.1b): Section 2.10.1 [Asynchronous Read and Write Operations],
page 45.

int lio_listio64 (int mode, struct aiocb *const list, int nent, struct
sigevent *sig)

‘aio.h’ (Unix98): Section 2.10.1 [Asynchronous Read and Write Operations],
page 45.

int listen (int socket, unsigned int n)
‘sys/socket.h’ (BSD): Section 5.9.2 [Listening for Connections], page 155.

void login (const struct utmp *entry)
‘utmp.h’ (BSD): Section 10.12.3 [Logging In and Out], page 273.

LOGIN_PROCESS
‘utmp.h’ (SVID): Section 10.12.1 [Manipulating the User-Accounting Database],
page 265.

LOGIN_PROCESS
‘utmpx.h’ (XPG4.2): Section 10.12.2 [XPG User-Accounting Database Functions],
page 270.

int login_tty (int filedes)
‘utmp.h’ (BSD): Section 10.12.3 [Logging In and Out], page 273.

int logout (const char *ut line)
‘utmp.h’ (BSD): Section 10.12.3 [Logging In and Out], page 273.

void logwtmp (const char *ut line, const char *ut name, const char *ut host)
‘utmp.h’ (BSD): Section 10.12.3 [Logging In and Out], page 273.

void longjmp (jmp_buf state, int value)
‘setjmp.h’ (ISO): Section 16.2 [Details of Nonlocal Exits], page 369.

LONG_LONG_MAX
‘limits.h’ (GNU): Section A.5.2 [Range of an Integer Type], page 465.

LONG_LONG_MIN
‘limits.h’ (GNU): Section A.5.2 [Range of an Integer Type], page 465.

LONG_MAX

‘limits.h’ (ISO): Section A.5.2 [Range of an Integer Type], page 465.

LONG_MIN

‘limits.h’ (ISO): Section A.5.2 [Range of an Integer Type], page 465.

off_t lseek (int filedes, off_t offset, int whence)
‘unistd.h’ (POSIX.1): Section 2.3 [Setting the File Position of a Descriptor],
page 25.

off64_t lseek64 (int filedes, off64_t offset, int whence)
‘unistd.h’ (Unix98): Section 2.3 [Setting the File Position of a Descriptor],
page 25.

Appendix B: Summary of Library Facilities 497

int lstat (const char *filename, struct stat *buf)
‘sys/stat.h’ (BSD): Section 3.9.2 [Reading the Attributes of a File], page 97.

int lstat64 (const char *filename, struct stat64 *buf)
‘sys/stat.h’ (Unix98): Section 3.9.2 [Reading the Attributes of a File], page 97.

int L_tmpnam
‘stdio.h’ (ISO): Section 3.11 [Temporary Files], page 114.

int lutimes (const char *filename, struct timeval tvp[2])
‘sys/time.h’ (BSD): Section 3.9.9 [File Times], page 108.

int madvise (void *addr, size_t length, int advice)
‘sys/mman.h’ (POSIX): Section 2.7 [Memory-Mapped I/O], page 32.

void makecontext (ucontext_t *ucp, void (*func) (void), int argc, ...)
‘ucontext.h’ (SVID): Section 16.4 [Complete Context Control], page 370.

int MAX_CANON
‘limits.h’ (POSIX.1): Section 12.6 [Limits on File-System Capacity], page 318.

int MAX_INPUT
‘limits.h’ (POSIX.1): Section 12.6 [Limits on File-System Capacity], page 318.

int MAXNAMLEN
‘dirent.h’ (BSD): Section 12.6 [Limits on File-System Capacity], page 318.

int MAXSYMLINKS
‘sys/param.h’ (BSD): Section 3.5 [Symbolic Links], page 87.

tcflag_t MDMBUF
‘termios.h’ (BSD): Section 6.4.6 [Control Modes], page 187.

int mkdir (const char *filename, mode_t mode)
‘sys/stat.h’ (POSIX.1): Section 3.8 [Creating Directories], page 92.

char * mkdtemp (char *template)
‘stdlib.h’ (BSD): Section 3.11 [Temporary Files], page 114.

int mkfifo (const char *filename, mode_t mode)
‘sys/stat.h’ (POSIX.1): Section 4.3 [FIFO Special Files], page 123.

int mknod (const char *filename, int mode, int dev)
‘sys/stat.h’ (BSD): Section 3.10 [Making Special Files], page 113.

int mkstemp (char *template)
‘stdlib.h’ (BSD): Section 3.11 [Temporary Files], page 114.

char * mktemp (char *template)
‘stdlib.h’ (Unix): Section 3.11 [Temporary Files], page 114.

void * mmap (void *address, size_t length,int protect, int flags, int filedes, off_t
offset)

‘sys/mman.h’ (POSIX): Section 2.7 [Memory-Mapped I/O], page 32.

void * mmap64 (void *address, size_t length,int protect, int flags, int filedes,
off64_t offset)

‘sys/mman.h’ (LFS): Section 2.7 [Memory-Mapped I/O], page 32.

mode_t

‘sys/types.h’ (POSIX.1): Section 3.9.1 [The Meaning of the File Attributes],
page 93.

498 The GNU C Library: System & Network Applications

int mount (const char *special file, const char *dir, const char *fstype,
unsigned long int options, const void *data)

‘sys/mount.h’ (SVID, BSD): Section 11.3.2 [Mount, Unmount, Remount],
page 296.

void * mremap (void *address, size_t length, size_t new length, int flag)
‘sys/mman.h’ (GNU): Section 2.7 [Memory-Mapped I/O], page 32.

int MSG_DONTROUTE
‘sys/socket.h’ (BSD): Section 5.9.5.3 [Socket Data Options], page 159.

int MSG_OOB
‘sys/socket.h’ (BSD): Section 5.9.5.3 [Socket Data Options], page 159.

int MSG_PEEK
‘sys/socket.h’ (BSD): Section 5.9.5.3 [Socket Data Options], page 159.

int msync (void *address, size_t length, int flags)
‘sys/mman.h’ (POSIX): Section 2.7 [Memory-Mapped I/O], page 32.

int munmap (void *addr, size_t length)
‘sys/mman.h’ (POSIX): Section 2.7 [Memory-Mapped I/O], page 32.

int NAME_MAX
‘limits.h’ (POSIX.1): Section 12.6 [Limits on File-System Capacity], page 318.

int NCCS

‘termios.h’ (POSIX.1): Section 6.4.1 [Terminal Mode Data Types], page 181.

NEW_TIME

‘utmp.h’ (SVID): Section 10.12.1 [Manipulating the User-Accounting Database],
page 265.

NEW_TIME

‘utmpx.h’ (XPG4.2): Section 10.12.2 [XPG User-Accounting Database Functions],
page 270.

int nftw (const char *filename, __nftw_func_t func, int descriptors, int flag)
‘ftw.h’ (XPG4.2): Section 3.3 [Working with Directory Trees], page 81.

int nftw64 (const char *filename, __nftw64_func_t func, int descriptors, int
flag)

‘ftw.h’ (Unix98): Section 3.3 [Working with Directory Trees], page 81.

__nftw64_func_t
‘ftw.h’ (GNU): Section 3.3 [Working with Directory Trees], page 81.

__nftw_func_t
‘ftw.h’ (GNU): Section 3.3 [Working with Directory Trees], page 81.

int NGROUPS_MAX
‘limits.h’ (POSIX.1): Section 12.1 [General Capacity-Limits], page 303.

int nice (int increment)
‘unistd.h’ (BSD): Section 14.3.4.2 [Functions for Traditional Scheduling],
page 350.

nlink_t

‘sys/types.h’ (POSIX.1): Section 3.9.1 [The Meaning of the File Attributes],
page 93.

Appendix B: Summary of Library Facilities 499

NO_ADDRESS
‘netdb.h’ (BSD): Section 5.6.2.4 [Host Names], page 141.

tcflag_t NOFLSH
‘termios.h’ (POSIX.1): Section 6.4.7 [Local Modes], page 189.

tcflag_t NOKERNINFO
‘termios.h’ (BSD): Section 6.4.7 [Local Modes], page 189.

NO_RECOVERY
‘netdb.h’ (BSD): Section 5.6.2.4 [Host Names], page 141.

int NSIG

‘signal.h’ (BSD): Section 17.2 [Standard Signals], page 379.

uint32_t ntohl (uint32_t netlong)
‘netinet/in.h’ (BSD): Section 5.6.5 [Byte-Order Conversion], page 147.

uint16_t ntohs (uint16_t netshort)
‘netinet/in.h’ (BSD): Section 5.6.5 [Byte-Order Conversion], page 147.

void * NULL
‘stddef.h’ (ISO): Section A.3 [Null-Pointer Constant], page 463.

int O_ACCMODE
‘fcntl.h’ (POSIX.1): Section 2.14.1 [File-Access Modes], page 59.

int O_APPEND
‘fcntl.h’ (POSIX.1): Section 2.14.3 [I/O Operating Modes], page 62.

int O_ASYNC
‘fcntl.h’ (BSD): Section 2.14.3 [I/O Operating Modes], page 62.

int O_CREAT
‘fcntl.h’ (POSIX.1): Section 2.14.2 [Open-Time Flags], page 60.

int O_EXCL
‘fcntl.h’ (POSIX.1): Section 2.14.2 [Open-Time Flags], page 60.

int O_EXEC
‘fcntl.h’ (GNU): Section 2.14.1 [File-Access Modes], page 59.

int O_EXLOCK
‘fcntl.h’ (BSD): Section 2.14.2 [Open-Time Flags], page 60.

off64_t

‘sys/types.h’ (Unix98): Section 2.3 [Setting the File Position of a Descriptor],
page 25.

size_t offsetof (type, member)
‘stddef.h’ (ISO): Section A.5.4 [Structure Field Offset Measurement], page 472.

off_t

‘sys/types.h’ (POSIX.1): Section 2.3 [Setting the File Position of a Descriptor],
page 25.

int O_FSYNC
‘fcntl.h’ (BSD): Section 2.14.3 [I/O Operating Modes], page 62.

int O_IGNORE_CTTY
‘fcntl.h’ (GNU): Section 2.14.2 [Open-Time Flags], page 60.

500 The GNU C Library: System & Network Applications

OLD_TIME

‘utmp.h’ (SVID): Section 10.12.1 [Manipulating the User-Accounting Database],
page 265.

OLD_TIME

‘utmpx.h’ (XPG4.2): Section 10.12.2 [XPG User-Accounting Database Functions],
page 270.

int O_NDELAY
‘fcntl.h’ (BSD): Section 2.14.3 [I/O Operating Modes], page 62.

tcflag_t ONLCR
‘termios.h’ (BSD): Section 6.4.5 [Output Modes], page 187.

int O_NOATIME
‘fcntl.h’ (GNU): Section 2.14.3 [I/O Operating Modes], page 62.

int O_NOCTTY
‘fcntl.h’ (POSIX.1): Section 2.14.2 [Open-Time Flags], page 60.

tcflag_t ONOEOT
‘termios.h’ (BSD): Section 6.4.5 [Output Modes], page 187.

int O_NOLINK
‘fcntl.h’ (GNU): Section 2.14.2 [Open-Time Flags], page 60.

int O_NONBLOCK
‘fcntl.h’ (POSIX.1): Section 2.14.2 [Open-Time Flags], page 60.

int O_NONBLOCK
‘fcntl.h’ (POSIX.1): Section 2.14.3 [I/O Operating Modes], page 62.

int O_NOTRANS
‘fcntl.h’ (GNU): Section 2.14.2 [Open-Time Flags], page 60.

int open (const char *filename, int flags[, mode_t mode])
‘fcntl.h’ (POSIX.1): Section 2.1 [Opening and Closing Files], page 17.

int open64 (const char *filename, int flags[, mode_t mode])
‘fcntl.h’ (Unix98): Section 2.1 [Opening and Closing Files], page 17.

DIR * opendir (const char *dirname)
‘dirent.h’ (POSIX.1): Section 3.2.2 [Opening a Directory Stream], page 75.

void openlog (const char *ident, int option, int facility)
‘syslog.h’ (BSD): Section 15.2.1 [openlog], page 360.

int OPEN_MAX
‘limits.h’ (POSIX.1): Section 12.1 [General Capacity-Limits], page 303.

int openpty (int *amaster, int *aslave, char *name, struct termios *termp,
struct winsize *winp)

‘pty.h’ (BSD): Section 6.8.2 [Opening a Pseudoterminal Pair], page 207.

tcflag_t OPOST
‘termios.h’ (POSIX.1): Section 6.4.5 [Output Modes], page 187.

int O_RDONLY
‘fcntl.h’ (POSIX.1): Section 2.14.1 [File-Access Modes], page 59.

Appendix B: Summary of Library Facilities 501

int O_RDWR
‘fcntl.h’ (POSIX.1): Section 2.14.1 [File-Access Modes], page 59.

int O_READ
‘fcntl.h’ (GNU): Section 2.14.1 [File-Access Modes], page 59.

int O_SHLOCK
‘fcntl.h’ (BSD): Section 2.14.2 [Open-Time Flags], page 60.

int O_SYNC
‘fcntl.h’ (BSD): Section 2.14.3 [I/O Operating Modes], page 62.

int O_TRUNC
‘fcntl.h’ (POSIX.1): Section 2.14.2 [Open-Time Flags], page 60.

int O_WRITE
‘fcntl.h’ (GNU): Section 2.14.1 [File-Access Modes], page 59.

int O_WRONLY
‘fcntl.h’ (POSIX.1): Section 2.14.1 [File-Access Modes], page 59.

tcflag_t OXTABS
‘termios.h’ (BSD): Section 6.4.5 [Output Modes], page 187.

tcflag_t PARENB
‘termios.h’ (POSIX.1): Section 6.4.6 [Control Modes], page 187.

tcflag_t PARMRK
‘termios.h’ (POSIX.1): Section 6.4.4 [Input Modes], page 185.

tcflag_t PARODD
‘termios.h’ (POSIX.1): Section 6.4.6 [Control Modes], page 187.

long int pathconf (const char *filename, int parameter)
‘unistd.h’ (POSIX.1): Section 12.9 [Using pathconf], page 321.

int PATH_MAX
‘limits.h’ (POSIX.1): Section 12.6 [Limits on File-System Capacity], page 318.

int pause ()
‘unistd.h’ (POSIX.1): Section 17.8.1 [Using pause], page 421.

_PC_ASYNC_IO
‘unistd.h’ (POSIX.1): Section 12.9 [Using pathconf], page 321.

_PC_CHOWN_RESTRICTED
‘unistd.h’ (POSIX.1): Section 12.9 [Using pathconf], page 321.

_PC_FILESIZEBITS
‘unistd.h’ (LFS): Section 12.9 [Using pathconf], page 321.

_PC_LINK_MAX
‘unistd.h’ (POSIX.1): Section 12.9 [Using pathconf], page 321.

int pclose (FILE *stream)
‘stdio.h’ (POSIX.2, SVID, BSD): Section 4.2 [Pipe to a Subprocess], page 121.

_PC_MAX_CANON
‘unistd.h’ (POSIX.1): Section 12.9 [Using pathconf], page 321.

_PC_MAX_INPUT
‘unistd.h’ (POSIX.1): Section 12.9 [Using pathconf], page 321.

502 The GNU C Library: System & Network Applications

_PC_NAME_MAX
‘unistd.h’ (POSIX.1): Section 12.9 [Using pathconf], page 321.

_PC_NO_TRUNC
‘unistd.h’ (POSIX.1): Section 12.9 [Using pathconf], page 321.

_PC_PATH_MAX
‘unistd.h’ (POSIX.1): Section 12.9 [Using pathconf], page 321.

_PC_PIPE_BUF
‘unistd.h’ (POSIX.1): Section 12.9 [Using pathconf], page 321.

_PC_PRIO_IO
‘unistd.h’ (POSIX.1): Section 12.9 [Using pathconf], page 321.

_PC_REC_INCR_XFER_SIZE
‘unistd.h’ (POSIX.1): Section 12.9 [Using pathconf], page 321.

_PC_REC_MAX_XFER_SIZE
‘unistd.h’ (POSIX.1): Section 12.9 [Using pathconf], page 321.

_PC_REC_MIN_XFER_SIZE
‘unistd.h’ (POSIX.1): Section 12.9 [Using pathconf], page 321.

_PC_REC_XFER_ALIGN
‘unistd.h’ (POSIX.1): Section 12.9 [Using pathconf], page 321.

_PC_SOCK_MAXBUF
‘unistd.h’ (POSIX.1g): Section 12.9 [Using pathconf], page 321.

_PC_SYNC_IO
‘unistd.h’ (POSIX.1): Section 12.9 [Using pathconf], page 321.

_PC_VDISABLE
‘unistd.h’ (POSIX.1): Section 12.9 [Using pathconf], page 321.

tcflag_t PENDIN
‘termios.h’ (BSD): Section 6.4.7 [Local Modes], page 189.

int PF_FILE
‘sys/socket.h’ (GNU): Section 5.5.2 [Details of Local Namespace], page 132.

int PF_INET
‘sys/socket.h’ (BSD): Section 5.6 [The Internet Namespace], page 134.

int PF_INET6
‘sys/socket.h’ (X/Open): Section 5.6 [The Internet Namespace], page 134.

int PF_LOCAL
‘sys/socket.h’ (POSIX): Section 5.5.2 [Details of Local Namespace], page 132.

int PF_UNIX
‘sys/socket.h’ (BSD): Section 5.5.2 [Details of Local Namespace], page 132.

pid_t

‘sys/types.h’ (POSIX.1): Section 7.3 [Process Identification], page 210.

int pipe (int filedes[2])
‘unistd.h’ (POSIX.1): Section 4.1 [Creating a Pipe], page 119.

int PIPE_BUF
‘limits.h’ (POSIX.1): Section 12.6 [Limits on File-System Capacity], page 318.

Appendix B: Summary of Library Facilities 503

FILE * popen (const char *command, const char *mode)
‘stdio.h’ (POSIX.2, SVID, BSD): Section 4.2 [Pipe to a Subprocess], page 121.

_POSIX2_BC_BASE_MAX
‘limits.h’ (POSIX.2): Section 12.11 [Minimum Values for Utility Limits],
page 324.

_POSIX2_BC_DIM_MAX
‘limits.h’ (POSIX.2): Section 12.11 [Minimum Values for Utility Limits],
page 324.

_POSIX2_BC_SCALE_MAX
‘limits.h’ (POSIX.2): Section 12.11 [Minimum Values for Utility Limits],
page 324.

_POSIX2_BC_STRING_MAX
‘limits.h’ (POSIX.2): Section 12.11 [Minimum Values for Utility Limits],
page 324.

int _POSIX2_C_DEV
‘unistd.h’ (POSIX.2): Section 12.2 [Overall System Options], page 305.

_POSIX2_COLL_WEIGHTS_MAX
‘limits.h’ (POSIX.2): Section 12.11 [Minimum Values for Utility Limits],
page 324.

long int _POSIX2_C_VERSION
‘unistd.h’ (POSIX.2): Section 12.3 [Which Version of POSIX is Supported],
page 306.

_POSIX2_EQUIV_CLASS_MAX
‘limits.h’ (POSIX.2): Section 12.11 [Minimum Values for Utility Limits],
page 324.

_POSIX2_EXPR_NEST_MAX
‘limits.h’ (POSIX.2): Section 12.11 [Minimum Values for Utility Limits],
page 324.

int _POSIX2_FORT_DEV
‘unistd.h’ (POSIX.2): Section 12.2 [Overall System Options], page 305.

int _POSIX2_FORT_RUN
‘unistd.h’ (POSIX.2): Section 12.2 [Overall System Options], page 305.

_POSIX2_LINE_MAX
‘limits.h’ (POSIX.2): Section 12.11 [Minimum Values for Utility Limits],
page 324.

int _POSIX2_LOCALEDEF
‘unistd.h’ (POSIX.2): Section 12.2 [Overall System Options], page 305.

_POSIX2_RE_DUP_MAX
‘limits.h’ (POSIX.2): Section 12.5 [Minimum Values for General Capacity-
Limits], page 317.

int _POSIX2_SW_DEV
‘unistd.h’ (POSIX.2): Section 12.2 [Overall System Options], page 305.

_POSIX_AIO_LISTIO_MAX
‘limits.h’ (POSIX.1): Section 12.5 [Minimum Values for General Capacity-
Limits], page 317.

504 The GNU C Library: System & Network Applications

_POSIX_AIO_MAX
‘limits.h’ (POSIX.1): Section 12.5 [Minimum Values for General Capacity-
Limits], page 317.

_POSIX_ARG_MAX
‘limits.h’ (POSIX.1): Section 12.5 [Minimum Values for General Capacity-
Limits], page 317.

_POSIX_CHILD_MAX
‘limits.h’ (POSIX.1): Section 12.5 [Minimum Values for General Capacity-
Limits], page 317.

int _POSIX_CHOWN_RESTRICTED
‘unistd.h’ (POSIX.1): Section 12.7 [Optional Features in File Support], page 319.

_POSIX_C_SOURCE
(POSIX.2): Section 1.3.4 [Feature-Test Macros], page 8.

int _POSIX_JOB_CONTROL
‘unistd.h’ (POSIX.1): Section 12.2 [Overall System Options], page 305.

_POSIX_LINK_MAX
‘limits.h’ (POSIX.1): Section 12.8 [Minimum Values for File-System Limits],
page 320.

_POSIX_MAX_CANON
‘limits.h’ (POSIX.1): Section 12.8 [Minimum Values for File-System Limits],
page 320.

_POSIX_MAX_INPUT
‘limits.h’ (POSIX.1): Section 12.8 [Minimum Values for File-System Limits],
page 320.

_POSIX_NAME_MAX
‘limits.h’ (POSIX.1): Section 12.8 [Minimum Values for File-System Limits],
page 320.

_POSIX_NGROUPS_MAX
‘limits.h’ (POSIX.1): Section 12.5 [Minimum Values for General Capacity-
Limits], page 317.

int _POSIX_NO_TRUNC
‘unistd.h’ (POSIX.1): Section 12.7 [Optional Features in File Support], page 319.

_POSIX_OPEN_MAX
‘limits.h’ (POSIX.1): Section 12.5 [Minimum Values for General Capacity-
Limits], page 317.

_POSIX_PATH_MAX
‘limits.h’ (POSIX.1): Section 12.8 [Minimum Values for File-System Limits],
page 320.

_POSIX_PIPE_BUF
‘limits.h’ (POSIX.1): Section 12.8 [Minimum Values for File-System Limits],
page 320.

POSIX_REC_INCR_XFER_SIZE
‘limits.h’ (POSIX.1): Section 12.8 [Minimum Values for File-System Limits],
page 320.

Appendix B: Summary of Library Facilities 505

POSIX_REC_MAX_XFER_SIZE
‘limits.h’ (POSIX.1): Section 12.8 [Minimum Values for File-System Limits],
page 320.

POSIX_REC_MIN_XFER_SIZE
‘limits.h’ (POSIX.1): Section 12.8 [Minimum Values for File-System Limits],
page 320.

POSIX_REC_XFER_ALIGN
‘limits.h’ (POSIX.1): Section 12.8 [Minimum Values for File-System Limits],
page 320.

int _POSIX_SAVED_IDS
‘unistd.h’ (POSIX.1): Section 12.2 [Overall System Options], page 305.

_POSIX_SOURCE
(POSIX.1): Section 1.3.4 [Feature-Test Macros], page 8.

_POSIX_SSIZE_MAX
‘limits.h’ (POSIX.1): Section 12.5 [Minimum Values for General Capacity-
Limits], page 317.

_POSIX_STREAM_MAX
‘limits.h’ (POSIX.1): Section 12.5 [Minimum Values for General Capacity-
Limits], page 317.

_POSIX_TZNAME_MAX
‘limits.h’ (POSIX.1): Section 12.5 [Minimum Values for General Capacity-
Limits], page 317.

unsigned char _POSIX_VDISABLE
‘unistd.h’ (POSIX.1): Section 12.7 [Optional Features in File Support], page 319.

long int _POSIX_VERSION
‘unistd.h’ (POSIX.1): Section 12.3 [Which Version of POSIX is Supported],
page 306.

ssize_t pread (int filedes, void *buffer, size_t size, off_t offset)
‘unistd.h’ (Unix98): Section 2.2 [Input and Output Primitives], page 20.

ssize_t pread64 (int filedes, void *buffer, size_t size, off64_t offset)
‘unistd.h’ (Unix98): Section 2.2 [Input and Output Primitives], page 20.

PRIO_MAX

‘sys/resource.h’ (BSD): Section 14.3.4.2 [Functions for Traditional Schedul-
ing], page 350.

PRIO_MIN

‘sys/resource.h’ (BSD): Section 14.3.4.2 [Functions for Traditional Schedul-
ing], page 350.

PRIO_PGRP

‘sys/resource.h’ (BSD): Section 14.3.4.2 [Functions for Traditional Schedul-
ing], page 350.

PRIO_PROCESS
‘sys/resource.h’ (BSD): Section 14.3.4.2 [Functions for Traditional Schedul-
ing], page 350.

506 The GNU C Library: System & Network Applications

PRIO_USER

‘sys/resource.h’ (BSD): Section 14.3.4.2 [Functions for Traditional Schedul-
ing], page 350.

void psignal (int signum, const char *message)
‘signal.h’ (BSD): Section 17.2.8 [Signal Messages], page 388.

int pthread_atfork (void (*prepare)(void), void (*parent)(void), void
(*child)(void))

‘pthread.h’ (POSIX): Section 18.10 [Threads and Fork], page 448.

int pthread_attr_destroy (pthread_attr_t *attr)
‘pthread.h’ (POSIX): Section 18.2 [Thread Attributessection Thread Attributes],
page 430.

int pthread_attr_getattr (const pthread_attr_t *obj, int *value)
‘pthread.h’ (POSIX): Section 18.2 [Thread Attributessection Thread Attributes],
page 430.

int pthread_attr_init (pthread_attr_t *attr)
‘pthread.h’ (POSIX): Section 18.2 [Thread Attributessection Thread Attributes],
page 430.

int pthread_attr_setattr (pthread_attr_t *obj, int value)
‘pthread.h’ (POSIX): Section 18.2 [Thread Attributessection Thread Attributes],
page 430.

int pthread_cancel (pthread_t thread)
‘pthread.h’ (POSIX): Section 18.1 [Basic Thread Operations], page 429.

void pthread_cleanup_pop (int execute)
‘pthread.h’ (POSIX): Section 18.4 [Clean-Up Handlers], page 435.

void pthread_cleanup_pop_restore_np (int execute)
‘pthread.h’ (GNU): Section 18.4 [Clean-Up Handlers], page 435.

void pthread_cleanup_push (void (*routine) (void *), void *arg)
‘pthread.h’ (POSIX): Section 18.4 [Clean-Up Handlers], page 435.

void pthread_cleanup_push_defer_np (void (*routine) (void *), void *arg)
‘pthread.h’ (GNU): Section 18.4 [Clean-Up Handlers], page 435.

int pthread_condattr_init (pthread_condattr_t *attr)
‘pthread.h’ (POSIX): Section 18.6 [Condition Variables], page 441.

int pthread_cond_broadcast (pthread_cond_t *cond)
‘pthread.h’ (POSIX): Section 18.6 [Condition Variables], page 441.

int pthread_cond_destroy (pthread_cond_t *cond)
‘pthread.h’ (POSIX): Section 18.6 [Condition Variables], page 441.

int pthread_cond_init (pthread_cond_t *cond, pthread_condattr_t
*cond_attr)

‘pthread.h’ (POSIX): Section 18.6 [Condition Variables], page 441.

int pthread_cond_signal (pthread_cond_t *cond)
‘pthread.h’ (POSIX): Section 18.6 [Condition Variables], page 441.

int pthread_cond_timedwait (pthread_cond_t *cond, pthread_mutex_t
*mutex, const struct timespec *abstime)

‘pthread.h’ (POSIX): Section 18.6 [Condition Variables], page 441.

Appendix B: Summary of Library Facilities 507

int pthread_cond_wait (pthread_cond_t *cond, pthread_mutex_t *mutex)
‘pthread.h’ (POSIX): Section 18.6 [Condition Variables], page 441.

int pthread_create (pthread_t * thread, pthread_attr_t * attr, void *
(*start routine)(void *), void * arg)

‘pthread.h’ (POSIX): Section 18.1 [Basic Thread Operations], page 429.

int pthread_detach (pthread_t th)
‘pthread.h’ (POSIX): Section 18.12 [Miscellaneous Thread Functions],
page 451.

int pthread_equal (pthread_t thread1, pthread_t thread2)
‘pthread.h’ (POSIX): Section 18.12 [Miscellaneous Thread Functions],
page 451.

void pthread_exit (void *retval)
‘pthread.h’ (POSIX): Section 18.1 [Basic Thread Operations], page 429.

int pthread_getconcurrency ()
‘pthread.h’ (POSIX): Section 18.12 [Miscellaneous Thread Functions],
page 451.

int pthread_getschedparam (pthread_t target_thread, int *policy, struct
sched_param *param)

‘pthread.h’ (POSIX): Section 18.12 [Miscellaneous Thread Functions],
page 451.

void * pthread_getspecific (pthread_key_t key)
‘pthread.h’ (POSIX): Section 18.8 [Thread-Specific Data], page 445.

int pthread_join (pthread_t th, void **thread_return)
‘pthread.h’ (POSIX): Section 18.1 [Basic Thread Operations], page 429.

int pthread_key_create (pthread_key_t *key, void (*destr_function)
(void *))

‘pthread.h’ (POSIX): Section 18.8 [Thread-Specific Data], page 445.

int pthread_key_delete (pthread_key_t key)
‘pthread.h’ (POSIX): Section 18.8 [Thread-Specific Data], page 445.

int pthread_kill (pthread_t thread, int signo)
‘pthread.h’ (POSIX): Section 18.9 [Threads and Signal-Handling], page 447.

void pthread_kill_other_threads_np (void)
‘pthread.h’ (GNU): Section 18.12 [Miscellaneous Thread Functions], page 451.

int pthread_mutexattr_destroy (pthread_mutexattr_t *attr)
‘pthread.h’ (POSIX): Section 18.5 [Mutexes], page 437.

int pthread_mutexattr_gettype (const pthread_mutexattr_t *attr, int
*type)

‘pthread.h’ (POSIX): Section 18.5 [Mutexes], page 437.

int pthread_mutexattr_init (pthread_mutexattr_t *attr)
‘pthread.h’ (POSIX): Section 18.5 [Mutexes], page 437.

int pthread_mutexattr_settype (pthread_mutexattr_t *attr, int type)
‘pthread.h’ (POSIX): Section 18.5 [Mutexes], page 437.

int pthread_mutex_destroy (pthread_mutex_t *mutex)
‘pthread.h’ (POSIX): Section 18.5 [Mutexes], page 437.

508 The GNU C Library: System & Network Applications

int pthread_mutex_init (pthread_mutex_t *mutex, const
pthread_mutexattr_t *mutexattr)

‘pthread.h’ (POSIX): Section 18.5 [Mutexes], page 437.

int pthread_mutex_lock (pthread_mutex_t *mutex))
‘pthread.h’ (POSIX): Section 18.5 [Mutexes], page 437.

int pthread_mutex_timedlock (pthread_mutex_t *mutex, const struct
timespec *abstime)

‘pthread.h’ (POSIX): Section 18.5 [Mutexes], page 437.

int pthread_mutex_trylock (pthread_mutex_t *mutex)
‘pthread.h’ (POSIX): Section 18.5 [Mutexes], page 437.

int pthread_mutex_unlock (pthread_mutex_t *mutex)
‘pthread.h’ (POSIX): Section 18.5 [Mutexes], page 437.

int pthread_once (pthread_once_t *once_control, void (*init routine) (void))
‘pthread.h’ (POSIX): Section 18.12 [Miscellaneous Thread Functions],
page 451.

pthread_t pthread_self (void)
‘pthread.h’ (POSIX): Section 18.12 [Miscellaneous Thread Functions],
page 451.

int pthread_setcancelstate (int state, int *oldstate)
‘pthread.h’ (POSIX): Section 18.3 [Cancellation], page 433.

int pthread_setcanceltype (int type, int *oldtype)
‘pthread.h’ (POSIX): Section 18.3 [Cancellation], page 433.

int pthread_setconcurrency (int level)
‘pthread.h’ (POSIX): Section 18.12 [Miscellaneous Thread Functions],
page 451.

int pthread_setschedparam (pthread_t target_thread, int policy, const
struct sched_param *param)

‘pthread.h’ (POSIX): Section 18.12 [Miscellaneous Thread Functions],
page 451.

int pthread_setspecific (pthread_key_t key, const void *pointer)
‘pthread.h’ (POSIX): Section 18.8 [Thread-Specific Data], page 445.

int pthread_sigmask (int how, const sigset_t *newmask, sigset_t *oldmask)
‘pthread.h’ (POSIX): Section 18.9 [Threads and Signal-Handling], page 447.

void pthread_testcancel (void)
‘pthread.h’ (POSIX): Section 18.3 [Cancellation], page 433.

char * P_tmpdir
‘stdio.h’ (SVID): Section 3.11 [Temporary Files], page 114.

ptrdiff_t

‘stddef.h’ (ISO): Section A.4 [Important Data-Types], page 464.

char * ptsname (int filedes)
‘stdlib.h’ (SVID, XPG4.2): Section 6.8.1 [Allocating Pseudoterminals],
page 205.

Appendix B: Summary of Library Facilities 509

int ptsname_r (int filedes, char *buf, size_t len)
‘stdlib.h’ (GNU): Section 6.8.1 [Allocating Pseudoterminals], page 205.

int putpwent (const struct passwd *p, FILE *stream)
‘pwd.h’ (SVID): Section 10.13.4 [Writing a User Entry], page 276.

struct utmp * pututline (const struct utmp *utmp)
‘utmp.h’ (SVID): Section 10.12.1 [Manipulating the User-Accounting Database],
page 265.

struct utmpx * pututxline (const struct utmpx *utmp)
‘utmpx.h’ (XPG4.2): Section 10.12.2 [XPG User-Accounting Database Functions],
page 270.

ssize_t pwrite (int filedes, const void *buffer, size_t size, off_t offset)
‘unistd.h’ (Unix98): Section 2.2 [Input and Output Primitives], page 20.

ssize_t pwrite64 (int filedes, const void *buffer, size_t size, off64_t offset)
‘unistd.h’ (Unix98): Section 2.2 [Input and Output Primitives], page 20.

int raise (int signum)
‘signal.h’ (ISO): Section 17.6.1 [Signaling Yourself], page 409.

ssize_t read (int filedes, void *buffer, size_t size)
‘unistd.h’ (POSIX.1): Section 2.2 [Input and Output Primitives], page 20.

struct dirent * readdir (DIR *dirstream)
‘dirent.h’ (POSIX.1): Section 3.2.3 [Reading and Closing a Directory Stream],
page 76.

struct dirent64 * readdir64 (DIR *dirstream)
‘dirent.h’ (LFS): Section 3.2.3 [Reading and Closing a Directory Stream],
page 76.

int readdir64_r (DIR *dirstream, struct dirent64 *entry, struct dirent64
**result)

‘dirent.h’ (LFS): Section 3.2.3 [Reading and Closing a Directory Stream],
page 76.

int readdir_r (DIR *dirstream, struct dirent *entry, struct dirent **result)
‘dirent.h’ (GNU): Section 3.2.3 [Reading and Closing a Directory Stream],
page 76.

int readlink (const char *filename, char *buffer, size_t size)
‘unistd.h’ (BSD): Section 3.5 [Symbolic Links], page 87.

ssize_t readv (int filedes, const struct iovec *vector, int count)
‘sys/uio.h’ (BSD): Section 2.6 [Fast Scatter-Gather I/O], page 31.

char * realpath (const char *restrict name, char *restrict resolved)
‘stdlib.h’ (XPG): Section 3.5 [Symbolic Links], page 87.

int recv (int socket, void *buffer, size_t size, int flags)
‘sys/socket.h’ (BSD): Section 5.9.5.2 [Receiving Data], page 158.

int recvfrom (int socket, void *buffer, size_t size, int flags, struct sockaddr
*addr, socklen_t *length-ptr)

‘sys/socket.h’ (BSD): Section 5.10.2 [Receiving Datagrams], page 168.

int recvmsg (int socket, struct msghdr *message, int flags)
‘sys/socket.h’ (BSD): Section 5.10.2 [Receiving Datagrams], page 168.

510 The GNU C Library: System & Network Applications

int RE_DUP_MAX
‘limits.h’ (POSIX.2): Section 12.1 [General Capacity-Limits], page 303.

_REENTRANT
(GNU): Section 1.3.4 [Feature-Test Macros], page 8.

int remove (const char *filename)
‘stdio.h’ (ISO): Section 3.6 [Deleting Files], page 90.

int rename (const char *oldname, const char *newname)
‘stdio.h’ (ISO): Section 3.7 [Renaming Files], page 91.

void rewinddir (DIR *dirstream)
‘dirent.h’ (POSIX.1): Section 3.2.5 [Random Access in a Directory Stream],
page 78.

int RLIM_INFINITY
‘sys/resource.h’ (BSD): Section 14.2 [Limiting Resource Usage], page 338.

RLIMIT_AS

‘sys/resource.h’ (Unix98): Section 14.2 [Limiting Resource Usage], page 338.

RLIMIT_CORE
‘sys/resource.h’ (BSD): Section 14.2 [Limiting Resource Usage], page 338.

RLIMIT_CPU
‘sys/resource.h’ (BSD): Section 14.2 [Limiting Resource Usage], page 338.

RLIMIT_DATA
‘sys/resource.h’ (BSD): Section 14.2 [Limiting Resource Usage], page 338.

RLIMIT_FSIZE
‘sys/resource.h’ (BSD): Section 14.2 [Limiting Resource Usage], page 338.

RLIMIT_MEMLOCK
‘sys/resource.h’ (BSD): Section 14.2 [Limiting Resource Usage], page 338.

RLIMIT_NOFILE
‘sys/resource.h’ (BSD): Section 14.2 [Limiting Resource Usage], page 338.

RLIMIT_NPROC
‘sys/resource.h’ (BSD): Section 14.2 [Limiting Resource Usage], page 338.

RLIMIT_RSS
‘sys/resource.h’ (BSD): Section 14.2 [Limiting Resource Usage], page 338.

RLIMIT_STACK
‘sys/resource.h’ (BSD): Section 14.2 [Limiting Resource Usage], page 338.

RLIM_NLIMITS
‘sys/resource.h’ (BSD): Section 14.2 [Limiting Resource Usage], page 338.

int rmdir (const char *filename)
‘unistd.h’ (POSIX.1): Section 3.6 [Deleting Files], page 90.

int R_OK

‘unistd.h’ (POSIX.1): Section 3.9.8 [Testing Permission to Access a File],
page 106.

Appendix B: Summary of Library Facilities 511

RUN_LVL

‘utmp.h’ (SVID): Section 10.12.1 [Manipulating the User-Accounting Database],
page 265.

RUN_LVL

‘utmpx.h’ (XPG4.2): Section 10.12.2 [XPG User-Accounting Database Functions],
page 270.

RUSAGE_CHILDREN
‘sys/resource.h’ (BSD): Section 14.1 [Resource Usage], page 335.

RUSAGE_SELF
‘sys/resource.h’ (BSD): Section 14.1 [Resource Usage], page 335.

int SA_NOCLDSTOP
‘signal.h’ (POSIX.1): Section 17.3.5 [Flags for sigaction], page 395.

int SA_ONSTACK
‘signal.h’ (BSD): Section 17.3.5 [Flags for sigaction], page 395.

int SA_RESTART
‘signal.h’ (BSD): Section 17.3.5 [Flags for sigaction], page 395.

_SC_2_C_DEV
‘unistd.h’ (POSIX.2): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_2_FORT_DEV
‘unistd.h’ (POSIX.2): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_2_FORT_RUN
‘unistd.h’ (POSIX.2): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_2_LOCALEDEF
‘unistd.h’ (POSIX.2): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_2_SW_DEV
‘unistd.h’ (POSIX.2): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_2_VERSION
‘unistd.h’ (POSIX.2): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_AIO_LISTIO_MAX
‘unistd.h’ (POSIX.1): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_AIO_MAX
‘unistd.h’ (POSIX.1): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_AIO_PRIO_DELTA_MAX
‘unistd.h’ (POSIX.1): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

512 The GNU C Library: System & Network Applications

int scandir (const char *dir, struct dirent ***namelist, int (*selector) (const
struct dirent *), int (*cmp) (const void *, const void *))

‘dirent.h’ (BSD/SVID): Section 3.2.6 [Scanning the Content of a Directory],
page 79.

int scandir64 (const char *dir, struct dirent64 ***namelist, int (*selector)
(const struct dirent64 *), int (*cmp) (const void *, const void *))

‘dirent.h’ (GNU): Section 3.2.6 [Scanning the Content of a Directory], page 79.

_SC_ARG_MAX
‘unistd.h’ (POSIX.1): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_ASYNCHRONOUS_IO
‘unistd.h’ (POSIX.1): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_ATEXIT_MAX
‘unistd.h’ (GNU): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_AVPHYS_PAGES
‘unistd.h’ (GNU): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_BC_BASE_MAX
‘unistd.h’ (POSIX.2): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_BC_DIM_MAX
‘unistd.h’ (POSIX.2): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_BC_SCALE_MAX
‘unistd.h’ (POSIX.2): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_BC_STRING_MAX
‘unistd.h’ (POSIX.2): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_CHAR_BIT
‘unistd.h’ (X/Open): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_CHARCLASS_NAME_MAX
‘unistd.h’ (GNU): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_CHAR_MAX
‘unistd.h’ (X/Open): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_CHAR_MIN
‘unistd.h’ (X/Open): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_CHILD_MAX
‘unistd.h’ (POSIX.1): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

Appendix B: Summary of Library Facilities 513

_SC_CLK_TCK
‘unistd.h’ (POSIX.1): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_COLL_WEIGHTS_MAX
‘unistd.h’ (POSIX.2): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_DELAYTIMER_MAX
‘unistd.h’ (POSIX.1): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_EQUIV_CLASS_MAX
‘unistd.h’ (POSIX.2): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_EXPR_NEST_MAX
‘unistd.h’ (POSIX.2): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_FSYNC

‘unistd.h’ (POSIX.1): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_GETGR_R_SIZE_MAX
‘unistd.h’ (POSIX.1): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_GETPW_R_SIZE_MAX
‘unistd.h’ (POSIX.1): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

SCHAR_MAX

‘limits.h’ (ISO): Section A.5.2 [Range of an Integer Type], page 465.

SCHAR_MIN

‘limits.h’ (ISO): Section A.5.2 [Range of an Integer Type], page 465.

int sched_getaffinity (pid_t pid, cpu_set_t *cpuset)
‘sched.h’ (GNU): Section 14.3.5 [Limiting Execution to Certain CPUs], page 352.

int sched_getparam (pid_t pid, const struct sched_param *param)
‘sched.h’ (POSIX): Section 14.3.3 [Basic Scheduling Functions], page 346.

int sched_get_priority_max (int *policy);
‘sched.h’ (POSIX): Section 14.3.3 [Basic Scheduling Functions], page 346.

int sched_get_priority_min (int *policy);
‘sched.h’ (POSIX): Section 14.3.3 [Basic Scheduling Functions], page 346.

int sched_getscheduler (pid_t pid)
‘sched.h’ (POSIX): Section 14.3.3 [Basic Scheduling Functions], page 346.

int sched_rr_get_interval (pid_t pid, struct timespec *interval)
‘sched.h’ (POSIX): Section 14.3.3 [Basic Scheduling Functions], page 346.

int sched_setaffinity (pid_t pid, const cpu_set_t *cpuset)
‘sched.h’ (GNU): Section 14.3.5 [Limiting Execution to Certain CPUs], page 352.

514 The GNU C Library: System & Network Applications

int sched_setparam (pid_t pid, const struct sched_param *param)
‘sched.h’ (POSIX): Section 14.3.3 [Basic Scheduling Functions], page 346.

int sched_setscheduler (pid_t pid, int policy, const struct sched_param
*param)

‘sched.h’ (POSIX): Section 14.3.3 [Basic Scheduling Functions], page 346.

int sched_yield (void)
‘sched.h’ (POSIX): Section 14.3.3 [Basic Scheduling Functions], page 346.

_SC_INT_MAX
‘unistd.h’ (X/Open): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_INT_MIN
‘unistd.h’ (X/Open): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_JOB_CONTROL
‘unistd.h’ (POSIX.1): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_LINE_MAX
‘unistd.h’ (POSIX.2): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_LOGIN_NAME_MAX
‘unistd.h’ (POSIX.1): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_LONG_BIT
‘unistd.h’ (X/Open): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_MAPPED_FILES
‘unistd.h’ (POSIX.1): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_MB_LEN_MAX
‘unistd.h’ (X/Open): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_MEMLOCK
‘unistd.h’ (POSIX.1): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_MEMLOCK_RANGE
‘unistd.h’ (POSIX.1): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_MEMORY_PROTECTION
‘unistd.h’ (POSIX.1): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_MESSAGE_PASSING
‘unistd.h’ (POSIX.1): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

Appendix B: Summary of Library Facilities 515

_SC_MQ_OPEN_MAX
‘unistd.h’ (POSIX.1): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_MQ_PRIO_MAX
‘unistd.h’ (POSIX.1): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_NGROUPS_MAX
‘unistd.h’ (POSIX.1): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_NL_ARGMAX
‘unistd.h’ (X/Open): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_NL_LANGMAX
‘unistd.h’ (X/Open): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_NL_MSGMAX
‘unistd.h’ (X/Open): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_NL_NMAX
‘unistd.h’ (X/Open): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_NL_SETMAX
‘unistd.h’ (X/Open): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_NL_TEXTMAX
‘unistd.h’ (X/Open): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_NPROCESSORS_CONF
‘unistd.h’ (GNU): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_NPROCESSORS_ONLN
‘unistd.h’ (GNU): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_NZERO

‘unistd.h’ (X/Open): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_OPEN_MAX
‘unistd.h’ (POSIX.1): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_PAGESIZE
‘unistd.h’ (GNU): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_PHYS_PAGES
‘unistd.h’ (GNU): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

516 The GNU C Library: System & Network Applications

_SC_PII

‘unistd.h’ (POSIX.1g): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_PII_INTERNET
‘unistd.h’ (POSIX.1g): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_PII_INTERNET_DGRAM
‘unistd.h’ (POSIX.1g): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_PII_INTERNET_STREAM
‘unistd.h’ (POSIX.1g): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_PII_OSI
‘unistd.h’ (POSIX.1g): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_PII_OSI_CLTS
‘unistd.h’ (POSIX.1g): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_PII_OSI_COTS
‘unistd.h’ (POSIX.1g): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_PII_OSI_M
‘unistd.h’ (POSIX.1g): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_PII_SOCKET
‘unistd.h’ (POSIX.1g): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_PII_XTI
‘unistd.h’ (POSIX.1g): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_PRIORITIZED_IO
‘unistd.h’ (POSIX.1): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_PRIORITY_SCHEDULING
‘unistd.h’ (POSIX.1): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_REALTIME_SIGNALS
‘unistdh.h’ (POSIX.1): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_RTSIG_MAX
‘unistd.h’ (POSIX.1): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_SAVED_IDS
‘unistd.h’ (POSIX.1): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

Appendix B: Summary of Library Facilities 517

_SC_SCHAR_MAX
‘unistd.h’ (X/Open): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_SCHAR_MIN
‘unistd.h’ (X/Open): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_SELECT
‘unistd.h’ (POSIX.1g): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_SEMAPHORES
‘unistd.h’ (POSIX.1): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_SEM_NSEMS_MAX
‘unistd.h’ (POSIX.1): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_SEM_VALUE_MAX
‘unistd.h’ (POSIX.1): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_SHARED_MEMORY_OBJECTS
‘unistd.h’ (POSIX.1): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_SHRT_MAX
‘unistd.h’ (X/Open): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_SHRT_MIN
‘unistd.h’ (X/Open): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_SIGQUEUE_MAX
‘unistd.h’ (POSIX.1): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

SC_SSIZE_MAX
‘unistd.h’ (X/Open): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_STREAM_MAX
‘unistd.h’ (POSIX.1): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_SYNCHRONIZED_IO
‘unistd.h’ (POSIX.1): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_THREAD_ATTR_STACKADDR
‘unistd.h’ (POSIX.1): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_THREAD_ATTR_STACKSIZE
‘unistd.h’ (POSIX.1): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

518 The GNU C Library: System & Network Applications

_SC_THREAD_DESTRUCTOR_ITERATIONS
‘unistd.h’ (POSIX.1): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_THREAD_KEYS_MAX
‘unistd.h’ (POSIX.1): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_THREAD_PRIO_INHERIT
‘unistd.h’ (POSIX.1): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_THREAD_PRIO_PROTECT
‘unistd.h’ (POSIX.1): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_THREAD_PRIORITY_SCHEDULING
‘unistd.h’ (POSIX.1): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_THREAD_PROCESS_SHARED
‘unistd.h’ (POSIX.1): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_THREADS
‘unistd.h’ (POSIX.1): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_THREAD_SAFE_FUNCTIONS
‘unistd.h’ (POSIX.1): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_THREAD_STACK_MIN
‘unistd.h’ (POSIX.1): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_THREAD_THREADS_MAX
‘unistd.h’ (POSIX.1): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_TIMER_MAX
‘unistd.h’ (POSIX.1): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_TIMERS
‘unistd.h’ (POSIX.1): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_T_IOV_MAX
‘unistd.h’ (POSIX.1g): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_TTY_NAME_MAX
‘unistd.h’ (POSIX.1): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_TZNAME_MAX
‘unistd.h’ (POSIX.1): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

Appendix B: Summary of Library Facilities 519

_SC_UCHAR_MAX
‘unistd.h’ (X/Open): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_UINT_MAX
‘unistd.h’ (X/Open): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_UIO_MAXIOV
‘unistd.h’ (POSIX.1g): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_ULONG_MAX
‘unistd.h’ (X/Open): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_USHRT_MAX
‘unistd.h’ (X/Open): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_VERSION
‘unistd.h’ (POSIX.1): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_VERSION
‘unistd.h’ (POSIX.2): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_WORD_BIT
‘unistd.h’ (X/Open): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_XOPEN_CRYPT
‘unistd.h’ (X/Open): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_XOPEN_ENH_I18N
‘unistd.h’ (X/Open): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_XOPEN_LEGACY
‘unistd.h’ (X/Open): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_XOPEN_REALTIME
‘unistd.h’ (X/Open): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_XOPEN_REALTIME_THREADS
‘unistd.h’ (X/Open): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_XOPEN_SHM
‘unistd.h’ (X/Open): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_XOPEN_UNIX
‘unistd.h’ (X/Open): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

520 The GNU C Library: System & Network Applications

_SC_XOPEN_VERSION
‘unistd.h’ (X/Open): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_XOPEN_XCU_VERSION
‘unistd.h’ (X/Open): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_XOPEN_XPG2
‘unistd.h’ (X/Open): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_XOPEN_XPG3
‘unistd.h’ (X/Open): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

_SC_XOPEN_XPG4
‘unistd.h’ (X/Open): Section 12.4.2 [Constants for sysconf Parameters],
page 307.

void seekdir (DIR *dirstream, off_t pos)
‘dirent.h’ (BSD): Section 3.2.5 [Random Access in a Directory Stream], page 78.

int select (int nfds, fd_set *read-fds, fd_set *write-fds, fd_set *except-fds,
struct timeval *timeout)

‘sys/types.h’ (BSD): Section 2.8 [Waiting for Input or Output], page 37.

int sem_destroy (sem_t * sem)
‘semaphore.h’ (POSIX): Section 18.7 [POSIX Semaphores], page 444.

int sem_getvalue (sem_t * sem, int * sval)
‘semaphore.h’ (POSIX): Section 18.7 [POSIX Semaphores], page 444.

int sem_init (sem_t *sem, int pshared, unsigned int value)
‘semaphore.h’ (POSIX): Section 18.7 [POSIX Semaphores], page 444.

int sem_post (sem_t * sem)
‘semaphore.h’ (POSIX): Section 18.7 [POSIX Semaphores], page 444.

int sem_trywait (sem_t * sem)
‘semaphore.h’ (POSIX): Section 18.7 [POSIX Semaphores], page 444.

int sem_wait (sem_t * sem)
‘semaphore.h’ (POSIX): Section 18.7 [POSIX Semaphores], page 444.

int send (int socket, void *buffer, size_t size, int flags)
‘sys/socket.h’ (BSD): Section 5.9.5.1 [Sending Data], page 157.

int sendmsg (int socket, const struct msghdr *message, int flags)
‘sys/socket.h’ (BSD): Section 5.10.2 [Receiving Datagrams], page 168.

int sendto (int socket, void *buffer. size_t size, int flags, struct sockaddr
*addr, socklen_t length)

‘sys/socket.h’ (BSD): Section 5.10.1 [Sending Datagrams], page 167.

int setcontext (const ucontext_t *ucp)
‘ucontext.h’ (SVID): Section 16.4 [Complete Context Control], page 370.

int setdomainname (const char *name, size_t length)
‘unistd.h’ (Unknown origin): Section 11.1 [Host Identification], page 285.

Appendix B: Summary of Library Facilities 521

int setegid (gid_t newgid)
‘unistd.h’ (POSIX.1): Section 10.7 [Setting the Group IDs], page 257.

int seteuid (uid_t neweuid)
‘unistd.h’ (POSIX.1): Section 10.6 [Setting the User ID], page 256.

int setfsent (void)
‘fstab.h’ (BSD): Section 11.3.1.1 [The ‘fstab’ File], page 290.

int setgid (gid_t newgid)
‘unistd.h’ (POSIX.1): Section 10.7 [Setting the Group IDs], page 257.

void setgrent (void)
‘grp.h’ (SVID, BSD): Section 10.14.3 [Scanning the List of All Groups], page 278.

int setgroups (size_t count, gid_t *groups)
‘grp.h’ (BSD): Section 10.7 [Setting the Group IDs], page 257.

void sethostent (int stayopen)
‘netdb.h’ (BSD): Section 5.6.2.4 [Host Names], page 141.

int sethostid (long int id)
‘unistd.h’ (BSD): Section 11.1 [Host Identification], page 285.

int sethostname (const char *name, size_t length)
‘unistd.h’ (BSD): Section 11.1 [Host Identification], page 285.

int setjmp (jmp_buf state)
‘setjmp.h’ (ISO): Section 16.2 [Details of Nonlocal Exits], page 369.

void setkey (const char *key)
‘crypt.h’ (BSD, SVID): Section 13.4 [DES Encryption], page 331.

void setkey_r (const char *key, struct crypt_data * data)
‘crypt.h’ (GNU): Section 13.4 [DES Encryption], page 331.

int setlogmask (int mask)
‘syslog.h’ (BSD): Section 15.2.4 [setlogmask], page 365.

FILE * setmntent (const char *file, const char *mode)
‘mntent.h’ (BSD): Section 11.3.1.2 [The ‘mtab’ File], page 292.

void setnetent (int stayopen)
‘netdb.h’ (BSD): Section 5.13 [Networks Database], page 176.

int setnetgrent (const char *netgroup)
‘netdb.h’ (BSD): Section 10.16.2 [Looking Up One Netgroup], page 282.

int setpgid (pid_t pid, pid_t pgid)
‘unistd.h’ (POSIX.1): Section 8.7.2 [Process-Group Functions], page 239.

int setpgrp (pid_t pid, pid_t pgid)
‘unistd.h’ (BSD): Section 8.7.2 [Process-Group Functions], page 239.

int setpriority (int class, int id, int niceval)
‘sys/resource.h’ (BSD,POSIX): Section 14.3.4.2 [Functions for Traditional
Scheduling], page 350.

void setprotoent (int stayopen)
‘netdb.h’ (BSD): Section 5.6.6 [Protocols Database], page 147.

522 The GNU C Library: System & Network Applications

void setpwent (void)
‘pwd.h’ (SVID, BSD): Section 10.13.3 [Scanning the List of All Users], page 275.

int setregid (gid_t rgid, gid_t egid)
‘unistd.h’ (BSD): Section 10.7 [Setting the Group IDs], page 257.

int setreuid (uid_t ruid, uid_t euid)
‘unistd.h’ (BSD): Section 10.6 [Setting the User ID], page 256.

int setrlimit (int resource, const struct rlimit *rlp)
‘sys/resource.h’ (BSD): Section 14.2 [Limiting Resource Usage], page 338.

int setrlimit64 (int resource, const struct rlimit64 *rlp)
‘sys/resource.h’ (Unix98): Section 14.2 [Limiting Resource Usage], page 338.

void setservent (int stayopen)
‘netdb.h’ (BSD): Section 5.6.4 [The Services Database], page 145.

pid_t setsid (void)
‘unistd.h’ (POSIX.1): Section 8.7.2 [Process-Group Functions], page 239.

int setsockopt (int socket, int level, int optname, void *optval, socklen_t
optlen)

‘sys/socket.h’ (BSD): Section 5.12.1 [Socket Option Functions], page 173.

int setuid (uid_t newuid)
‘unistd.h’ (POSIX.1): Section 10.6 [Setting the User ID], page 256.

void setutent (void)
‘utmp.h’ (SVID): Section 10.12.1 [Manipulating the User-Accounting Database],
page 265.

void setutxent (void)
‘utmpx.h’ (XPG4.2): Section 10.12.2 [XPG User-Accounting Database Functions],
page 270.

SHRT_MAX

‘limits.h’ (ISO): Section A.5.2 [Range of an Integer Type], page 465.

SHRT_MIN

‘limits.h’ (ISO): Section A.5.2 [Range of an Integer Type], page 465.

int shutdown (int socket, int how)
‘sys/socket.h’ (BSD): Section 5.8.2 [Closing a Socket], page 152.

S_IEXEC

‘sys/stat.h’ (BSD): Section 3.9.5 [The Mode Bits for Access Permission],
page 102.

S_IFBLK

‘sys/stat.h’ (BSD): Section 3.9.3 [Testing the Type of a File], page 99.

S_IFCHR

‘sys/stat.h’ (BSD): Section 3.9.3 [Testing the Type of a File], page 99.

S_IFDIR

‘sys/stat.h’ (BSD): Section 3.9.3 [Testing the Type of a File], page 99.

Appendix B: Summary of Library Facilities 523

S_IFIFO

‘sys/stat.h’ (BSD): Section 3.9.3 [Testing the Type of a File], page 99.

S_IFLNK

‘sys/stat.h’ (BSD): Section 3.9.3 [Testing the Type of a File], page 99.

int S_IFMT
‘sys/stat.h’ (BSD): Section 3.9.3 [Testing the Type of a File], page 99.

S_IFREG

‘sys/stat.h’ (BSD): Section 3.9.3 [Testing the Type of a File], page 99.

S_IFSOCK

‘sys/stat.h’ (BSD): Section 3.9.3 [Testing the Type of a File], page 99.

int SIGABRT
‘signal.h’ (ISO): Section 17.2.1 [Program-Error Signals], page 379.

int sigaction (int signum, const struct sigaction *restrict action, struct
sigaction *restrict old-action)

‘signal.h’ (POSIX.1): Section 17.3.2 [Advanced Signal-Handling], page 392.

int sigaddset (sigset_t *set, int signum)
‘signal.h’ (POSIX.1): Section 17.7.2 [Signal Sets], page 414.

int SIGALRM
‘signal.h’ (POSIX.1): Section 17.2.3 [Alarm Signals], page 384.

int sigaltstack (const stack_t *restrict stack, stack_t *restrict oldstack)
‘signal.h’ (XPG): Section 17.9 [Using a Separate Signal-Stack], page 424.

sig_atomic_t
‘signal.h’ (ISO): Section 17.4.7.2 [Atomic Types], page 407.

int sigblock (int mask)
‘signal.h’ (BSD): Section 17.10.2 [BSD Functions for Blocking Signals],
page 427.

SIG_BLOCK

‘signal.h’ (POSIX.1): Section 17.7.3 [Process Signal-Mask], page 416.

int SIGBUS
‘signal.h’ (BSD): Section 17.2.1 [Program-Error Signals], page 379.

int SIGCHLD
‘signal.h’ (POSIX.1): Section 17.2.5 [Job Control Signals], page 385.

int SIGCLD
‘signal.h’ (SVID): Section 17.2.5 [Job Control Signals], page 385.

int SIGCONT
‘signal.h’ (POSIX.1): Section 17.2.5 [Job Control Signals], page 385.

int sigdelset (sigset_t *set, int signum)
‘signal.h’ (POSIX.1): Section 17.7.2 [Signal Sets], page 414.

int sigemptyset (sigset_t *set)
‘signal.h’ (POSIX.1): Section 17.7.2 [Signal Sets], page 414.

524 The GNU C Library: System & Network Applications

int SIGEMT
‘signal.h’ (BSD): Section 17.2.1 [Program-Error Signals], page 379.

sighandler_t SIG_ERR
‘signal.h’ (ISO): Section 17.3.1 [Basic Signal-Handling], page 389.

int sigfillset (sigset_t *set)
‘signal.h’ (POSIX.1): Section 17.7.2 [Signal Sets], page 414.

int SIGFPE
‘signal.h’ (ISO): Section 17.2.1 [Program-Error Signals], page 379.

sighandler_t
‘signal.h’ (GNU): Section 17.3.1 [Basic Signal-Handling], page 389.

int SIGHUP
‘signal.h’ (POSIX.1): Section 17.2.2 [Termination Signals], page 382.

int SIGILL
‘signal.h’ (ISO): Section 17.2.1 [Program-Error Signals], page 379.

int SIGINFO
‘signal.h’ (BSD): Section 17.2.7 [Miscellaneous Signals], page 387.

int SIGINT
‘signal.h’ (ISO): Section 17.2.2 [Termination Signals], page 382.

int siginterrupt (int signum, int failflag)
‘signal.h’ (BSD): Section 17.10.1 [BSD Function to Establish a Handler],
page 426.

int SIGIO

‘signal.h’ (BSD): Section 17.2.4 [Asynchronous-I/O Signals], page 384.

int SIGIOT
‘signal.h’ (Unix): Section 17.2.1 [Program-Error Signals], page 379.

int sigismember (const sigset_t *set, int signum)
‘signal.h’ (POSIX.1): Section 17.7.2 [Signal Sets], page 414.

sigjmp_buf
‘setjmp.h’ (POSIX.1): Section 16.3 [Nonlocal Exits and Signals], page 370.

int SIGKILL
‘signal.h’ (POSIX.1): Section 17.2.2 [Termination Signals], page 382.

void siglongjmp (sigjmp_buf state, int value)
‘setjmp.h’ (POSIX.1): Section 16.3 [Nonlocal Exits and Signals], page 370.

int SIGLOST
‘signal.h’ (GNU): Section 17.2.6 [Operation-Error Signals], page 387.

int sigmask (int signum)
‘signal.h’ (BSD): Section 17.10.2 [BSD Functions for Blocking Signals],
page 427.

sighandler_t signal (int signum, sighandler_t action)
‘signal.h’ (ISO): Section 17.3.1 [Basic Signal-Handling], page 389.

int sigpause (int mask)
‘signal.h’ (BSD): Section 17.10.2 [BSD Functions for Blocking Signals],
page 427.

Appendix B: Summary of Library Facilities 525

int sigpending (sigset_t *set)
‘signal.h’ (POSIX.1): Section 17.7.6 [Checking for Pending Signals], page 419.

int SIGPIPE
‘signal.h’ (POSIX.1): Section 17.2.6 [Operation-Error Signals], page 387.

int SIGPOLL
‘signal.h’ (SVID): Section 17.2.4 [Asynchronous-I/O Signals], page 384.

int sigprocmask (int how, const sigset_t *restrict set, sigset_t
*restrict oldset)

‘signal.h’ (POSIX.1): Section 17.7.3 [Process Signal-Mask], page 416.

int SIGPROF
‘signal.h’ (BSD): Section 17.2.3 [Alarm Signals], page 384.

int SIGQUIT
‘signal.h’ (POSIX.1): Section 17.2.2 [Termination Signals], page 382.

int SIGSEGV
‘signal.h’ (ISO): Section 17.2.1 [Program-Error Signals], page 379.

int sigsetjmp (sigjmp_buf state, int savesigs)
‘setjmp.h’ (POSIX.1): Section 16.3 [Nonlocal Exits and Signals], page 370.

int sigsetmask (int mask)
‘signal.h’ (BSD): Section 17.10.2 [BSD Functions for Blocking Signals],
page 427.

SIG_SETMASK
‘signal.h’ (POSIX.1): Section 17.7.3 [Process Signal-Mask], page 416.

sigset_t

‘signal.h’ (POSIX.1): Section 17.7.2 [Signal Sets], page 414.

int sigstack (const struct sigstack *stack, struct sigstack *oldstack)
‘signal.h’ (BSD): Section 17.9 [Using a Separate Signal-Stack], page 424.

int SIGSTOP
‘signal.h’ (POSIX.1): Section 17.2.5 [Job Control Signals], page 385.

int sigsuspend (const sigset_t *set)
‘signal.h’ (POSIX.1): Section 17.8.3 [Using sigsuspend], page 423.

int SIGSYS
‘signal.h’ (Unix): Section 17.2.1 [Program-Error Signals], page 379.

int SIGTERM
‘signal.h’ (ISO): Section 17.2.2 [Termination Signals], page 382.

int SIGTRAP
‘signal.h’ (BSD): Section 17.2.1 [Program-Error Signals], page 379.

int SIGTSTP
‘signal.h’ (POSIX.1): Section 17.2.5 [Job Control Signals], page 385.

int SIGTTIN
‘signal.h’ (POSIX.1): Section 17.2.5 [Job Control Signals], page 385.

int SIGTTOU
‘signal.h’ (POSIX.1): Section 17.2.5 [Job Control Signals], page 385.

526 The GNU C Library: System & Network Applications

SIG_UNBLOCK
‘signal.h’ (POSIX.1): Section 17.7.3 [Process Signal-Mask], page 416.

int SIGURG
‘signal.h’ (BSD): Section 17.2.4 [Asynchronous-I/O Signals], page 384.

int SIGUSR1
‘signal.h’ (POSIX.1): Section 17.2.7 [Miscellaneous Signals], page 387.

int SIGUSR2
‘signal.h’ (POSIX.1): Section 17.2.7 [Miscellaneous Signals], page 387.

int sigvec (int signum, const struct sigvec *action,struct sigvec *old-action)
‘signal.h’ (BSD): Section 17.10.1 [BSD Function to Establish a Handler],
page 426.

int SIGVTALRM
‘signal.h’ (BSD): Section 17.2.3 [Alarm Signals], page 384.

int sigwait (const sigset_t *set, int *sig)
‘pthread.h’ (POSIX): Section 18.9 [Threads and Signal-Handling], page 447.

int SIGWINCH
‘signal.h’ (BSD): Section 17.2.7 [Miscellaneous Signals], page 387.

int SIGXCPU
‘signal.h’ (BSD): Section 17.2.6 [Operation-Error Signals], page 387.

int SIGXFSZ
‘signal.h’ (BSD): Section 17.2.6 [Operation-Error Signals], page 387.

S_IREAD

‘sys/stat.h’ (BSD): Section 3.9.5 [The Mode Bits for Access Permission],
page 102.

S_IRGRP

‘sys/stat.h’ (POSIX.1): Section 3.9.5 [The Mode Bits for Access Permission],
page 102.

S_IROTH

‘sys/stat.h’ (POSIX.1): Section 3.9.5 [The Mode Bits for Access Permission],
page 102.

S_IRUSR

‘sys/stat.h’ (POSIX.1): Section 3.9.5 [The Mode Bits for Access Permission],
page 102.

S_IRWXG

‘sys/stat.h’ (POSIX.1): Section 3.9.5 [The Mode Bits for Access Permission],
page 102.

S_IRWXO

‘sys/stat.h’ (POSIX.1): Section 3.9.5 [The Mode Bits for Access Permission],
page 102.

S_IRWXU

‘sys/stat.h’ (POSIX.1): Section 3.9.5 [The Mode Bits for Access Permission],
page 102.

Appendix B: Summary of Library Facilities 527

int S_ISBLK (mode_t m)
‘sys/stat.h’ (POSIX): Section 3.9.3 [Testing the Type of a File], page 99.

int S_ISCHR (mode_t m)
‘sys/stat.h’ (POSIX): Section 3.9.3 [Testing the Type of a File], page 99.

int S_ISDIR (mode_t m)
‘sys/stat.h’ (POSIX): Section 3.9.3 [Testing the Type of a File], page 99.

int S_ISFIFO (mode_t m)
‘sys/stat.h’ (POSIX): Section 3.9.3 [Testing the Type of a File], page 99.

S_ISGID

‘sys/stat.h’ (POSIX): Section 3.9.5 [The Mode Bits for Access Permission],
page 102.

int S_ISLNK (mode_t m)
‘sys/stat.h’ (GNU): Section 3.9.3 [Testing the Type of a File], page 99.

int S_ISREG (mode_t m)
‘sys/stat.h’ (POSIX): Section 3.9.3 [Testing the Type of a File], page 99.

int S_ISSOCK (mode_t m)
‘sys/stat.h’ (GNU): Section 3.9.3 [Testing the Type of a File], page 99.

S_ISUID

‘sys/stat.h’ (POSIX): Section 3.9.5 [The Mode Bits for Access Permission],
page 102.

S_ISVTX

‘sys/stat.h’ (BSD): Section 3.9.5 [The Mode Bits for Access Permission],
page 102.

S_IWGRP

‘sys/stat.h’ (POSIX.1): Section 3.9.5 [The Mode Bits for Access Permission],
page 102.

S_IWOTH

‘sys/stat.h’ (POSIX.1): Section 3.9.5 [The Mode Bits for Access Permission],
page 102.

S_IWRITE

‘sys/stat.h’ (BSD): Section 3.9.5 [The Mode Bits for Access Permission],
page 102.

S_IWUSR

‘sys/stat.h’ (POSIX.1): Section 3.9.5 [The Mode Bits for Access Permission],
page 102.

S_IXGRP

‘sys/stat.h’ (POSIX.1): Section 3.9.5 [The Mode Bits for Access Permission],
page 102.

S_IXOTH

‘sys/stat.h’ (POSIX.1): Section 3.9.5 [The Mode Bits for Access Permission],
page 102.

528 The GNU C Library: System & Network Applications

S_IXUSR

‘sys/stat.h’ (POSIX.1): Section 3.9.5 [The Mode Bits for Access Permission],
page 102.

size_t

‘stddef.h’ (ISO): Section A.4 [Important Data-Types], page 464.

SO_BROADCAST
‘sys/socket.h’ (BSD): Section 5.12.2 [Socket-Level Options], page 174.

int SOCK_DGRAM
‘sys/socket.h’ (BSD): Section 5.2 [Communication Styles], page 126.

int socket (int namespace, int style, int protocol)
‘sys/socket.h’ (BSD): Section 5.8.1 [Creating a Socket], page 151.

int socketpair (int namespace, int style, int protocol, int filedes[2])
‘sys/socket.h’ (BSD): Section 5.8.3 [Socket Pairs], page 152.

int SOCK_RAW
‘sys/socket.h’ (BSD): Section 5.2 [Communication Styles], page 126.

int SOCK_RDM
‘sys/socket.h’ (BSD): Section 5.2 [Communication Styles], page 126.

int SOCK_SEQPACKET
‘sys/socket.h’ (BSD): Section 5.2 [Communication Styles], page 126.

int SOCK_STREAM
‘sys/socket.h’ (BSD): Section 5.2 [Communication Styles], page 126.

SO_DEBUG

‘sys/socket.h’ (BSD): Section 5.12.2 [Socket-Level Options], page 174.

SO_DONTROUTE
‘sys/socket.h’ (BSD): Section 5.12.2 [Socket-Level Options], page 174.

SO_ERROR

‘sys/socket.h’ (BSD): Section 5.12.2 [Socket-Level Options], page 174.

SO_KEEPALIVE
‘sys/socket.h’ (BSD): Section 5.12.2 [Socket-Level Options], page 174.

SO_LINGER

‘sys/socket.h’ (BSD): Section 5.12.2 [Socket-Level Options], page 174.

int SOL_SOCKET
‘sys/socket.h’ (BSD): Section 5.12.2 [Socket-Level Options], page 174.

SO_OOBINLINE
‘sys/socket.h’ (BSD): Section 5.12.2 [Socket-Level Options], page 174.

SO_RCVBUF

‘sys/socket.h’ (BSD): Section 5.12.2 [Socket-Level Options], page 174.

SO_REUSEADDR
‘sys/socket.h’ (BSD): Section 5.12.2 [Socket-Level Options], page 174.

SO_SNDBUF

‘sys/socket.h’ (BSD): Section 5.12.2 [Socket-Level Options], page 174.

Appendix B: Summary of Library Facilities 529

SO_STYLE

‘sys/socket.h’ (GNU): Section 5.12.2 [Socket-Level Options], page 174.

SO_TYPE

‘sys/socket.h’ (BSD): Section 5.12.2 [Socket-Level Options], page 174.

speed_t

‘termios.h’ (POSIX.1): Section 6.4.8 [Line Speed], page 192.

sighandler_t ssignal (int signum, sighandler_t action)
‘signal.h’ (SVID): Section 17.3.1 [Basic Signal-Handling], page 389.

int SSIZE_MAX
‘limits.h’ (POSIX.1): Section 12.1 [General Capacity-Limits], page 303.

ssize_t

‘unistd.h’ (POSIX.1): Section 2.2 [Input and Output Primitives], page 20.

stack_t

‘signal.h’ (XPG): Section 17.9 [Using a Separate Signal-Stack], page 424.

int stat (const char *filename, struct stat *buf)
‘sys/stat.h’ (POSIX.1): Section 3.9.2 [Reading the Attributes of a File],
page 97.

int stat64 (const char *filename, struct stat64 *buf)
‘sys/stat.h’ (Unix98): Section 3.9.2 [Reading the Attributes of a File], page 97.

STDERR_FILENO
‘unistd.h’ (POSIX.1): Section 2.4 [Descriptors and Streams], page 28.

STDIN_FILENO
‘unistd.h’ (POSIX.1): Section 2.4 [Descriptors and Streams], page 28.

STDOUT_FILENO
‘unistd.h’ (POSIX.1): Section 2.4 [Descriptors and Streams], page 28.

int STREAM_MAX
‘limits.h’ (POSIX.1): Section 12.1 [General Capacity-Limits], page 303.

char * strsignal (int signum)
‘string.h’ (GNU): Section 17.2.8 [Signal Messages], page 388.

struct aiocb
‘aio.h’ (POSIX.1b): Section 17.2.4 [Asynchronous-I/O Signals], page 384.

struct aiocb64
‘aio.h’ (POSIX.1b): Section 17.2.4 [Asynchronous-I/O Signals], page 384.

struct aioinit
‘aio.h’ (GNU): Section 2.10.5 [How to Optimize the AIO Implementation],
page 53.

struct dirent
‘dirent.h’ (POSIX.1): Section 3.2.1 [Format of a Directory Entry], page 73.

struct exit_status
‘utmp.h’ (SVID): Section 10.12.1 [Manipulating the User-Accounting Database],
page 265.

530 The GNU C Library: System & Network Applications

struct flock
‘fcntl.h’ (POSIX.1): Section 2.15 [File Locks], page 64.

struct fstab
‘fstab.h’ (BSD): Section 11.3.1.1 [The ‘fstab’ File], page 290.

struct FTW
‘ftw.h’ (XPG4.2): Section 3.3 [Working with Directory Trees], page 81.

struct group
‘grp.h’ (POSIX.1): Section 10.14.1 [The Data Structure for a Group], page 277.

struct hostent
‘netdb.h’ (BSD): Section 5.6.2.4 [Host Names], page 141.

struct if_nameindex
‘net/if.h’ (IPv6 basic API): Section 5.4 [Interface Naming], page 130.

struct in6_addr
‘netinet/in.h’ (IPv6 basic API): Section 5.6.2.2 [Host-Address Data Type],
page 138.

struct in_addr
‘netinet/in.h’ (BSD): Section 5.6.2.2 [Host-Address Data Type], page 138.

struct iovec
‘sys/uio.h’ (BSD): Section 2.6 [Fast Scatter-Gather I/O], page 31.

struct linger
‘sys/socket.h’ (BSD): Section 5.12.2 [Socket-Level Options], page 174.

struct mntent
‘mntent.h’ (BSD): Section 11.3.1.2 [The ‘mtab’ File], page 292.

struct msghdr
‘sys/socket.h’ (BSD): Section 5.10.2 [Receiving Datagrams], page 168.

struct netent
‘netdb.h’ (BSD): Section 5.13 [Networks Database], page 176.

struct passwd
‘pwd.h’ (POSIX.1): Section 10.13.1 [The Data Structure That Describes a User],
page 274.

struct protoent
‘netdb.h’ (BSD): Section 5.6.6 [Protocols Database], page 147.

struct rlimit
‘sys/resource.h’ (BSD): Section 14.2 [Limiting Resource Usage], page 338.

struct rlimit64
‘sys/resource.h’ (Unix98): Section 14.2 [Limiting Resource Usage], page 338.

struct rusage
‘sys/resource.h’ (BSD): Section 14.1 [Resource Usage], page 335.

struct sched_param
‘sched.h’ (POSIX): Section 14.3.3 [Basic Scheduling Functions], page 346.

struct servent
‘netdb.h’ (BSD): Section 5.6.4 [The Services Database], page 145.

Appendix B: Summary of Library Facilities 531

struct sgttyb
‘termios.h’ (BSD): Section 6.5 [BSD Terminal Modes], page 200.

struct sigaction
‘signal.h’ (POSIX.1): Section 17.3.2 [Advanced Signal-Handling], page 392.

struct sigstack
‘signal.h’ (BSD): Section 17.9 [Using a Separate Signal-Stack], page 424.

struct sigvec
‘signal.h’ (BSD): Section 17.10.1 [BSD Function to Establish a Handler],
page 426.

struct sockaddr
‘sys/socket.h’ (BSD): Section 5.3.1 [Address Formats], page 128.

struct sockaddr_in
‘netinet/in.h’ (BSD): Section 5.6.1 [Internet Socket Address Formats],
page 135.

struct sockaddr_un
‘sys/un.h’ (BSD): Section 5.5.2 [Details of Local Namespace], page 132.

struct stat
‘sys/stat.h’ (POSIX.1): Section 3.9.1 [The Meaning of the File Attributes],
page 93.

struct stat64
‘sys/stat.h’ (LFS): Section 3.9.1 [The Meaning of the File Attributes], page 93.

struct termios
‘termios.h’ (POSIX.1): Section 6.4.1 [Terminal Mode Data Types], page 181.

struct utimbuf
‘time.h’ (POSIX.1): Section 3.9.9 [File Times], page 108.

struct utsname
‘sys/utsname.h’ (POSIX.1): Section 11.2 [Platform-Type Identification],
page 287.

int stty (int filedes, struct sgttyb * attributes)
‘sgtty.h’ (BSD): Section 6.5 [BSD Terminal Modes], page 200.

int S_TYPEISMQ (struct stat *s)
‘sys/stat.h’ (POSIX): Section 3.9.3 [Testing the Type of a File], page 99.

int S_TYPEISSEM (struct stat *s)
‘sys/stat.h’ (POSIX): Section 3.9.3 [Testing the Type of a File], page 99.

int S_TYPEISSHM (struct stat *s)
‘sys/stat.h’ (POSIX): Section 3.9.3 [Testing the Type of a File], page 99.

int SUN_LEN (struct sockaddr un * ptr)
‘sys/un.h’ (BSD): Section 5.5.2 [Details of Local Namespace], page 132.

_SVID_SOURCE
(GNU): Section 1.3.4 [Feature-Test Macros], page 8.

int SV_INTERRUPT
‘signal.h’ (BSD): Section 17.10.1 [BSD Function to Establish a Handler],
page 426.

532 The GNU C Library: System & Network Applications

int SV_ONSTACK
‘signal.h’ (BSD): Section 17.10.1 [BSD Function to Establish a Handler],
page 426.

int SV_RESETHAND
‘signal.h’ (Sun): Section 17.10.1 [BSD Function to Establish a Handler],
page 426.

int swapcontext (ucontext_t *restrict oucp, const ucontext_t *restrict
ucp)

‘ucontext.h’ (SVID): Section 16.4 [Complete Context Control], page 370.

int symlink (const char *oldname, const char *newname)
‘unistd.h’ (BSD): Section 3.5 [Symbolic Links], page 87.

SYMLINK_MAX
‘limits.h’ (POSIX.1): Section 12.8 [Minimum Values for File-System Limits],
page 320.

int sync (void)
‘unistd.h’ (X/Open): Section 2.9 [Synchronizing I/O Operations], page 40.

long int sysconf (int parameter)
‘unistd.h’ (POSIX.1): Section 12.4.1 [Definition of sysconf], page 307.

int sysctl (int *names, int nlen, void *oldval,
‘sysctl.h’ (BSD): Section 11.4 [System Parameters], page 300.

void syslog (int facility priority, char *format, ...)
‘syslog.h’ (BSD): Section 15.2.2 [syslog, vsyslog], page 362.

int system (const char *command)
‘stdlib.h’ (ISO): Section 7.1 [Running a Command], page 209.

sighandler_t sysv_signal (int signum, sighandler_t action)
‘signal.h’ (GNU): Section 17.3.1 [Basic Signal-Handling], page 389.

int tcdrain (int filedes)
‘termios.h’ (POSIX.1): Section 6.6 [Line Control Functions], page 201.

tcflag_t

‘termios.h’ (POSIX.1): Section 6.4.1 [Terminal Mode Data Types], page 181.

int tcflow (int filedes, int action)
‘termios.h’ (POSIX.1): Section 6.6 [Line Control Functions], page 201.

int tcflush (int filedes, int queue)
‘termios.h’ (POSIX.1): Section 6.6 [Line Control Functions], page 201.

int tcgetattr (int filedes, struct termios *termios-p)
‘termios.h’ (POSIX.1): Section 6.4.2 [Terminal Mode Functions], page 182.

pid_t tcgetpgrp (int filedes)
‘unistd.h’ (POSIX.1): Section 8.7.3 [Functions for Controlling-Terminal Ac-
cess], page 241.

pid_t tcgetsid (int fildes)
‘termios.h’ (Unix98): Section 8.7.3 [Functions for Controlling-Terminal Ac-
cess], page 241.

Appendix B: Summary of Library Facilities 533

TCSADRAIN

‘termios.h’ (POSIX.1): Section 6.4.2 [Terminal Mode Functions], page 182.

TCSAFLUSH

‘termios.h’ (POSIX.1): Section 6.4.2 [Terminal Mode Functions], page 182.

TCSANOW

‘termios.h’ (POSIX.1): Section 6.4.2 [Terminal Mode Functions], page 182.

TCSASOFT

‘termios.h’ (BSD): Section 6.4.2 [Terminal Mode Functions], page 182.

int tcsendbreak (int filedes, int duration)
‘termios.h’ (POSIX.1): Section 6.6 [Line Control Functions], page 201.

int tcsetattr (int filedes, int when, const struct termios *termios-p)
‘termios.h’ (POSIX.1): Section 6.4.2 [Terminal Mode Functions], page 182.

int tcsetpgrp (int filedes, pid_t pgid)
‘unistd.h’ (POSIX.1): Section 8.7.3 [Functions for Controlling-Terminal Ac-
cess], page 241.

off_t telldir (DIR *dirstream)
‘dirent.h’ (BSD): Section 3.2.5 [Random Access in a Directory Stream], page 78.

TEMP_FAILURE_RETRY (expression)
‘unistd.h’ (GNU): Section 17.5 [Primitives Interrupted by Signals], page 408.

char * tempnam (const char *dir, const char *prefix)
‘stdio.h’ (SVID): Section 3.11 [Temporary Files], page 114.

FILE * tmpfile (void)
‘stdio.h’ (ISO): Section 3.11 [Temporary Files], page 114.

FILE * tmpfile64 (void)
‘stdio.h’ (Unix98): Section 3.11 [Temporary Files], page 114.

int TMP_MAX
‘stdio.h’ (ISO): Section 3.11 [Temporary Files], page 114.

char * tmpnam (char *result)
‘stdio.h’ (ISO): Section 3.11 [Temporary Files], page 114.

char * tmpnam_r (char *result)
‘stdio.h’ (GNU): Section 3.11 [Temporary Files], page 114.

tcflag_t TOSTOP
‘termios.h’ (POSIX.1): Section 6.4.7 [Local Modes], page 189.

int truncate (const char *filename, off_t length)
‘unistd.h’ (X/Open): Section 3.9.10 [File Size], page 110.

int truncate64 (const char *name, off64_t length)
‘unistd.h’ (Unix98): Section 3.9.10 [File Size], page 110.

TRY_AGAIN

‘netdb.h’ (BSD): Section 5.6.2.4 [Host Names], page 141.

char * ttyname (int filedes)
‘unistd.h’ (POSIX.1): Section 6.1 [Identifying Terminals], page 179.

534 The GNU C Library: System & Network Applications

int ttyname_r (int filedes, char *buf, size_t len)
‘unistd.h’ (POSIX.1): Section 6.1 [Identifying Terminals], page 179.

int TZNAME_MAX
‘limits.h’ (POSIX.1): Section 12.1 [General Capacity-Limits], page 303.

UCHAR_MAX

‘limits.h’ (ISO): Section A.5.2 [Range of an Integer Type], page 465.

ucontext_t
‘ucontext.h’ (SVID): Section 16.4 [Complete Context Control], page 370.

uid_t

‘sys/types.h’ (POSIX.1): Section 10.5 [Reading the Persona of a Process],
page 255.

UINT_MAX

‘limits.h’ (ISO): Section A.5.2 [Range of an Integer Type], page 465.

int ulimit (int cmd, ...)
‘ulimit.h’ (BSD): Section 14.2 [Limiting Resource Usage], page 338.

ULONG_LONG_MAX
‘limits.h’ (ISO): Section A.5.2 [Range of an Integer Type], page 465.

ULONG_MAX

‘limits.h’ (ISO): Section A.5.2 [Range of an Integer Type], page 465.

mode_t umask (mode_t mask)
‘sys/stat.h’ (POSIX.1): Section 3.9.7 [Assigning File Permissions], page 104.

int umount (const char *file)
‘sys/mount.h’ (SVID, GNU): Section 11.3.2 [Mount, Unmount, Remount],
page 296.

int umount2 (const char *file, int flags)
‘sys/mount.h’ (GNU): Section 11.3.2 [Mount, Unmount, Remount], page 296.

int uname (struct utsname *info)
‘sys/utsname.h’ (POSIX.1): Section 11.2 [Platform-Type Identification],
page 287.

union wait
‘sys/wait.h’ (BSD): Section 7.8 [BSD Process Wait Functions], page 218.

int unlink (const char *filename)
‘unistd.h’ (POSIX.1): Section 3.6 [Deleting Files], page 90.

int unlockpt (int filedes)
‘stdlib.h’ (SVID, XPG4.2): Section 6.8.1 [Allocating Pseudoterminals],
page 205.

void updwtmp (const char *wtmp file, const struct utmp *utmp)
‘utmp.h’ (SVID): Section 10.12.1 [Manipulating the User-Accounting Database],
page 265.

USER_PROCESS
‘utmp.h’ (SVID): Section 10.12.1 [Manipulating the User-Accounting Database],
page 265.

Appendix B: Summary of Library Facilities 535

USER_PROCESS
‘utmpx.h’ (XPG4.2): Section 10.12.2 [XPG User-Accounting Database Functions],
page 270.

USHRT_MAX

‘limits.h’ (ISO): Section A.5.2 [Range of an Integer Type], page 465.

int utime (const char *filename, const struct utimbuf *times)
‘time.h’ (POSIX.1): Section 3.9.9 [File Times], page 108.

int utimes (const char *filename, struct timeval tvp[2])
‘sys/time.h’ (BSD): Section 3.9.9 [File Times], page 108.

int utmpname (const char *file)
‘utmp.h’ (SVID): Section 10.12.1 [Manipulating the User-Accounting Database],
page 265.

int utmpxname (const char *file)
‘utmpx.h’ (XPG4.2): Section 10.12.2 [XPG User-Accounting Database Functions],
page 270.

va_alist

‘varargs.h’ (Unix): Section A.2.3.1 [Old-Style Variadic Functions], page 462.

type va_arg (va_list ap, type)
‘stdarg.h’ (ISO): Section A.2.2.5 [Argument-Access Macros], page 460.

void __va_copy (va_list dest, va_list src)
‘stdarg.h’ (GNU): Section A.2.2.5 [Argument-Access Macros], page 460.

va_dcl

‘varargs.h’ (Unix): Section A.2.3.1 [Old-Style Variadic Functions], page 462.

void va_end (va_list ap)
‘stdarg.h’ (ISO): Section A.2.2.5 [Argument-Access Macros], page 460.

va_list

‘stdarg.h’ (ISO): Section A.2.2.5 [Argument-Access Macros], page 460.

void va_start (va_list ap)
‘varargs.h’ (Unix): Section A.2.3.1 [Old-Style Variadic Functions], page 462.

void va_start (va_list ap, last-required)
‘stdarg.h’ (ISO): Section A.2.2.5 [Argument-Access Macros], page 460.

int VDISCARD
‘termios.h’ (BSD): Section 6.4.9.4 [Other Special Characters], page 198.

int VDSUSP
‘termios.h’ (BSD): Section 6.4.9.2 [Characters that Cause Signals], page 196.

int VEOF

‘termios.h’ (POSIX.1): Section 6.4.9.1 [Characters for Input Editing], page 194.

int VEOL

‘termios.h’ (POSIX.1): Section 6.4.9.1 [Characters for Input Editing], page 194.

int VEOL2

‘termios.h’ (BSD): Section 6.4.9.1 [Characters for Input Editing], page 194.

536 The GNU C Library: System & Network Applications

int VERASE
‘termios.h’ (POSIX.1): Section 6.4.9.1 [Characters for Input Editing], page 194.

int versionsort (const void *a, const void *b)
‘dirent.h’ (GNU): Section 3.2.6 [Scanning the Content of a Directory], page 79.

int versionsort64 (const void *a, const void *b)
‘dirent.h’ (GNU): Section 3.2.6 [Scanning the Content of a Directory], page 79.

pid_t vfork (void)
‘unistd.h’ (BSD): Section 7.4 [Creating a Process], page 211.

int VINTR

‘termios.h’ (POSIX.1): Section 6.4.9.2 [Characters that Cause Signals],
page 196.

int VKILL

‘termios.h’ (POSIX.1): Section 6.4.9.1 [Characters for Input Editing], page 194.

int vlimit (int resource, int limit)
‘sys/vlimit.h’ (BSD): Section 14.2 [Limiting Resource Usage], page 338.

int VLNEXT
‘termios.h’ (BSD): Section 6.4.9.4 [Other Special Characters], page 198.

int VMIN

‘termios.h’ (POSIX.1): Section 6.4.10 [Noncanonical Input], page 198.

int VQUIT

‘termios.h’ (POSIX.1): Section 6.4.9.2 [Characters that Cause Signals],
page 196.

int VREPRINT
‘termios.h’ (BSD): Section 6.4.9.1 [Characters for Input Editing], page 194.

int VSTART
‘termios.h’ (POSIX.1): Section 6.4.9.3 [Special Characters for Flow Control],
page 197.

int VSTATUS
‘termios.h’ (BSD): Section 6.4.9.4 [Other Special Characters], page 198.

int VSTOP

‘termios.h’ (POSIX.1): Section 6.4.9.3 [Special Characters for Flow Control],
page 197.

int VSUSP

‘termios.h’ (POSIX.1): Section 6.4.9.2 [Characters that Cause Signals],
page 196.

void vsyslog (int facility priority, char *format, va_list arglist)
‘syslog.h’ (BSD): Section 15.2.2 [syslog, vsyslog], page 362.

int VTIME

‘termios.h’ (POSIX.1): Section 6.4.10 [Noncanonical Input], page 198.

int vtimes (struct vtimes current, struct vtimes child)
‘vtimes.h’ (vtimes.h): Section 14.1 [Resource Usage], page 335.

Appendix B: Summary of Library Facilities 537

int VWERASE
‘termios.h’ (BSD): Section 6.4.9.1 [Characters for Input Editing], page 194.

pid_t wait (int *status-ptr)
‘sys/wait.h’ (POSIX.1): Section 7.6 [Process Completion], page 215.

pid_t wait3 (union wait *status-ptr, int options, struct rusage *usage)
‘sys/wait.h’ (BSD): Section 7.8 [BSD Process Wait Functions], page 218.

pid_t wait4 (pid_t pid, int *status-ptr, int options, struct rusage *usage)
‘sys/wait.h’ (BSD): Section 7.6 [Process Completion], page 215.

pid_t waitpid (pid_t pid, int *status-ptr, int options)
‘sys/wait.h’ (POSIX.1): Section 7.6 [Process Completion], page 215.

WCHAR_MAX

‘limits.h’ (GNU): Section A.5.2 [Range of an Integer Type], page 465.

int WCOREDUMP (int status)
‘sys/wait.h’ (BSD): Section 7.7 [Process-Completion Status], page 218.

int WEXITSTATUS (int status)
‘sys/wait.h’ (POSIX.1): Section 7.7 [Process-Completion Status], page 218.

int WIFEXITED (int status)
‘sys/wait.h’ (POSIX.1): Section 7.7 [Process-Completion Status], page 218.

int WIFSIGNALED (int status)
‘sys/wait.h’ (POSIX.1): Section 7.7 [Process-Completion Status], page 218.

int WIFSTOPPED (int status)
‘sys/wait.h’ (POSIX.1): Section 7.7 [Process-Completion Status], page 218.

int W_OK

‘unistd.h’ (POSIX.1): Section 3.9.8 [Testing Permission to Access a File],
page 106.

ssize_t write (int filedes, const void *buffer, size_t size)
‘unistd.h’ (POSIX.1): Section 2.2 [Input and Output Primitives], page 20.

ssize_t writev (int filedes, const struct iovec *vector, int count)
‘sys/uio.h’ (BSD): Section 2.6 [Fast Scatter-Gather I/O], page 31.

int WSTOPSIG (int status)
‘sys/wait.h’ (POSIX.1): Section 7.7 [Process-Completion Status], page 218.

int WTERMSIG (int status)
‘sys/wait.h’ (POSIX.1): Section 7.7 [Process-Completion Status], page 218.

int X_OK

‘unistd.h’ (POSIX.1): Section 3.9.8 [Testing Permission to Access a File],
page 106.

_XOPEN_SOURCE
(X/Open): Section 1.3.4 [Feature-Test Macros], page 8.

_XOPEN_SOURCE_EXTENDED
(X/Open): Section 1.3.4 [Feature-Test Macros], page 8.

538 The GNU C Library: System & Network Applications

Appendix C: Installing the GNU C Library 539

Appendix C Installing the GNU C Library

Before you do anything else, you should read the file ‘FAQ’ located at the top
level of the source tree. This file answers common questions and describes prob-
lems you may experience with compilation and installation. It is updated more
frequently than this manual.

Features can be added to GNU libc via add-on bundles. These are separate
tar files, which you unpack into the top level of the source tree. Then you give
configure the ‘--enable-add-ons’ option to activate them, and they will
be compiled into the library. As of the 2.2 release, one important component of
glibc is distributed as “official” add-ons—the LinuxThreads add-on. Unless you
are doing an unusual installation, you should get this.

Support for POSIX threads is maintained by someone else, so it’s in a sepa-
rate package. It is only available for GNU/Linux systems, but this will change
in the future. Get it from the same place you got the main bundle; the file is
‘glibc-linuxthreads-VERSION.tar.gz’.

You will need recent versions of several GNU tools—definitely GCC and GNU
Make, and possibly others (see Section C.3 [Recommended Tools for Compilation],
page 538).

C.1 Configuring and Compiling GNU libc
GNU libc can be compiled in the source directory, but we strongly advise building

it in a separate build directory. For example, if you have unpacked the glibc sources
in ‘/src/gnu/glibc-2.3’, create a directory ‘/src/gnu/glibc-build’
to put the object files in. This allows removing the whole build directory in case an
error occurs, which is the safest way to get a fresh start and should always be done.
>From your object directory, run the shell script ‘configure’ located at the

top level of the source tree. In the scenario above, you’d type:
$../glibc-2.3/configure args. . .

Please note that even if you’re building in a separate build directory, the compi-
lation needs to modify a few files in the source directory, especially some files in
the manual subdirectory.
configure takes many options, but you can get away with knowing only
two: ‘--prefix’ and ‘--enable-add-ons’. The --prefix option tells
configure where you want glibc installed. This defaults to ‘/usr/local’.
The ‘--enable-add-ons’ option tells configure to use all the add-on bun-
dles it finds in the source directory. Since important functionality is provided in
add-ons, you should always specify this option.

It may also be useful to set the CC and CFLAGS variables in the environment
when running configure. CC selects the C compiler that will be used, and
CFLAGS sets optimization options for the compiler.

The following list describes all of the available options for configure:

540 The GNU C Library: System & Network Applications

‘--prefix=directory’
Install machine-independent data files in subdirectories of ‘directory’.
The default is to install in ‘/usr/local’.

‘--exec-prefix=directory’
Install the library and other machine-dependent files in subdirectories
of ‘directory’. The default is to the ‘--prefix’ directory if that
option is specified, or ‘/usr/local’ otherwise.

‘--with-headers=directory’
Look for kernel header files in directory, not ‘/usr/include’.
Glibc needs information from the kernel’s private header files. Glibc
will normally look in ‘/usr/include’ for them, but if you specify
this option, it will look in DIRECTORY instead.

This option is primarily of use on a system where the headers in
‘/usr/include’ come from an older version of glibc. Conflicts
can occasionally happen in this case. Linux libc5 qualifies as an older
version of glibc. You can also use this option if you want to com-
pile glibc with a newer set of kernel headers than the ones found in
‘/usr/include’.

‘--enable-add-ons[=list]’
Enable add-on packages in your source tree. If this option is specified
with no list, it enables all the add-on packages it finds. If you do
not wish to use some add-on packages that you have present in your
source tree, give this option a list of the add-ons that you do want
used, like this: ‘--enable-add-ons=linuxthreads’

‘--enable-kernel=version’
This option is currently only useful on GNU/Linux systems. The ver-
sion parameter should have the form X.Y.Z and describes the smallest
version of the Linux kernel the generated library is expected to sup-
port. The higher the version number is, the less compatibility code is
added, and the faster the code gets.

‘--with-binutils=directory’
Use the binutils (assembler and linker) in ‘directory’, not the ones the
C compiler would default to. You can use this option if the default
binutils on your system cannot deal with all the constructs in the GNU
C Library. In that case, configure will detect the problem and
suppress these constructs, so that the library will still be usable, but
functionality may be lost—for example, you can’t build a shared libc
with old binutils.

‘--without-fp’
Use this option if your computer lacks hardware floating-point support
and your operating system does not emulate an FPU.

Appendix C: Installing the GNU C Library 541

‘--disable-shared’
Don’t build shared libraries even if it is possible. Not all systems
support shared libraries; you need ELF support and (currently) the
GNU linker.

‘--disable-profile’
Don’t build libraries with profiling information. You may want to use
this option if you don’t plan to do profiling.

‘--enable-omitfp’
Use maximum optimization for the normal (static and shared) li-
braries, and compile separate static libraries with debugging infor-
mation and no optimization. We recommend not doing this. The extra
optimization doesn’t gain you much, it may provoke compiler bugs,
and you won’t be able to trace bugs through the C library.

‘--disable-versioning’
Don’t compile the shared libraries with symbol version information.
Doing this will make the resulting library incompatible with old bina-
ries, so it’s not recommended.

‘--enable-static-nss’
Compile static versions of the NSS (Name-Service Switch) libraries.
This is not recommended because it defeats the purpose of NSS; a
program linked statically with the NSS libraries cannot be dynamically
reconfigured to use a different name database.

‘--without-tls’
By default, the C library is built with support for thread-local storage
if the tools used support it. By using ‘--without-tls’ this can be
prevented, though there generally is no reason, since using this option
creates compatibility problems.

‘--build=build-system’
‘--host=host-system’

These options are for cross-compiling. If you specify both options and
build-system is different from host-system, configure will prepare
to cross-compile glibc from build-system to be used on host-system.
You’ll probably need the ‘--with-headers’ option too, and you
may have to override configure’s selection of the compiler and/or
binutils.
If you only specify ‘--host’, configure will prepare for
a native compile but use what you specify instead of guessing
what your system is. This is most useful to change the CPU
submodel. For example, if configure guesses your machine
as i586-pc-linux-gnu but you want to compile a library
for 386es, give ‘--host=i386-pc-linux-gnu’ or just
‘--host=i386-linux’ and add the appropriate compiler flags
(‘-mcpu=i386’ will do the trick) to CFLAGS.

542 The GNU C Library: System & Network Applications

If you specify just ‘--build’, configure will get confused.

To build the library and related programs, type make. This will produce a lot of
output, some of which may look like errors from make but isn’t. Look for error
messages from make containing ‘***’. Those indicate that something is seriously
wrong.

The compilation process can take several hours. Expect at least two hours for
the default configuration on i586 for GNU/Linux. For Hurd, times are much longer.
Some complex modules may take a very long time to compile, as much as several
minutes on slower machines. Do not panic if the compiler appears to hang.

If you want to run a parallel make, simply pass the ‘-j’ option with an appro-
priate numeric parameter to make. You need a recent GNU make version, though.

To build and run test programs that exercise some of the library facilities, type
make check. If it does not complete successfully, do not use the built library, and
report a bug after verifying that the problem is not already known (see Section C.6
[Reporting Bugs], page 541). Some of the tests assume they are not being run by
root. We recommend you compile and test glibc as an unprivileged user.

Before reporting bugs, make sure there is no problem with your system. The
tests (and later installation) use some preexisting files of the system such as
‘/etc/passwd’, ‘/etc/nsswitch.conf’ and others. These files must all
contain correct and sensible content.

To format the GNU C Library reference manuals for printing, type make dvi.
You need a working TEX installation to do this. The distribution already includes
the on-line formatted version of the manual, as Info files. You can regenerate those
with make info, but it shouldn’t be necessary.

The library has a number of special-purpose configuration parameters that
you can find in ‘Makeconfig’. These can be overwritten with the file
‘configparms’. To change them, create a ‘configparms’ in your build
directory and add values as appropriate for your system. The file is included and
parsed by make and has to follow the conventions for makefiles.

It is easy to configure the GNU C Library for cross-compilation by setting a few
variables in ‘configparms’. Set CC to the cross-compiler for the target you
configured the library for; it is important to use this same CC value when running
configure, like this: ‘CC=target-gcc configure target’. Set BUILD_CC to
the compiler to use for programs run on the build system as part of compiling the
library. You may need to set AR and RANLIB to cross-compiling versions of ar
and ranlib if the native tools are not configured to work with object files for the
target you configured for.

C.2 Installing the C Library
To install the library and its header files, and the Info files of the manual, type

env LANGUAGE=C LC_ALL=C make install. This will build things, if nec-
essary, before installing them; however, you should still compile everything first. If
you are installing glibc as your primary C library, we recommend that you shut the

Appendix C: Installing the GNU C Library 543

system down to single-user mode first, and reboot afterward. This minimizes the
risk of breaking things when the library changes out from underneath.

If you’re upgrading from Linux libc5 or some other C library, you need to re-
place the ‘/usr/include’ with a fresh directory before installing it. The new
‘/usr/include’ should contain the Linux headers, but nothing else.

You must first build the library (‘make’), optionally check it (‘make check’),
switch the include directories, and then install (‘make install’). The steps must
be done in this order. Not moving the directory before install will result in an
unusable mixture of header files from both libraries, but configuring, building, and
checking the library requires the ability to compile and run programs against the
old library.

If you are upgrading from a previous installation of glibc 2.0 or 2.1, ‘make
install’ will do the entire job. You do not need to remove the old includes—if
you want to do so anyway, you must then follow the order given above.

You may also need to reconfigure GCC to work with the new library. The
easiest way to do that is to figure out the compiler switches to make it work again
(‘-Wl,--dynamic-linker=/lib/ld-linux.so.2’ should work on
GNU/Linux systems) and use them to recompile gcc. You can also edit the specs
file (‘/usr/lib/gcc-lib/TARGET/VERSION/specs’), but that is a bit
of a black art.

You can install glibc somewhere other than where you configured it to go by
setting the install_root variable on the command line for ‘make install’.
The value of this variable is prepended to all the paths for installation. This is
useful when setting up a chroot environment or preparing a binary distribution.
The directory should be specified with an absolute file-name.

Glibc 2.2 includes a daemon called nscd, which you may or may not want to
run. nscd caches name-service lookups; it can dramatically improve performance
with NIS+, and may help with DNS as well.

One auxiliary program, ‘/usr/libexec/pt_chown’, is installed setuid
root. This program is invoked by the grantpt function; it sets the permis-
sions on a pseudoterminal so it can be used by the calling process. This means
programs like xterm and screen do not have to be setuid to get a pty. (There
may be other reasons why they need privileges.) If you are using a 2.1 or newer
Linux kernel with the devptsfs or devfs file-systems providing pty slaves,
you don’t need this program; otherwise you do. The source for ‘pt_chown’ is in
‘login/programs/pt_chown.c’.

After installation, you might want to configure the time zone and locale instal-
lation of your system. The GNU C Library comes with a locale database that gets
configured with localedef. For example, to set up a German locale with name
de_DE, simply issue the command ‘localedef -i de_DE -f ISO-8859-1
de_DE’. To configure all locales that are supported by glibc, you can issue from
your build directory the command ‘make localedata/install-locales’.

To configure the locally used timezone, set the TZ environment variable. The
script tzselect helps you to select the right value. As an example, for Germany,

544 The GNU C Library: System & Network Applications

tzselect would tell you to use ‘TZ=’Europe/Berlin’’. For a system-wide
installation (the given paths are for an installation with ‘--prefix=/usr’),
link the time zone file that is in ‘/usr/share/zoneinfo’ to the
file ‘/etc/localtime’. For Germany, you might execute ‘ln -s
/usr/share/zoneinfo/Europe/Berlin /etc/localtime’.

C.3 Recommended Tools for Compilation
We recommend installing the following GNU tools before attempting to build the

GNU C Library:
• GNU make 3.79 or newer

You need the latest version of GNU make. Modifying the GNU C Library to
work with other make programs would be so difficult that we recommend you
port GNU make instead. We recommend GNU make version 3.79. All earlier
versions have severe bugs or lack features.

• GCC 3.2 or newer
The GNU C Library can only be compiled with the GNU C Compiler family.
As of the 2.3 release, GCC 3.2 or higher is required. As of this writing, GCC
3.2 is the compiler we advise to use.
You can use whatever compiler you like to compile programs that use GNU
libc, but be aware that both GCC 2.7 and 2.8 have bugs in their floating-point
support that may be triggered by the math library.
Check the FAQ for any special compiler issues on particular platforms.

• GNU binutils 2.13 or later
You must use GNU binutils (as and ld) to build the GNU C Library. No
other assembler and linker has the necessary functionality at the moment.

• GNU texinfo 3.12f
To correctly translate and install the Texinfo documentation, you need this
version of the texinfo package. Earlier versions do not understand all the
tags used in the document, and the installation mechanism for the info files is
not present or works differently.

• GNU awk 3.0, or some other POSIX awk
Awk is used in several places to generate files. The scripts should work
with any POSIX-compliant awk implementation; gawk 3.0 and mawk 1.3 are
known to work.

• Perl 5
Perl is not required, but it is used if present to test the installation. We may
decide to use it elsewhere in the future.

• GNU sed 3.02 or newer
Sed is used in several places to generate files. Most scripts work with any
version of sed. The known exception is the script po2test.sed in the
intl subdirectory, which is used to generate msgs.h for the test suite. This

Appendix C: Installing the GNU C Library 545

script works correctly only with GNU sed 3.02. If you like to run the test
suite, you should definitely upgrade sed.

• If you change any of the ‘configure.in’ files, you will also need GNU
autoconf 2.12 or higher.

• If you change any of the message translation files, you will need GNU
gettext 0.10.36 or later.

You may also need these packages if you upgrade your source tree using patches,
although we try to avoid this.

C.4 Supported Configurations
The GNU C Library currently supports configurations that match the following

patterns:
alpha*-*-linux

arm-*-linux

cris-*-linux

hppa-*-linux

ix86-*-gnu

ix86-*-linux

ia64-*-linux

m68k-*-linux

mips*-*-linux

powerpc-*-linux

s390-*-linux

s390x-*-linux

sparc-*-linux

sparc64-*-linux

Former releases of this library (version 2.1 and/or 2.0) used to run on the follow-
ing configurations:

arm-*-linuxaout

arm-*-none

Very early releases (version 1.09.1 and perhaps earlier versions) used to run on
the following configurations:

alpha-dec-osf1

alpha-*-linuxecoff

ix86-*-bsd4.3

ix86-*-isc2.2

ix86-*-isc3.n

ix86-*-sco3.2

ix86-*-sco3.2v4

ix86-*-sysv

ix86-*-sysv4

ix86-force_cpu386-none

546 The GNU C Library: System & Network Applications

ix86-sequent-bsd

i960-nindy960-none

m68k-hp-bsd4.3

m68k-mvme135-none

m68k-mvme136-none

m68k-sony-newsos3

m68k-sony-newsos4

m68k-sun-sunos4.n

mips-dec-ultrix4.n

mips-sgi-irix4.n

sparc-sun-solaris2.n

sparc-sun-sunos4.n

Since no one has volunteered to test and fix these configurations, they are not
supported at the moment. They probably don’t compile; they definitely don’t
work anymore. Porting the library is not hard. If you are interested in do-
ing a port, please contact the glibc maintainers by sending electronic mail to
bug-glibc@gnu.org.

Valid cases of ‘ix86’ include ‘i386’, ‘i486’, ‘i586’ and ‘i686’. All of
those configurations produce a library that can run on this processor and newer
processors. The GCC compiler by default generates code that’s optimized for the
machine it’s configured for and will use the instructions available on that machine.
For example, if your GCC is configured for ‘i686’, gcc will optimize for ‘i686’
and might issue some ‘i686’ specific instructions. To generate code for other mod-
els, you have to configure for that model and give GCC the appropriate ‘-march=’
and ‘-mcpu=’ compiler switches via CFLAGS.

C.5 Specific Advice for GNU/Linux Systems
If you are installing GNU libc on a GNU/Linux system, you need to have

the header files from a 2.2 or newer kernel around for reference. For some
architectures, like ia64, sh and hppa, you need at least headers from kernel
2.3.99 (sh and hppa) or 2.4.0 (ia64). You do not need to use that kernel, just
have its headers where glibc can access them. The easiest way to do this is
to unpack it in a directory such as ‘/usr/src/linux-2.2.1’. In that
directory, run ‘make config’ and accept all the defaults. Then run ‘make
include/linux/version.h’. Finally, configure glibc with the option
‘--with-headers=/usr/src/linux-2.2.1/include’. Use the most
recent kernel you can get your hands on.

An alternate tactic is to unpack the 2.2 kernel and run ‘make config’ as above;
then, rename or delete ‘/usr/include’, create a new ‘/usr/include’, and
make symbolic links of ‘/usr/include/linux’ and ‘/usr/include/asm’
into the kernel sources. You can then configure glibc with no special options. This
tactic is recommended if you are upgrading from libc5, since you need to get rid of
the old header files anyway.

mailto:bug-glibc@gnu.org

Appendix C: Installing the GNU C Library 547

After installing GNU libc, you may need to remove or rename
‘/usr/include/linux’ and ‘/usr/include/asm’, and replace them
with copies of ‘include/linux’ and ‘include/asm-$ARCHITECTURE ’
taken from the Linux source package that supplied kernel headers for building the
library. ARCHITECTURE will be the machine architecture for which the library
was built, such as ‘i386’ or ‘alpha’. You do not need to do this if you did
not specify an alternate kernel header source using ‘--with-headers’. The
intent here is that these directories should be copies of, not symlinks to, the kernel
headers used to build the library.

‘/usr/include/net’ and ‘/usr/include/scsi’ should not be sym-
links into the kernel sources. GNU libc provides its own versions of these files.

GNU/Linux expects some components of the libc installation to be in ‘/lib’
and some in ‘/usr/lib’. This is handled automatically if you configure glibc
with ‘--prefix=/usr’. If you set some other prefix or allow it to default to
‘/usr/local’, then all the components are installed there.

If you are upgrading from libc5, you need to recompile every shared library on
your system against the new library for the sake of new code, but keep the old
libraries around for old binaries to use. This is complicated and difficult. Consult
the Glibc2 HOWTO at http:// www.imaxx.net/ ˜thrytis/ glibc for
details.1

You cannot use nscd with 2.0 kernels, due to bugs in the kernel-side thread
support. nscd happens to hit these bugs particularly hard, but you might have
problems with any threaded program.

C.6 Reporting Bugs
There are probably bugs in the GNU C Library. There are certainly errors and

omissions in this manual. If you report them, they will get fixed. If you don’t, no
one will ever know about them and they will remain unfixed for all eternity, if not
longer.

It is a good idea to verify that the problem has not already been reported.
Bugs are documented in two places: The file ‘BUGS’ describes a number of
well known bugs and the bug tracking system has a WWW interface at http://
www-gnats.gnu.org:8080/ cgi-bin/ wwwgnats.pl. The WWW inter-
face gives you access to open and closed reports. A closed report normally includes
a patch or a hint on solving the problem.

To report a bug, first you must find it. With any luck, this will be the hard part.
Once you’ve found a bug, make sure it’s really a bug. A good way to do this is to
see if the GNU C Library behaves the same way some other C library does. If so,
probably you are wrong and the libraries are right (but not necessarily). If not, one
of the libraries is probably wrong. It might not be the GNU library. Many historical
Unix C libraries permit things that we don’t, such as closing a file twice.

1 The HOWTO is no longer maintained at this site. However, as of this printing, older editions are
still available there, as well as contact information for the new maintainer.

548 The GNU C Library: System & Network Applications

If you think you have found some way in which the GNU C Library does not con-
form to the ISO and POSIX standards (see Section 1.2 [Standards and Portability],
page 1), that is definitely a bug. Report it!

Once you’re sure you’ve found a bug, try to narrow it down to the smallest test
case that reproduces the problem. In the case of a C library, you really only need
to narrow it down to one library function call, if possible. This should not be too
difficult.

The final step when you have a simple test case is to report the bug. Do this using
the glibcbug script. It is installed with libc, or if you haven’t installed it, will
be in your build directory. Send your test case, the results you got, the results you
expected, and what you think the problem might be (if you’ve thought of anything).
glibcbug will insert the configuration information we need to see, and ship the
report off to bugs@gnu.org. Don’t send a message there directly; it is fed to a
program that expects mail to be formatted in a particular way. Use the script.

If you are not sure how a function should behave, and this manual doesn’t tell
you, that’s a bug in the manual. Report that too! If the function’s behavior disagrees
with the manual, then either the library or the manual has a bug, so report the
disagreement. If you find any errors or omissions in this manual, please report them
to the Internet address bug-glibc-manual@gnu.org. If you refer to specific
sections of the manual, please include the section names for easier identification.

mailto:bugs@gnu.org
mailto:bug-glibc-manual@gnu.org

Appendix D: Library Maintenance 549

Appendix D Library Maintenance

D.1 Adding New Functions
The process of building the library is driven by the makefiles, which make heavy

use of special features of GNU make. The makefiles are very complex, and you
probably don’t want to try to understand them. But what they do is fairly straight-
forward, and only requires that you define a few variables in the right places.

The library sources are divided into subdirectories, grouped by topic.
The ‘string’ subdirectory has all the string-manipulation functions, ‘math’

has all the mathematical functions, etc.
Each subdirectory contains a simple makefile, called ‘Makefile’, which de-

fines a few make variables and then includes the global makefile ‘Rules’ with a
line like:

include ../Rules

The basic variables that a subdirectory makefile defines are

subdir This is the name of the subdirectory, for example ‘stdio’. This vari-
able must be defined.

headers This has the names of the header files in this section of the library,
such as ‘stdio.h’.

routines
aux These are the names of the modules (source files) in this section of

the library. These should be simple names, such as ‘strlen’ (rather
than complete file-names, such as ‘strlen.c’). Use routines
for modules that define functions in the library, and aux for auxil-
iary modules containing things like data definitions. But the values
of routines and aux are just concatenated, so there really is no
practical difference.

tests This has the names of test programs for this section of the library.
These should be simple names, such as ‘tester’ (rather than com-
plete file names, such as ‘tester.c’). ‘make tests’ will build
and run all the test programs. If a test program needs input, put the
test data in a file called ‘test-program.input’; it will be given to
the test program on its standard input. If a test program wants to be
run with arguments, put the arguments (all on a single line) in a file
called ‘test-program.args’. Test programs should exit with zero sta-
tus when the test passes, and nonzero status when the test indicates a
bug in the library or error in building.

others This has the names of “other” programs associated with this section
of the library. These are programs that are not tests per se, but are
other small programs included with the library. They are built by
‘make others’.

550 The GNU C Library: System & Network Applications

install-lib
install-data
install These are files to be installed by ‘make install’. Files listed

in ‘install-lib’ are installed in the directory specified by
‘libdir’ in ‘configparms’ or ‘Makeconfig’ (see Appendix C
[Installing the GNU C Library], page 533). Files listed in install-
data are installed in the directory specified by ‘datadir’ in
‘configparms’ or ‘Makeconfig’. Files listed in install are
installed in the directory specified by ‘bindir’ in ‘configparms’
or ‘Makeconfig’.

distribute
This has other files from this subdirectory that should be put into a
distribution tar file. You need not list here the makefile itself or the
source and header files listed in the other standard variables. Only
define distribute if there are files used in an unusual way that
should go into the distribution.

generated
This has Files that are generated by ‘Makefile’ in this subdirectory.
These files will be removed by ‘make clean’, and they will never
go into a distribution.

extra-objs
This has extra object files that are built by ‘Makefile’ in this subdi-
rectory. This should be a list of file names like ‘foo.o’; the files will
actually be found in whatever directory object files are being built in.
These files will be removed by ‘make clean’. This variable is used
for secondary object files needed to build others or tests.

D.2 Porting the GNU C Library
The GNU C Library is written to be easily portable to a variety of machines and

operating systems. Machine- and operating system-dependent functions are well
separated to make it easy to add implementations for new machines or operating
systems. This section describes the layout of the library source tree and explains
the mechanisms used to select machine-dependent code to use.

All the machine-dependent and operating system-dependent files in the library
are in the subdirectory ‘sysdeps’ under the top-level library source directory.
This directory contains a hierarchy of subdirectories (see Section D.2.1 [Layout of
the ‘sysdeps’ Directory Hierarchy], page 547).

Each subdirectory of ‘sysdeps’ contains source files for a particular machine
or operating system, or for a class of machine or operating system (for example,
systems by a particular vendor, or all machines that use IEEE 754 floating-point
format). A configuration specifies an ordered list of these subdirectories. Each sub-
directory implicitly appends its parent directory to the list. For example, specifying
the list ‘unix/bsd/vax’ is equivalent to specifying the list ‘unix/bsd/vax

Appendix D: Library Maintenance 551

unix/bsd unix’. A subdirectory can also specify that it implies other subdirec-
tories that are not directly above it in the directory hierarchy. If the file ‘Implies’
exists in a subdirectory, it lists other subdirectories of ‘sysdeps’ that are ap-
pended to the list, appearing after the subdirectory containing the ‘Implies’ file.
Lines in an ‘Implies’ file that begin with a ‘#’ character are ignored as com-
ments. For example, ‘unix/bsd/Implies’ contains:

BSD has Internet-related things.

unix/inet

and ‘unix/Implies’ contains:
posix

So the final list is ‘unix/bsd/vax unix/bsd unix/inet unix posix’.
‘sysdeps’ has a “special” subdirectory called ‘generic’. It is always implic-

itly appended to the list of subdirectories, so you needn’t put it in an ‘Implies’
file, and you should not create any subdirectories under it intended to be new spe-
cific categories. ‘generic’ serves two purposes. First, the makefiles do not bother
to look for a system-dependent version of a file that’s not in ‘generic’. This
means that any system-dependent source file must have an analogue in ‘generic’,
even if the routines defined by that file are not implemented on other platforms.
Second, the ‘generic’ version of a system-dependent file is used if the makefiles
do not find a version specific to the system you’re compiling for.

If it is possible to implement the routines in a ‘generic’ file in machine-
independent C, using only other machine-independent functions in the C library,
then you should do so. Otherwise, make them stubs. A stub function is a func-
tion that cannot be implemented on a particular machine or operating system. Stub
functions always return an error, and set errno to ENOSYS (Function not im-
plemented).1 If you define a stub function, you must place the statement stub_
warning(function), where function is the name of your function, after its defi-
nition; also, you must include the file <stub-tag.h> into your file. This causes
the function to be listed in the installed <gnu/stubs.h>, and makes GNU ld
warn when the function is used.

Some rare functions are only useful on specific systems and aren’t defined at all
on others; these do not appear anywhere in the system-independent source code
or makefiles (including the ‘generic’ directory), only in the system-dependent
‘Makefile’ in the specific system’s subdirectory.

If you come across a file that is in one of the main source directories (‘string’,
‘stdio’, etc.), and you want to write a machine- or operating system-dependent
version of it, move the file into ‘sysdeps/generic’ and write your new imple-
mentation in the appropriate system-specific subdirectory. If a file is to be system-
dependent, it must not appear in one of the main source directories.

There are a few special files that may exist in each subdirectory of ‘sysdeps’:

‘Makefile’
This is a makefile for this machine or operating system, or class of ma-
chine or operating system. This file is included by the library makefile

1 See Loosemore et al., “Error Reporting” (see chap. 1, n. 1).

552 The GNU C Library: System & Network Applications

‘Makerules’, which is used by the top-level makefile and the sub-
directory makefiles. It can change the variables set in the including
makefile or add new rules. It can use GNU make conditional directives
based on the variable ‘subdir’ (see above) to select different sets of
variables and rules for different sections of the library. It can also set
the make variable ‘sysdep-routines’, to specify extra modules
to be included in the library. You should use ‘sysdep-routines’
rather than adding modules to ‘routines’ because the latter is used
in determining what to distribute for each subdirectory of the main
source tree.
Each makefile in a subdirectory in the ordered list of subdi-
rectories to be searched is included in order. Since several
system-dependent makefiles may be included, each should append to
‘sysdep-routines’ rather than simply setting it:

sysdep-routines := $(sysdep-routines) foo bar

‘Subdirs’
This file contains the names of new whole subdirectories under the
top-level library source tree that should be included for this system.
These subdirectories are treated just like the system-independent sub-
directories in the library source tree, such as ‘stdio’ and ‘math’.
Use this when there are completely new sets of functions
and header files that should go into the library for the system
this subdirectory of ‘sysdeps’ implements. For example,
‘sysdeps/unix/inet/Subdirs’ contains ‘inet’; the ‘inet’
directory contains various network-oriented operations that only
make sense to put in the library on systems that support the Internet.

‘Dist’
This file contains the names of files (relative to the subdirectory of
‘sysdeps’ in which it appears) that should be included in the dis-
tribution. List any new files used by rules in the ‘Makefile’ in the
same directory, or header files used by the source files in that direc-
tory. You don’t need to list files that are implementations (either C or
assembly source) of routines whose names are given in the machine-
independent makefiles in the main source tree.

‘configure’
This file is a shell script fragment to be run at configuration time.
The top-level ‘configure’ script uses the shell . command to
read the ‘configure’ file in each system-dependent directory cho-
sen, in order. The ‘configure’ files are often generated from
‘configure.in’ files using Autoconf.
A system-dependent ‘configure’ script will usually add
things to the shell variables ‘DEFS’ and ‘config_vars’; see
the top-level ‘configure’ script for details. The script can
check for ‘--with-package’ options that were passed to the

Appendix D: Library Maintenance 553

top-level ‘configure’. For an option ‘--with-package=value’
‘configure’, sets the shell variable ‘with_package’ (with any
dashes in package converted to underscores) to value; if the option is
just ‘--with-package’ (no argument), then it sets ‘with_package’
to ‘yes’.

‘configure.in’
This file is an Autoconf input fragment to be processed into
the file ‘configure’ in this subdirectory.2 You should write
either ‘configure’ or ‘configure.in’, but not both. The
first line of ‘configure.in’ should invoke the m4 macro
‘GLIBC_PROVIDES’. This macro does several AC_PROVIDE calls
for Autoconf macros that are used by the top-level ‘configure’
script; without this, those macros might be invoked again
unnecessarily by Autoconf.

That is the general system for how system dependencies are isolated. The next
section explains how to decide what directories in ‘sysdeps’ to use. Section D.2.2
[Porting the GNU C Library to Unix Systems], page 549, has some tips on porting
the library to Unix variants.

D.2.1 Layout of the ‘sysdeps’ Directory Hierarchy

A GNU configuration name has three parts: the CPU type, the manufacturer’s
name, and the operating system. ‘configure’ uses these to pick the list of
system-dependent directories to look for. If the ‘--nfp’ option is not passed to
‘configure’, the directory ‘machine/fpu’ is also used. The operating sys-
tem often has a base operating system; for example, if the operating system is
‘Linux’, the base operating system is ‘unix/sysv’. The algorithm used to
pick the list of directories is simple: ‘configure’ makes a list of the base op-
erating system, manufacturer, CPU type and operating system, in that order. It
then concatenates all these together with slashes in between, to produce a di-
rectory name; for example, the configuration ‘i686-linux-gnu’ results in
‘unix/sysv/linux/i386/i686’. ‘configure’ then tries removing each
element of the list in turn, so ‘unix/sysv/linux’ and ‘unix/sysv’ are also
tried, among others. Since the precise version number of the operating system is
often not important, and it would be very inconvenient, for example, to have identi-
cal ‘irix6.2’ and ‘irix6.3’ directories, ‘configure’ tries successively less
specific operating-system names by removing trailing suffixes starting with a pe-
riod.

As an example, here is the complete list of directories that would be tried for the
configuration ‘i686-linux-gnu’ (with the ‘crypt’ and ‘linuxthreads’
add-on):

2 See David MacKenzie et al., “Introduction” in Autoconf: Generating Automatic Configuration
Scripts (December 2002), http:// www.gnu.org/ software/ autoconf/ manual/
autoconf-2.57/ autoconf.html.

554 The GNU C Library: System & Network Applications

sysdeps/i386/elf

crypt/sysdeps/unix

linuxthreads/sysdeps/unix/sysv/linux

linuxthreads/sysdeps/pthread

linuxthreads/sysdeps/unix/sysv

linuxthreads/sysdeps/unix

linuxthreads/sysdeps/i386/i686

linuxthreads/sysdeps/i386

linuxthreads/sysdeps/pthread/no-cmpxchg

sysdeps/unix/sysv/linux/i386

sysdeps/unix/sysv/linux

sysdeps/gnu

sysdeps/unix/common

sysdeps/unix/mman

sysdeps/unix/inet

sysdeps/unix/sysv/i386/i686

sysdeps/unix/sysv/i386

sysdeps/unix/sysv

sysdeps/unix/i386

sysdeps/unix

sysdeps/posix

sysdeps/i386/i686

sysdeps/i386/i486

sysdeps/libm-i387/i686

sysdeps/i386/fpu

sysdeps/libm-i387

sysdeps/i386

sysdeps/wordsize-32

sysdeps/ieee754

sysdeps/libm-ieee754

sysdeps/generic

Different machine architectures are conventionally subdirectories at the top
level of the ‘sysdeps’ directory tree. For example, ‘sysdeps/sparc’ and
‘sysdeps/m68k’. These contain files specific to those machine architectures,
but not specific to any particular operating system. There might be subdirecto-
ries for specializations of those architectures, such as ‘sysdeps/m68k/68020’.
Code that is specific to the floating-point coprocessor used with a particular ma-
chine should go in ‘sysdeps/machine/fpu’.

There are a few directories at the top level of the ‘sysdeps’ hierarchy that are
not for particular machine architectures.

‘generic’
As described above (see Section D.2 [Porting the GNU C Library],
page 544), this is the subdirectory that every configuration implicitly
uses after all others.

Appendix D: Library Maintenance 555

‘ieee754’
This directory is for code using the IEEE 754 floating-point format,
where the C type float is IEEE 754 single-precision format, and
double is IEEE 754 double-precision format. Usually, this directory
is referred to in the ‘Implies’ file in a machine architecture-specific
directory, such as ‘m68k/Implies’.

‘libm-ieee754’
This directory contains an implementation of a mathematical library
usable on platforms which use IEEE 754-conformant floating-point
arithmetic.

‘libm-i387’
This is a special case. Ideally, the code should be in
‘sysdeps/i386/fpu’, but for various reasons it is kept
aside.

‘posix’ This directory contains implementations of things in the library in
terms of POSIX.1 functions. This includes some of the POSIX.1 func-
tions themselves. Of course, POSIX.1 cannot be completely imple-
mented in terms of itself, so a configuration using just ‘posix’ can-
not be complete.

‘unix’ This is the directory for Unix-like things (see Section D.2.2 [Porting
the GNU C Library to Unix Systems], page 549). ‘unix’ implies
‘posix’. There are some special-purpose subdirectories of ‘unix’:

‘unix/common’
This directory is for things common to both BSD
and System V release 4. Both ‘unix/bsd’ and
‘unix/sysv/sysv4’ imply ‘unix/common’.

‘unix/inet’
This directory is for socket and related functions on
Unix systems. ‘unix/inet/Subdirs’ enables the
‘inet’ top-level subdirectory. ‘unix/common’ im-
plies ‘unix/inet’.

‘mach’ This is the directory for things based on the Mach microkernel from
CMU (including the GNU operating system). Other basic operating
systems (VMS, for example) would have their own directories at the
top level of the ‘sysdeps’ hierarchy, parallel to ‘unix’ and ‘mach’.

D.2.2 Porting the GNU C Library to Unix Systems

Most Unix systems are fundamentally very similar. There are variations between
different machines, and variations in what facilities are provided by the kernel. But
the interface to the operating system facilities is, for the most part, pretty uniform
and simple.

556 The GNU C Library: System & Network Applications

The code for Unix systems is in the directory ‘unix’, at the top level of the
‘sysdeps’ hierarchy. This directory contains subdirectories (and subdirectory
trees) for various Unix variants.

The functions that are system calls in most Unix systems are implemented in
assembly code, which is generated automatically from specifications in files named
‘syscalls.list’. There are several such files, one in ‘sysdeps/unix’ and
others in its subdirectories. Some special system-calls are implemented in files that
are named with a suffix of ‘.S’; for example, ‘_exit.S’. Files ending in ‘.S’ are
run through the C preprocessor before being fed to the assembler.

These files all use a set of macros that should be defined in ‘sysdep.h’. The
‘sysdep.h’ file in ‘sysdeps/unix’ partially defines them; a ‘sysdep.h’
file in another directory must finish defining them for the particular machine and
operating system variant. See ‘sysdeps/unix/sysdep.h’ and the machine-
specific ‘sysdep.h’ implementations to see what these macros are and what they
should do.

The system-specific makefile for the ‘unix’ directory
(‘sysdeps/unix/Makefile’) gives rules to generate several files
from the Unix system you are building the library on (which is assumed to be the
target system you are building the library for). All the generated files are put in
the directory where the object files are kept; they should not affect the source tree
itself. The files generated are ‘ioctls.h’, ‘errnos.h’, ‘sys/param.h’, and
‘errlist.c’ (for the ‘stdio’ section of the library).

Appendix E: Contributors to the GNU C Library 557

Appendix E Contributors to the GNU C
Library

The GNU C Library was written originally by Roland McGrath, and is cur-
rently maintained by Ulrich Drepper. Some parts of the library were contributed
or worked on by other people.

• The getopt function and related code was written by Richard Stallman,
David J. MacKenzie and Roland McGrath.

• The merge sort function qsort was written by Michael J. Haertel.
• The quick sort function used as a fallback by qsort was written by Douglas

C. Schmidt.
• The memory-allocation functions malloc, realloc and free and related

code were written by Michael J. Haertel, Wolfram Gloger and Doug Lea.
• Fast implementations of many of the string functions (memcpy, strlen,

etc.) were written by Torbjörn Granlund.
• The ‘tar.h’ header file was written by David J. MacKenzie.
• The port to the MIPS DECStation running Ultrix 4 (mips-dec-ultrix4)

was contributed by Brendan Kehoe and Ian Lance Taylor.
• The DES encryption function crypt and related functions were contributed

by Michael Glad.
• The ftw and nftw functions were contributed by Ulrich Drepper.
• The start-up code to support SunOS shared libraries was contributed by Tom

Quinn.
• The mktime function was contributed by Paul Eggert.
• The port to the Sequent Symmetry running Dynix version 3 (i386-
sequent-bsd) was contributed by Jason Merrill.

• The time zone support code is derived from the public-domain time zone pack-
age by Arthur David Olson and his many contributors.

• The port to the DEC Alpha running OSF/1 (alpha-dec-osf1) was con-
tributed by Brendan Kehoe, using some code written by Roland McGrath.

• The port to SGI machines running Irix 4 (mips-sgi-irix4) was con-
tributed by Tom Quinn.

• The port of the Mach and Hurd code to the MIPS architecture (mips-
anything-gnu) was contributed by Kazumoto Kojima.

• The floating-point printing function used by printf and friends and the
floating-point reading function used by scanf, strtod and friends were
written by Ulrich Drepper. The multiprecision integer functions used in
those functions are taken from GNU MP, which was contributed by Torbjörn
Granlund.

• The internationalization support in the library, and the support programs
locale and localedef, were written by Ulrich Drepper. Ulrich Drep-
per adapted the support code for message catalogs (‘libintl.h’, etc.) from

558 The GNU C Library: System & Network Applications

the GNU gettext package, which he also wrote. He also contributed the
catgets support and the entire suite of multibyte and wide-character sup-
port functions (‘wctype.h’, ‘wchar.h’, etc.).

• The implementations of the ‘nsswitch.conf’ mechanism and the files and
DNS backends for it were designed and written by Ulrich Drepper and Roland
McGrath, based on a backend interface defined by Peter Eriksson.

• The port to Linux i386/ELF (i386-anything-linux) was contributed by Ul-
rich Drepper, based in large part on work done in Hongjiu Lu’s Linux version
of the GNU C Library.

• The port to Linux/m68k (m68k-anything-linux) was contributed by An-
dreas Schwab.

• The ports to Linux/ARM (arm-ANYTHING-linuxaout) and ARM stan-
dalone (arm-ANYTHING-none), as well as parts of the IPv6 support code,
were contributed by Philip Blundell.

• Richard Henderson contributed the ELF dynamic-linking code and other sup-
port for the Alpha processor.

• David Mosberger-Tang contributed the port to Linux/Alpha (alpha-
anything-linux).

• The port to Linux on PowerPC (powerpc-anything-linux) was con-
tributed by Geoffrey Keating.

• Miles Bader wrote the argp argument-parsing package, and the argz/envz in-
terfaces.

• Stephen R. van den Berg contributed a highly-optimized strstr function.
• Ulrich Drepper contributed the hsearch and drand48 families of func-

tions; reentrant ‘..._r’ versions of the random family; System V shared
memory and IPC support code; and several highly-optimized string functions
for ix86 processors.

• The math functions are taken from fdlibm-5.1 by Sun Microsystems, as
modified by J.T. Conklin, Ian Lance Taylor, Ulrich Drepper, Andreas Schwab
and Roland McGrath.

• The libio library used to implement stdio functions on some platforms
was written by Per Bothner and modified by Ulrich Drepper.

• Eric Youngdale and Ulrich Drepper implemented versioning of objects on the
symbol level.

• Thorsten Kukuk provided an implementation for NIS (YP) and NIS+, se-
curelevel 0, 1 and 2.

• Andreas Jaeger provided a test suite for the math library.
• Mark Kettenis implemented the utmpx interface and an utmp daemon.
• Ulrich Drepper added character conversion functions (iconv).
• Thorsten Kukuk provided an implementation for a caching daemon for NSS

(nscd).

Appendix E: Contributors to the GNU C Library 559

• Tim Waugh provided an implementation of the POSIX.2 wordexp function
family.

• Mark Kettenis provided a Hesiod NSS module.
• The Internet-related code (most of the ‘inet’ subdirectory) and several other

miscellaneous functions and header files have been included from 4.4 BSD
with little or no modification. The copying permission notice for this code can
be found in the file ‘LICENSES’ in the source distribution.

• The random-number generation functions random, srandom, setstate
and initstate, which are also the basis for the rand and srand func-
tions, were written by Earl T. Cohen for the University of California at Berke-
ley and are copyrighted by the Regents of the University of California. They
have undergone minor changes to fit into the GNU C Library and to fit the
ISO C standard, but the functional code is Berkeley’s.

• The DNS-resolver code is taken directly from BIND 4.9.5, which includes
copyrighted code from UC Berkeley and from Digital Equipment Corpora-
tion. See the file ‘LICENSES’ for the text of the DEC license.

• The code to support Sun RPC is taken verbatim from Sun’s RPCSRC-4.0 dis-
tribution; see the file ‘LICENSES’ for the text of the license.

• Some of the support code for Mach is taken from Mach 3.0 by CMU; the file
if ppp.h is also copyright by CMU, but under a different license; see the file
‘LICENSES’ for the text of the licenses.

• Many of the IA64 math functions are taken from a collection of “Highly Op-
timized Mathematical Functions for Itanium” that Intel makes available under
a free license; see the file ‘LICENSES’ for details.

• The getaddrinfo and getnameinfo functions and supporting code were
written by Craig Metz; see the file ‘LICENSES’ for details on their licensing.

• Many of the IEEE 64-bit double precision math functions (in the
‘sysdeps/ieee754/dbl-64’ subdirectory) come from the IBM
Accurate Mathematical Library, contributed by IBM.

560 The GNU C Library: System & Network Applications

Appendix F: Free Software Needs Free Documentation 561

Appendix F Free Software Needs Free
Documentation

The biggest deficiency in the free software community today is not in the
software—it is the lack of good free documentation that we can include with the
free software. Many of our most important programs do not come with free refer-
ence manuals and free introductory texts. Documentation is an essential part of any
software package; when an important free software package does not come with a
free manual and a free tutorial, that is a major gap. We have many such gaps today.

Consider Perl, for instance. The tutorial manuals that people normally use are
nonfree. How did this come about? Because the authors of those manuals pub-
lished them with restrictive terms—no copying, no modification, source files not
available—which exclude them from the free software world.

That wasn’t the first time this sort of thing happened, and it was far from the
last. Many times we have heard a GNU user eagerly describe a manual that he is
writing, his intended contribution to the community, only to learn that he had ruined
everything by signing a publication contract to make it nonfree.

Free documentation, like free software, is a matter of freedom, not price. The
problem with the nonfree manual is not that publishers charge a price for printed
copies—that in itself is fine. (The Free Software Foundation sells printed copies
of manuals, too.) The problem is the restrictions on the use of the manual. Free
manuals are available in source code form, and give you permission to copy and
modify. Nonfree manuals do not allow this.

The criteria of freedom for a free manual are roughly the same as for free soft-
ware. Redistribution (including the normal kinds of commercial redistribution)
must be permitted, so that the manual can accompany every copy of the program,
both on-line and on paper.

Permission for modification of the technical content is crucial too. When people
modify the software, adding or changing features, if they are conscientious they
will change the manual too—so they can provide accurate and clear documentation
for the modified program. A manual that leaves you no choice but to write a new
manual to document a changed version of the program is not really available to our
community.

Some kinds of limits on the way modification is handled are acceptable. For
example, requirements to preserve the original author’s copyright notice, the distri-
bution terms, or the list of authors, are ok. It is also no problem to require modified
versions to include notice that they were modified. Even entire sections that may
not be deleted or changed are acceptable, as long as they deal with nontechnical
topics (like this one). These kinds of restrictions are acceptable because they don’t
obstruct the community’s normal use of the manual.

However, it must be possible to modify all the technical content of the manual,
and then distribute the result in all the usual media, through all the usual channels.
Otherwise, the restrictions obstruct the use of the manual, it is not free, and we need
another manual to replace it.

562 The GNU C Library: System & Network Applications

Please spread the word about this issue. Our community continues to lose man-
uals to proprietary publishing. If we spread the word that free software needs free
reference manuals and free tutorials, perhaps the next person who wants to con-
tribute by writing documentation will realize, before it is too late, that only free
manuals contribute to the free software community.

If you are writing documentation, please insist on publishing it under the GNU
Free Documentation License or another free documentation license. Remember
that this decision requires your approval—you don’t have to let the publisher de-
cide. Some commercial publishers will use a free license if you insist, but they
will not propose the option; it is up to you to raise the issue and say firmly that
this is what you want. If the publisher you are dealing with refuses, please try
other publishers. If you’re not sure whether a proposed license is free, write to
licensing@gnu.org.

You can encourage commercial publishers to sell more free, copylefted manuals
and tutorials by buying them, and particularly by buying copies from the publishers
that paid for their writing or for major improvements. Meanwhile, try to avoid
buying nonfree documentation at all. Check the distribution terms of a manual
before you buy it, and insist that whoever seeks your business must respect your
freedom. Check the history of the book, and try reward the publishers that have
paid or pay the authors to work on it.

The Free Software Foundation maintains a list of free documentation pub-
lished by other publishers, at http:// www.fsf.org/ doc/ other-free-
books.html.

mailto:licensing@gnu.org

Appendix G: GNU Lesser General Public License 563

Appendix G GNU Lesser General Public
License

Version 2.1, February 1999
Copyright © 1991, 1999 Free Software Foundation, Inc.
51 Franklin St – Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

[This is the first released version of the Lesser GPL. It also counts
as the successor of the GNU Library Public License, version 2, hence the
version number 2.1.]

G.0.1 Preamble

The licenses for most software are designed to take away your freedom to share
and change it. By contrast, the GNU General Public Licenses are intended to guar-
antee your freedom to share and change free software—to make sure the software
is free for all its users.

This license, the Lesser General Public License, applies to some specially des-
ignated software—typically libraries—of the Free Software Foundation and other
authors who decide to use it. You can use it too, but we suggest you first think
carefully about whether this license or the ordinary General Public License is the
better strategy to use in any particular case, based on the explanations below.

When we speak of free software, we are referring to freedom of use, not price.
Our General Public Licenses are designed to make sure that you have the freedom
to distribute copies of free software (and charge for this service if you wish); that
you receive source code or can get it if you want it; that you can change the software
and use pieces of it in new free programs; and that you are informed that you can
do these things.

To protect your rights, we need to make restrictions that forbid distributors to
deny you these rights or to ask you to surrender these rights. These restrictions
translate to certain responsibilities for you if you distribute copies of the library or
if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee,
you must give the recipients all the rights that we gave you. You must make sure
that they, too, receive or can get the source code. If you link other code with the
library, you must provide complete object files to the recipients, so that they can
relink them with the library after making changes to the library and recompiling it.
And you must show them these terms so they know their rights.

We protect your rights with a two-step method: (1) we copyright the library, and
(2) we offer you this license, which gives you legal permission to copy, distribute
and/or modify the library.

564 The GNU C Library: System & Network Applications

To protect each distributor, we want to make it very clear that there is no warranty
for the free library. Also, if the library is modified by someone else and passed
on, the recipients should know that what they have is not the original version, so
that the original author’s reputation will not be affected by problems that might be
introduced by others.

Finally, software patents pose a constant threat to the existence of any free pro-
gram. We wish to make sure that a company cannot effectively restrict the users
of a free program by obtaining a restrictive license from a patent holder. There-
fore, we insist that any patent license obtained for a version of the library must be
consistent with the full freedom of use specified in this license.

Most GNU software, including some libraries, is covered by the ordinary GNU
General Public License. This license, the GNU Lesser General Public License, ap-
plies to certain designated libraries, and is quite different from the ordinary General
Public License. We use this license for certain libraries in order to permit linking
those libraries into nonfree programs.

When a program is linked with a library, whether statically or using a shared
library, the combination of the two is legally speaking a combined work, a deriva-
tive of the original library. The ordinary General Public License therefore permits
such linking only if the entire combination fits its criteria of freedom. The Lesser
General Public License permits more lax criteria for linking other code with the
library.

We call this license the Lesser General Public License because it does Less to
protect the user’s freedom than the ordinary General Public License. It also pro-
vides other free software developers Less of an advantage over competing nonfree
programs. These disadvantages are the reason we use the ordinary General Public
License for many libraries. However, the Lesser license provides advantages in
certain special circumstances.

For example, on rare occasions, there may be a special need to encourage the
widest possible use of a certain library, so that it becomes a de-facto standard. To
achieve this, nonfree programs must be allowed to use the library. A more frequent
case is that a free library does the same job as widely used nonfree libraries. In this
case, there is little to gain by limiting the free library to free software only, so we
use the Lesser General Public License.

In other cases, permission to use a particular library in nonfree programs enables
a greater number of people to use a large body of free software. For example,
permission to use the GNU C Library in nonfree programs enables many more peo-
ple to use the whole GNU operating system, as well as its variant, the GNU/Linux
operating system.

Although the Lesser General Public License is Less protective of the users’ free-
dom, it does ensure that the user of a program that is linked with the Library has
the freedom and the wherewithal to run that program using a modified version of
the Library.

The precise terms and conditions for copying, distribution and modification fol-
low. Pay close attention to the difference between a “work based on the library” and

Appendix G: GNU Lesser General Public License 565

a “work that uses the library”. The former contains code derived from the library,
whereas the latter must be combined with the library in order to run.

G.0.2 TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library or other program
which contains a notice placed by the copyright holder or other authorized
party saying it may be distributed under the terms of this Lesser General Pub-
lic License (also called “this License”). Each licensee is addressed as “you”.
A “library” means a collection of software functions and/or data prepared so
as to be conveniently linked with application programs (which use some of
those functions and data) to form executables.
The “Library”, below, refers to any such software library or work which has
been distributed under these terms. A “work based on the Library” means ei-
ther the Library or any derivative work under copyright law: that is to say, a
work containing the Library or a portion of it, either verbatim or with modifica-
tions and/or translated straightforwardly into another language. (Hereinafter,
translation is included without limitation in the term “modification”.)
“Source code” for a work means the preferred form of the work for making
modifications to it. For a library, complete source code means all the source
code for all modules it contains, plus any associated interface definition files,
plus the scripts used to control compilation and installation of the library.
Activities other than copying, distribution and modification are not covered by
this License; they are outside its scope. The act of running a program using
the Library is not restricted, and output from such a program is covered only
if its contents constitute a work based on the Library (independent of the use
of the Library in a tool for writing it). Whether that is true depends on what
the Library does and what the program that uses the Library does.

1. You may copy and distribute verbatim copies of the Library’s complete source
code as you receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice and dis-
claimer of warranty; keep intact all the notices that refer to this License and to
the absence of any warranty; and distribute a copy of this License along with
the Library.
You may charge a fee for the physical act of transferring a copy, and you may
at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it, thus
forming a work based on the Library, and copy and distribute such modifica-
tions or work under the terms of Section 1 above, provided that you also meet
all of these conditions:

a. The modified work must itself be a software library.
b. You must cause the files modified to carry prominent notices stating that

you changed the files and the date of any change.

566 The GNU C Library: System & Network Applications

c. You must cause the whole of the work to be licensed at no charge to all
third parties under the terms of this License.

d. If a facility in the modified Library refers to a function or a table of data
to be supplied by an application program that uses the facility, other than
as an argument passed when the facility is invoked, then you must make a
good faith effort to ensure that, in the event an application does not supply
such function or table, the facility still operates, and performs whatever
part of its purpose remains meaningful.
(For example, a function in a library to compute square roots has a pur-
pose that is entirely well-defined independent of the application. There-
fore, Subsection 2d requires that any application-supplied function or ta-
ble used by this function must be optional: if the application does not
supply it, the square root function must still compute square roots.)

These requirements apply to the modified work as a whole. If identifiable
sections of that work are not derived from the Library, and can be reasonably
considered independent and separate works in themselves, then this License,
and its terms, do not apply to those sections when you distribute them as sep-
arate works. But when you distribute the same sections as part of a whole
which is a work based on the Library, the distribution of the whole must be on
the terms of this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.
Thus, it is not the intent of this section to claim rights or contest your rights
to work written entirely by you; rather, the intent is to exercise the right to
control the distribution of derivative or collective works based on the Library.
In addition, mere aggregation of another work not based on the Library with
the Library (or with a work based on the Library) on a volume of a storage
or distribution medium does not bring the other work under the scope of this
License.

3. You may opt to apply the terms of the ordinary GNU General Public License
instead of this License to a given copy of the Library. To do this, you must
alter all the notices that refer to this License, so that they refer to the ordinary
GNU General Public License, version 2, instead of to this License. (If a newer
version than version 2 of the ordinary GNU General Public License has ap-
peared, then you can specify that version instead if you wish.) Do not make
any other change in these notices.
Once this change is made in a given copy, it is irreversible for that copy, so
the ordinary GNU General Public License applies to all subsequent copies and
derivative works made from that copy.
This option is useful when you wish to copy part of the code of the Library
into a program that is not a library.

4. You may copy and distribute the Library (or a portion or derivative of it, un-
der Section 2) in object code or executable form under the terms of Sections
1 and 2 above provided that you accompany it with the complete correspond-
ing machine-readable source code, which must be distributed under the terms

Appendix G: GNU Lesser General Public License 567

of Sections 1 and 2 above on a medium customarily used for software inter-
change.
If distribution of object code is made by offering access to copy from a desig-
nated place, then offering equivalent access to copy the source code from the
same place satisfies the requirement to distribute the source code, even though
third parties are not compelled to copy the source along with the object code.

5. A program that contains no derivative of any portion of the Library, but is
designed to work with the Library by being compiled or linked with it, is called
a “work that uses the Library”. Such a work, in isolation, is not a derivative
work of the Library, and therefore falls outside the scope of this License.
However, linking a “work that uses the Library” with the Library creates an
executable that is a derivative of the Library (because it contains portions of
the Library), rather than a “work that uses the library”. The executable is
therefore covered by this License. Section 6 states terms for distribution of
such executables.
When a “work that uses the Library” uses material from a header file that is
part of the Library, the object code for the work may be a derivative work of the
Library even though the source code is not. Whether this is true is especially
significant if the work can be linked without the Library, or if the work is itself
a library. The threshold for this to be true is not precisely defined by law.
If such an object file uses only numerical parameters, data structure layouts
and accessors, and small macros and small inline functions (ten lines or less
in length), then the use of the object file is unrestricted, regardless of whether
it is legally a derivative work. (Executables containing this object code plus
portions of the Library will still fall under Section 6.)
Otherwise, if the work is a derivative of the Library, you may distribute the
object code for the work under the terms of Section 6. Any executables con-
taining that work also fall under Section 6, whether or not they are linked
directly with the Library itself.

6. As an exception to the Sections above, you may also combine or link a “work
that uses the Library” with the Library to produce a work containing portions
of the Library, and distribute that work under terms of your choice, provided
that the terms permit modification of the work for the customer’s own use and
reverse engineering for debugging such modifications.
You must give prominent notice with each copy of the work that the Library is
used in it and that the Library and its use are covered by this License. You must
supply a copy of this License. If the work during execution displays copyright
notices, you must include the copyright notice for the Library among them, as
well as a reference directing the user to the copy of this License. Also, you
must do one of these things:

a. Accompany the work with the complete corresponding machine-readable
source code for the Library including whatever changes were used in the
work (which must be distributed under Sections 1 and 2 above); and,
if the work is an executable linked with the Library, with the complete

568 The GNU C Library: System & Network Applications

machine-readable “work that uses the Library”, as object code and/or
source code, so that the user can modify the Library and then relink to
produce a modified executable containing the modified Library. (It is
understood that the user who changes the contents of definitions files in
the Library will not necessarily be able to recompile the application to
use the modified definitions.)

b. Use a suitable shared library mechanism for linking with the Library. A
suitable mechanism is one that (1) uses at run time a copy of the library
already present on the user’s computer system, rather than copying li-
brary functions into the executable, and (2) will operate properly with
a modified version of the library, if the user installs one, as long as the
modified version is interface-compatible with the version that the work
was made with.

c. Accompany the work with a written offer, valid for at least three years,
to give the same user the materials specified in Subsection 6a, above, for
a charge no more than the cost of performing this distribution.

d. If distribution of the work is made by offering access to copy from a
designated place, offer equivalent access to copy the above specified ma-
terials from the same place.

e. Verify that the user has already received a copy of these materials or that
you have already sent this user a copy.

For an executable, the required form of the “work that uses the Library” must
include any data and utility programs needed for reproducing the executable
from it. However, as a special exception, the materials to be distributed need
not include anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the operat-
ing system on which the executable runs, unless that component itself accom-
panies the executable.
It may happen that this requirement contradicts the license restrictions of other
proprietary libraries that do not normally accompany the operating system.
Such a contradiction means you cannot use both them and the Library together
in an executable that you distribute.

7. You may place library facilities that are a work based on the Library side-
by-side in a single library together with other library facilities not covered by
this License, and distribute such a combined library, provided that the separate
distribution of the work based on the Library and of the other library facilities
is otherwise permitted, and provided that you do these two things:

a. Accompany the combined library with a copy of the same work based on
the Library, uncombined with any other library facilities. This must be
distributed under the terms of the Sections above.

b. Give prominent notice with the combined library of the fact that part
of it is a work based on the Library, and explaining where to find the
accompanying uncombined form of the same work.

Appendix G: GNU Lesser General Public License 569

8. You may not copy, modify, sublicense, link with, or distribute the Library
except as expressly provided under this License. Any attempt otherwise to
copy, modify, sublicense, link with, or distribute the Library is void, and will
automatically terminate your rights under this License. However, parties who
have received copies, or rights, from you under this License will not have their
licenses terminated so long as such parties remain in full compliance.

9. You are not required to accept this License, since you have not signed it. How-
ever, nothing else grants you permission to modify or distribute the Library or
its derivative works. These actions are prohibited by law if you do not ac-
cept this License. Therefore, by modifying or distributing the Library (or any
work based on the Library), you indicate your acceptance of this License to
do so, and all its terms and conditions for copying, distributing or modifying
the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the Library), the
recipient automatically receives a license from the original licensor to copy,
distribute, link with or modify the Library subject to these terms and condi-
tions. You may not impose any further restrictions on the recipients’ exercise
of the rights granted herein. You are not responsible for enforcing compliance
by third parties with this License.

11. If, as a consequence of a court judgment or allegation of patent infringement
or for any other reason (not limited to patent issues), conditions are imposed
on you (whether by court order, agreement or otherwise) that contradict the
conditions of this License, they do not excuse you from the conditions of this
License. If you cannot distribute so as to satisfy simultaneously your obli-
gations under this License and any other pertinent obligations, then as a con-
sequence you may not distribute the Library at all. For example, if a patent
license would not permit royalty-free redistribution of the Library by all those
who receive copies directly or indirectly through you, then the only way you
could satisfy both it and this License would be to refrain entirely from distri-
bution of the Library.
If any portion of this section is held invalid or unenforceable under any par-
ticular circumstance, the balance of the section is intended to apply, and the
section as a whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any patents or
other property right claims or to contest validity of any such claims; this sec-
tion has the sole purpose of protecting the integrity of the free software distri-
bution system which is implemented by public license practices. Many people
have made generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that system; it is
up to the author/donor to decide if he or she is willing to distribute software
through any other system and a licensee cannot impose that choice.
This section is intended to make thoroughly clear what is believed to be a
consequence of the rest of this License.

12. If the distribution and/or use of the Library is restricted in certain countries
either by patents or by copyrighted interfaces, the original copyright holder

570 The GNU C Library: System & Network Applications

who places the Library under this License may add an explicit geographical
distribution limitation excluding those countries, so that distribution is permit-
ted only in or among countries not thus excluded. In such case, this License
incorporates the limitation as if written in the body of this License.

13. The Free Software Foundation may publish revised and/or new versions of the
Lesser General Public License from time to time. Such new versions will be
similar in spirit to the present version, but may differ in detail to address new
problems or concerns.
Each version is given a distinguishing version number. If the Library specifies
a version number of this License which applies to it and “any later version”,
you have the option of following the terms and conditions either of that ver-
sion or of any later version published by the Free Software Foundation. If
the Library does not specify a license version number, you may choose any
version ever published by the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free programs whose
distribution conditions are incompatible with these, write to the author to ask
for permission. For software which is copyrighted by the Free Software Foun-
dation, write to the Free Software Foundation; we sometimes make exceptions
for this. Our decision will be guided by the two goals of preserving the free
status of all derivatives of our free software and of promoting the sharing and
reuse of software generally.

NO WARRANTY
15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE

IS NO WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMIT-
TED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED
IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE LIBRARY “AS IS” WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE LIBRARY IS WITH
YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORREC-
TION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR
AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR
ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE
THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU FOR
DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL
OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF

Appendix G: GNU Lesser General Public License 571

THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN
IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

572 The GNU C Library: System & Network Applications

G.0.3 How to Apply These Terms to Your New Libraries

If you develop a new library, and you want it to be of the greatest possible use
to the public, we recommend making it free software that everyone can redistribute
and change. You can do so by permitting redistribution under these terms (or,
alternatively, under the terms of the ordinary General Public License).

To apply these terms, attach the following notices to the library. It is safest to
attach them to the start of each source file to most effectively convey the exclusion
of warranty; and each file should have at least the “copyright” line and a pointer to
where the full notice is found.

one line to give the library’s name and an idea of what it does.

Copyright (C) year name of author

This library is free software; you can redistribute it and/or modify it

under the terms of the GNU Lesser General Public License as published by

the Free Software Foundation; either version 2.1 of the License, or (at

your option) any later version.

This library is distributed in the hope that it will be useful, but

WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public

License along with this library; if not, write to the Free Software

Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301,

USA.

Also add information on how to contact you by electronic and paper mail.
You should also get your employer (if you work as a programmer) or your school,

if any, to sign a “copyright disclaimer” for the library, if necessary. Here is a sam-
ple; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the library

‘Frob’ (a library for tweaking knobs) written by James Random Hacker.

signature of Ty Coon, 1 April 1990

Ty Coon, President of Vice

That’s all there is to it!

Appendix H: GNU Free Documentation License 573

Appendix H GNU Free Documentation License
Version 1.1, March 2000

Copyright © 2000 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other written
document free in the sense of freedom: to assure everyone the effective free-
dom to copy and redistribute it, with or without modifying it, either commer-
cially or noncommercially. Secondarily, this License preserves for the author
and publisher a way to get credit for their work, while not being considered
responsible for modifications made by others.
This License is a kind of “copyleft”, which means that derivative works of the
document must themselves be free in the same sense. It complements the GNU
General Public License, which is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software,
because free software needs free documentation: a free program should come
with manuals providing the same freedoms that the software does. But this
License is not limited to software manuals; it can be used for any textual work,
regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction or
reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work that contains a notice placed
by the copyright holder saying it can be distributed under the terms of this
License. The “Document”, below, refers to any such manual or work. Any
member of the public is a licensee, and is addressed as “you”.
A “Modified Version” of the Document means any work containing the Doc-
ument or a portion of it, either copied verbatim, or with modifications and/or
translated into another language.
A “Secondary Section” is a named appendix or a front-matter section of the
Document that deals exclusively with the relationship of the publishers or au-
thors of the Document to the Document’s overall subject (or to related matters)
and contains nothing that could fall directly within that overall subject. (For
example, if the Document is in part a textbook of mathematics, a Secondary
Section may not explain any mathematics.) The relationship could be a matter
of historical connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding them.
The “Invariant Sections” are certain Secondary Sections whose titles are des-
ignated, as being those of Invariant Sections, in the notice that says that the
Document is released under this License.

574 The GNU C Library: System & Network Applications

The “Cover Texts” are certain short passages of text that are listed, as Front-
Cover Texts or Back-Cover Texts, in the notice that says that the Document is
released under this License.
A “Transparent” copy of the Document means a machine-readable copy, rep-
resented in a format whose specification is available to the general public,
whose contents can be viewed and edited directly and straightforwardly with
generic text editors or (for images composed of pixels) generic paint programs
or (for drawings) some widely available drawing editor, and that is suitable for
input to text formatters or for automatic translation to a variety of formats suit-
able for input to text formatters. A copy made in an otherwise Transparent file
format whose markup has been designed to thwart or discourage subsequent
modification by readers is not Transparent. A copy that is not “Transparent”
is called “Opaque”.
Examples of suitable formats for Transparent copies include plain ASCII with-
out markup, Texinfo input format, LaTEX input format, SGML or XML using a
publicly available DTD, and standard-conforming simple HTML designed for
human modification. Opaque formats include PostScript, PDF, proprietary for-
mats that can be read and edited only by proprietary word processors, SGML
or XML for which the DTD and/or processing tools are not generally available,
and the machine-generated HTML produced by some word processors for out-
put purposes only.
The “Title Page” means, for a printed book, the title page itself, plus such fol-
lowing pages as are needed to hold, legibly, the material this License requires
to appear in the title page. For works in formats which do not have any title
page as such, “Title Page” means the text near the most prominent appearance
of the work’s title, preceding the beginning of the body of the text.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commer-
cially or noncommercially, provided that this License, the copyright notices,
and the license notice saying this License applies to the Document are repro-
duced in all copies, and that you add no other conditions whatsoever to those
of this License. You may not use technical measures to obstruct or control
the reading or further copying of the copies you make or distribute. However,
you may accept compensation in exchange for copies. If you distribute a large
enough number of copies you must also follow the conditions in section 3.
You may also lend copies, under the same conditions stated above, and you
may publicly display copies.

3. COPYING IN QUANTITY
If you publish printed copies of the Document numbering more than 100, and
the Document’s license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover Texts: Front-
Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both
covers must also clearly and legibly identify you as the publisher of these
copies. The front cover must present the full title with all words of the title

Appendix H: GNU Free Documentation License 575

equally prominent and visible. You may add other material on the covers in
addition. Copying with changes limited to the covers, as long as they pre-
serve the title of the Document and satisfy these conditions, can be treated as
verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you
should put the first ones listed (as many as fit reasonably) on the actual cover,
and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more
than 100, you must either include a machine-readable Transparent copy along
with each Opaque copy, or state in or with each Opaque copy a publicly-
accessible computer-network location containing a complete Transparent copy
of the Document, free of added material, which the general network-using
public has access to download anonymously at no charge using public-
standard network protocols. If you use the latter option, you must take reason-
ably prudent steps, when you begin distribution of Opaque copies in quantity,
to ensure that this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document
well before redistributing any large number of copies, to give them a chance
to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the
conditions of sections 2 and 3 above, provided that you release the Modified
Version under precisely this License, with the Modified Version filling the role
of the Document, thus licensing distribution and modification of the Modified
Version to whoever possesses a copy of it. In addition, you must do these
things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that
of the Document, and from those of previous versions (which should, if
there were any, be listed in the History section of the Document). You
may use the same title as a previous version if the original publisher of
that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities re-
sponsible for authorship of the modifications in the Modified Version,
together with at least five of the principal authors of the Document (all of
its principal authors, if it has less than five).

C. State on the Title page the name of the publisher of the Modified Version,
as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to
the other copyright notices.

576 The GNU C Library: System & Network Applications

F. Include, immediately after the copyright notices, a license notice giving
the public permission to use the Modified Version under the terms of this
License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and re-
quired Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section entitled “History”, and its title, and add to it an item

stating at least the title, year, new authors, and publisher of the Modified
Version as given on the Title Page. If there is no section entitled “History”
in the Document, create one stating the title, year, authors, and publisher
of the Document as given on its Title Page, then add an item describing
the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public
access to a Transparent copy of the Document, and likewise the network
locations given in the Document for previous versions it was based on.
These may be placed in the “History” section. You may omit a network
location for a work that was published at least four years before the Doc-
ument itself, or if the original publisher of the version it refers to gives
permission.

K. In any section entitled “Acknowledgements” or “Dedications”, preserve
the section’s title, and preserve in the section all the substance and tone
of each of the contributor acknowledgements and/or dedications given
therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text
and in their titles. Section numbers or the equivalent are not considered
part of the section titles.

M. Delete any section entitled “Endorsements”. Such a section may not be
included in the Modified Version.

N. Do not retitle any existing section as “Endorsements” or to conflict in title
with any Invariant Section.

If the Modified Version includes new front-matter sections or appendices that
qualify as Secondary Sections and contain no material copied from the Docu-
ment, you may at your option designate some or all of these sections as invari-
ant. To do this, add their titles to the list of Invariant Sections in the Modified
Version’s license notice. These titles must be distinct from any other section
titles.
You may add a section entitled “Endorsements”, provided it contains nothing
but endorsements of your Modified Version by various parties—for example,
statements of peer review or that the text has been approved by an organization
as the authoritative definition of a standard.
You may add a passage of up to five words as a Front-Cover Text, and a pas-
sage of up to 25 words as a Back-Cover Text, to the end of the list of Cover
Texts in the Modified Version. Only one passage of Front-Cover Text and one

Appendix H: GNU Free Documentation License 577

of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover,
previously added by you or by arrangement made by the same entity you are
acting on behalf of, you may not add another; but you may replace the old one,
on explicit permission from the previous publisher that added the old one.
The author(s) and publisher(s) of the Document do not by this License give
permission to use their names for publicity for or to assert or imply endorse-
ment of any Modified Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified versions,
provided that you include in the combination all of the Invariant Sections of all
of the original documents, unmodified, and list them all as Invariant Sections
of your combined work in its license notice.
The combined work need only contain one copy of this License, and multiple
identical Invariant Sections may be replaced with a single copy. If there are
multiple Invariant Sections with the same name but different contents, make
the title of each such section unique by adding at the end of it, in parentheses,
the name of the original author or publisher of that section if known, or else
a unique number. Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.
In the combination, you must combine any sections entitled “History” in the
various original documents, forming one section entitled “History”; likewise
combine any sections entitled “Acknowledgements”, and any sections entitled
“Dedications”. You must delete all sections entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this License
in the various documents with a single copy that is included in the collection,
provided that you follow the rules of this License for verbatim copying of each
of the documents in all other respects.
You may extract a single document from such a collection, and distribute it
individually under this License, provided you insert a copy of this License into
the extracted document, and follow this License in all other respects regarding
verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and in-
dependent documents or works, in or on a volume of a storage or distribution
medium, does not as a whole count as a Modified Version of the Document,
provided no compilation copyright is claimed for the compilation. Such a
compilation is called an “aggregate”, and this License does not apply to the
other self-contained works thus compiled with the Document, on account of
their being thus compiled, if they are not themselves derivative works of the
Document.

578 The GNU C Library: System & Network Applications

If the Cover Text requirement of section 3 is applicable to these copies of the
Document, then if the Document is less than one quarter of the entire aggre-
gate, the Document’s Cover Texts may be placed on covers that surround only
the Document within the aggregate. Otherwise they must appear on covers
around the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute trans-
lations of the Document under the terms of section 4. Replacing Invariant
Sections with translations requires special permission from their copyright
holders, but you may include translations of some or all Invariant Sections
in addition to the original versions of these Invariant Sections. You may in-
clude a translation of this License provided that you also include the original
English version of this License. In case of a disagreement between the trans-
lation and the original English version of this License, the original English
version will prevail.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as
expressly provided for under this License. Any other attempt to copy, modify,
sublicense or distribute the Document is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so
long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU
Free Documentation License from time to time. Such new versions will be
similar in spirit to the present version, but may differ in detail to address new
problems or concerns. See http:// www.gnu.org/ copyleft/.
Each version of the License is given a distinguishing version number. If the
Document specifies that a particular numbered version of this License “or any
later version” applies to it, you have the option of following the terms and
conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document
does not specify a version number of this License, you may choose any version
ever published (not as a draft) by the Free Software Foundation.

http:// www.gnu.org/ copyleft/

Appendix H: GNU Free Documentation License 579

H.0.1 ADDENDUM: How to Use This License for Your
Documents

To use this License in a document you have written, include a copy of the License
in the document and put the following copyright and license notices just after the
title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.1

or any later version published by the Free Software Foundation;

with the Invariant Sections being list their titles, with the

Front-Cover Texts being list, and with the Back-Cover Texts being list.

A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have no Invariant Sections, write “with no Invariant Sections” instead of
saying which ones are invariant. If you have no Front-Cover Texts, write “no Front-
Cover Texts” instead of “Front-Cover Texts being list”; likewise for Back-Cover
Texts.

If your document contains nontrivial examples of program code, we recommend
releasing these examples in parallel under your choice of free software license, such
as the GNU General Public License, to permit their use in free software.

580 The GNU C Library: System & Network Applications

Concept Index 581

Concept Index

/
/etc/hostname . 286
‘/etc/nsswitch.conf’ 244

_POSIX_SAVED_IDS 254

4
4.n BSD Unix . 3

A
abort signal . 382
absolute priority . 343
accepting connections . 155
access permission for a file 104
access, testing for . 106
accessing directories . 73
address of socket . 127
address space . 354
alarm signal . 384
allocating pseudoterminals 205
argument promotion . 460
arguments (variadic functions) 458
arguments, how many . 459
assertions . 455
attributes of a file . 93

B
background job . 222
background job, launching 233
base (of floating-point number) 467
baud rate . 192
Berkeley Unix . 3
bias (of floating-point number exponent) . . 467
big-endian . 147
binding a socket address 127
blocked signals . 378
blocked signals, checking for 419
blocking signals . 414
blocking signals, in a handler 418
bootstrapping, and services 246
break condition, detecting 186
break condition, generating 201
broken pipe signal . 387

BSD compatibility library 9
BSD compatibility library 240
BSD Unix . 3
bugs, reporting . 541
bus error . 382
byte stream . 125
byte-order conversion, for socket 147

C
calling variadic functions 460
canonical-input processing 180
capacity-limits, POSIX . 303
carrier detect . 188
catching signals . 378
change working directory 71
channels . 29
checking for pending signals 419
child process . 209, 210
child-process signal . 385
cleaning up a stream . 29
clearing terminal input queue 202
client . 153
close-on-exec (file-descriptor flag) 58
closing a file descriptor . 17
closing a socket . 152
communication style (of a socket) 125
compiling . 533
configurations, all supported 539
configuring . 533
connecting a socket . 153
connection . 153
consistency checking . 455
continue signal . 385
control operations on files 54
controlling process . 222
controlling terminal . 221
controlling-terminal, access to 223
controlling-terminal, determining 238
controlling-terminal, setting 61
converting byte-order . 147
converting file-descriptor to stream 28
converting group-ID to group-name 277
converting group-name to group-ID 277
converting host name to address 141
converting host-address to name 141
converting network-name to network-number

. 176

582 The GNU C Library: System & Network Applications

converting network-number to network-name
. 176

converting port-number to service-name . . . 145
converting service-name to port-number . . . 145
converting user-ID to user-name 274
converting user-name to user-ID 274
CPU priority . 342
create on open (file status flag) 60
creating a directory . 92
creating a FIFO special file 123
creating a pipe . 119
creating a pipe to a subprocess 121
creating a process . 210
creating a socket . 151
creating a socket pair . 152
creating special files . 113
current limit . 338
current working directory 71

D
data loss on sockets . 125
databases . 243
datagram socket . 167
datagrams, transmitting 167
declaration (compared to definition) 4
declaring variadic functions 460
default action (for a signal) 378
default action for a signal 390
default argument promotions 460
default value, and NSS . 246
definition (compared to declaration) 4
delayed suspend character 197
deleting a directory . 90
deleting a file . 90
delivery of signals . 378
descriptors and streams . 29
directories, accessing . 73
directories, creating . 92
directories, deleting . 90
directory hierarchy . 81
directory stream . 73
DISCARD character . 198
DNS . 285
DNS server unavailable 245
domain (of socket) . 125
domain name . 285
Domain Name System . 285
dot notation, for Internet addresses 137
DSUSP character . 197
duplicating file-descriptors 55

E
echo of terminal input . 190
effective group-ID . 253
effective user-ID . 253
EINTR, and restarting interrupted primitives

. 408
end of file, on a file descriptor 20
EOF character . 194
EOL character . 194
EOL2 character . 195
ERASE character . 195
establishing a handler . 389
ethers . 243
exception . 380
exclusive lock . 64
exec functions . 212
executing a file . 212
exponent (of floating-point number) 467
extracting file-descriptor from stream 28

F
fcntl function . 54
FDL, GNU Free Documentation License . . . 567
feature-test macros . 8
FIFO special file . 119
file access-permission . 104
file access-time . 108
file attribute modification time 108
file attributes . 93
file locks . 64
file modification time . 108
file names, multiple . 85
file owner . 101
file permission bits . 102
file positioning on a file descriptor 25
file status flags . 59
file-creation mask . 104
file-descriptor flags . 57
file-descriptor sets, for select 37
file-descriptors, standard 29
file-name translation flags 60
filtering i/o through subprocess 121
flags for sigaction . 395
flags, file-name translation 60
flags, open-time action . 60
floating-point exception 380
floating-point, IEEE . 472
floating-type measurements 467
flow control, terminal . 202
flushing terminal output queue 201
foreground job . 222

Concept Index 583

foreground job, launching 232
forking a process . 210
FQDN . 285
free documentation . 555
function prototypes (variadic) 458

G
generation of signals . 378
generic I/O control operations 69
group . 243
group database . 277
group ID . 253
group name . 253
group owner of a file . 101

H
handling multiple signals 401
hangup signal . 384
hard limit . 338
hard link . 85
header files . 4
hidden bit (of floating-point number mantissa)

. 468
hierarchy, directory . 81
high-priority data . 164
holes in files . 26
host name . 285
host-address, Internet . 136
hostname . 285
hosts . 243
hosts database . 141
how many arguments . 459

I
identifying terminals . 179
IEEE floating-point representation 472
IEEE Std 1003.1 . 2
IEEE Std 1003.2 . 2
ignore action for a signal 390
illegal instruction . 381
impossible events . 455
independent channels . 30
initial signal actions . 396
inode number . 96
input available signal . 384
input from multiple files 37
installation tools . 538
installing . 536
integer type range . 465

integer type width . 465
interactive signals, from terminal 191
interactive stop signal . 386
Internet host-address . 136
Internet namespace, for sockets 134
interprocess communication, with FIFO 123
interprocess communication, with pipes . . . 119
interprocess communication, with signals

. 412
interprocess communication, with sockets

. 125
interrupt character . 196
interrupt signal . 383
interrupt-driven input . 68
interrupting primitives . 408
INTR character . 196
IOCTLs . 69
ISO C . 2
ISO/IEC 9945-1 . 2
ISO/IEC 9945-2 . 2

J
job . 221
job control . 221
job control is optional . 222
job control signals . 385
job control, enabling . 226
job-control functions . 238

K
kernel header files . 540
KILL character . 195
kill signal . 384
killing a process . 410

L
launching jobs . 228
level, for socket options 173
LGPL, Lesser General Public License 557
library . 1
limit . 338
limits on resource usage 338
limits, file-name length 318
limits, floating-types . 467
limits, integer types . 465
limits, link count of files 318
limits, number of open files 303
limits, number of processes 303

584 The GNU C Library: System & Network Applications

limits, number of supplementary group-IDs
. 304

limits, pipe buffer size . 319
limits, POSIX . 303
limits, program argument size 303
limits, terminal input queue 318
limits, time zone name length 304
line speed . 192
link, hard . 85
link, soft . 87
link, symbolic . 87
linked channels . 29
listening (sockets) . 155
little-endian . 147
LNEXT character . 198
load average . 357
local namespace, for sockets 132
local network address number 136
login name . 253
login name, determining 264
long jumps . 367
loss of data on sockets . 125
lost resource signal . 387

M
mantissa (of floating-point number) 467
maximum limit . 338
measurements of floating types 467
memory page . 355
merging of signals . 401
MIN termios slot . 199
mixing descriptors and streams 29
modem disconnect . 188
modem status lines . 188
multiple names for one file 85
multiplexing input . 37

N
name of socket . 127
Name Service Switch . 243
name space . 6
names of signals . 379
namespace (of socket) . 125
netgroup . 243
Netgroup . 281
network byte order . 147
network number . 136
network protocol . 126
networks . 243
networks database . 176

NIS . 285
NIS domain name 285, 286
nisplus, and booting . 246
nisplus, and completeness 246
nonblocking open . 61
noncanonical-input processing 181
nonlocal exit, from signal handler 399
nonlocal exits . 367
normalized floating-point number 468
NSS . 243
‘nsswitch.conf’ . 244
null-pointer constant . 463
number of arguments passed 459

O
open-time action flags . 60
opening a file descriptor 17
opening a pipe . 119
opening a pseudoterminal pair 207
opening a socket . 151
opening a socket pair . 152
optimizing NSS . 247
optional arguments . 456
optional POSIX features 305
orphaned process-group 223
out-of-band data . 164
output possible signal . 384
owner of a file . 101

P
packet . 125
page, memory . 355
parent process . 209, 210
parity checking . 185
passwd . 243
password database . 274
pause function . 421
pending signals . 378
pending signals, checking for 419
permission to access a file 104
persona . 253
physical address . 354
physical memory . 354
pipe . 119
pipe signal . 387
pipe to a subprocess . 121
port number . 144
positioning a file descriptor 25
POSIX . 2
POSIX capacity-limits . 303

Concept Index 585

POSIX optional features 305
POSIX.1 . 2
POSIX.2 . 2
precision (of floating-point number) 468
preemptive scheduling . 343
primitives, interrupting 408
priority of a process . 342
priority, absolute . 343
process . 209
process completion . 215
process groups . 221
process ID . 210
process image . 210
process lifetime . 210
process priority . 342
process signal-mask . 416
process-group functions 238
process-group ID . 228
process-group leader . 228
profiling alarm signal . 384
program termination signals 382
program-error signals . 379
protocol (of socket) . 126
protocol family . 126
protocols . 243
protocols database . 147
prototypes for variadic functions 458
pseudoterminals . 205

Q
QUIT character . 196
quit signal . 383

R
race conditions, relating to job control 228
race conditions, relating to signals 400
radix (of floating-point number) 467
raising signals . 409
range of integer type . 465
read lock . 65
reading from a directory 73
reading from a file descriptor 20
reading from a socket . 157
ready to run . 343
real group-ID . 253
real user-ID . 253
real-time CPU scheduling 343
real-time scheduling . 345
receiving datagrams . 168
record locking . 64

redirecting input and output 55
reentrant functions . 404
reentrant NSS functions 247
removing a file . 90
removing macros that shadow functions 5
renaming a file . 91
reporting bugs . 541
REPRINT character . 196
reserved names . 6
resource limits . 338
restarting interrupted primitives 408
restrictions on signal-handler functions 404
rpc . 243
runnable process . 343
running a command . 209

S
saved set-group-ID . 254
saved set-user-ID . 254
scanning the group list . 278
scanning the user list . 275
scatter-gather . 31
scheduling, traditional . 349
seeking on a file descriptor 25
segmentation violation 381
sending a datagram . 167
sending signals . 409
server . 153
services . 243
services database . 145
session . 221
session leader . 221
setuid programs . 254
setuid programs and file access 106
shadow . 243
shadowing functions with macros 5
shared lock . 65
shared memory . 354
shell . 221
shutting down a socket 152
sigaction flags . 395
sigaction function . 392
SIGCHLD, handling of 233
sign (of floating-point number) 467
signal . 377
signal action . 378
signal actions . 389
signal flags . 395
signal function . 389
signal mask . 416
signal messages . 388

586 The GNU C Library: System & Network Applications

signal names . 379
signal number . 379
signal set . 414
signal-handler function 396
signals, generating . 409
significand (of floating-point number) 467
SIGTTIN, from background job 223
SIGTTOU, from background job 223
socket . 125
socket address (name) binding 127
socket domain . 125
socket namespace . 125
socket option level . 173
socket options . 173
socket pair . 152
socket protocol . 126
socket shutdown . 152
socket, client actions . 153
socket, closing . 152
socket, connecting . 153
socket, creating . 151
socket, initiating a connection 153
sockets, accepting connections 155
sockets, listening . 155
sockets, server actions . 155
soft limit . 338
soft link . 87
sparse files . 26
special files . 113
specified action (for a signal) 378
standard dot notation, for Internet addresses

. 137
standard error file-descriptor 29
standard file-descriptors 29
standard input file-descriptor 29
standard output file-descriptor 29
standards . 1
START character . 197
STATUS character . 198
status of a file . 93
sticky bit . 103
STOP character . 197
stop signal . 386
stopped job . 222
stopped jobs, continuing 237
stopped jobs, detecting 233
stream (sockets) . 125
streams and descriptors . 29
streams, and file descriptors 28
style of communication (of a socket) 125
subshell . 226
successive signals . 401

SunOS . 3
supplementary group-IDs 253
SUSP character . 196
suspend character . 196
SVID . 3
symbolic link . 87
symbolic link, opening . 61
synchronizing . 40, 50
sysconf . 356, 357
System V Unix . 3

T
TCP (Internet protocol) 147
terminal flow control . 202
terminal identification . 179
terminal input queue . 180
terminal input queue, clearing 202
terminal input signal . 386
terminal line control functions 201
terminal line speed . 192
terminal mode data types 181
terminal mode functions 182
terminal modes, BSD . 200
terminal output queue . 180
terminal output queue, flushing 201
terminal output signal . 386
terminated jobs, detecting 233
termination signal . 383
testing access-permission 106
testing exit status of child process 215
thrashing . 355
TIME termios slot . 199
timing error in signal handling 421
TMPDIR environment variable 116
tools, for installing library 538
transmitting datagrams 167
tree, directory . 81
type measurements, floating 467
type measurements, integer 465
typeahead buffer . 180

Concept Index 587

U
umask . 104
undefining macros that shadow functions 5
Unix, Berkeley . 3
Unix, System V . 3
unlinking a file . 90
upgrading from libc5 . 540
urgent data signal . 385
urgent socket condition 164
usage limits . 338
user database . 274
user ID . 253
user ID, determining . 264
user name . 253
user signals . 388
user-accounting database 265

V
variable number of arguments 456
variadic function argument access 458

variadic function prototypes 458
variadic functions . 456
variadic functions, calling 460
virtual time alarm signal 384
volatile declarations 404

W
waiting for a signal . 421
waiting for completion of child process 215
waiting for input or output 37
WERASE character . 195
width of integer type . 465
working directory . 71
write lock . 64
writing to a file descriptor 22
writing to a socket . 157

Y
YP . 285
YP domain name . 285, 286

588 The GNU C Library: System & Network Applications

Type Index 589

Type Index

__ftw_func_t . 82
__ftw64_func_t . 82
__nftw_func_t . 82
__nftw64_func_t . 83

B
blkcnt_t . 97
blkcnt64_t . 97

C
cc_t . 182
cpu_set_t . 353

D
dev_t . 97
DIR . 75

F
fd_set . 37

G
gid_t . 255

I
ino_t . 97
ino64_t . 97

J
jmp_buf . 369

M
mode_t . 96

N
nlink_t . 97

O
off_t . 27
off64_t . 27

P
pid_t . 210
ptrdiff_t . 464

S
sig_atomic_t . 407
sighandler_t . 389
sigjmp_buf . 370
sigset_t . 415
size_t . 464
speed_t . 193
ssize_t . 20
stack_t . 424
struct aiocb . 42
struct aiocb64 . 43
struct aioinit . 53
struct dirent . 73
struct exit_status 265
struct flock . 65
struct fstab . 290
struct FTW . 83
struct group . 277
struct hostent . 141
struct if_nameindex 131
struct in_addr . 138
struct in6_addr . 139
struct iovec . 31
struct linger . 175
struct mntent . 292
struct netent . 176
struct passwd . 274
struct protoent . 148
struct rlimit . 339
struct rlimit64 . 339
struct rusage . 335
struct sched_param 346
struct servent . 145
struct sgttyb . 200
struct sigaction 392
struct sigstack . 425
struct sigvec . 426
struct sockaddr . 128

590 The GNU C Library: System & Network Applications

struct sockaddr_in 135
struct sockaddr_in6 135
struct sockaddr_un 133
struct stat . 93
struct stat64 . 95
struct termios . 181
struct utimbuf . 108
struct utmp . 265
struct utmpx . 270
struct utsname . 287
struct vtimes . 337

T
tcflag_t . 182

U
ucontext_t . 371
uid_t . 255
union wait . 219

V
va_list . 460

Function and Macro Index 591

Function and Macro Index

__va_copy . 461

A
accept . 156
access . 107
addmntent . 295
aio_cancel . 52
aio_cancel64 . 53
aio_error . 49
aio_error64 . 49
aio_fsync . 50
aio_fsync64 . 51
aio_init . 54
aio_read . 45
aio_read64 . 46
aio_return . 49
aio_return64 . 50
aio_suspend . 51
aio_suspend64 . 52
aio_write . 46
aio_write64 . 47
alphasort . 79
alphasort64 . 80
assert . 455
assert_perror . 456

B
bind . 129

C
canonicalize_file_name 89
cbc_crypt . 334
cfgetispeed . 192
cfgetospeed . 192
cfmakeraw . 200
cfsetispeed . 193
cfsetospeed . 192
cfsetspeed . 193
chdir . 72
chmod . 105
chown . 101
close . 19
closedir . 77
closelog . 365

confstr . 325
connect . 153
CPU_CLR . 353
CPU_ISSET . 353
CPU_SET . 353
CPU_ZERO . 353
creat . 19
creat64 . 19
crypt . 329
crypt_r . 331
ctermid . 239
cuserid . 264

D
DES_FAILED . 333
des_setparity . 334
dirfd . 76
DTTOIF . 74
dup . 56
dup2 . 56

E
ecb_crypt . 332
encrypt . 332
encrypt_r . 332
endfsent . 291
endgrent . 279
endhostent . 144
endmntent . 294
endnetent . 177
endnetgrent . 283
endprotoent . 149
endpwent . 276
endservent . 146
endutent . 267
endutxent . 272
execl . 213
execle . 213
execlp . 213
execv . 212
execve . 213
execvp . 213

592 The GNU C Library: System & Network Applications

F
fchdir . 73
fchmod . 106
fchown . 102
fclean . 30
fcntl . 55
FD_CLR . 38
FD_ISSET . 38
FD_SET . 38
FD_ZERO . 38
fdatasync . 41
fdopen . 28
fgetgrent . 278
fgetgrent_r . 279
fgetpwent . 275
fgetpwent_r . 276
fileno . 28
fileno_unlocked . 28
fork . 211
forkpty . 208
fpathconf . 322
fstat . 98
fstat64 . 98
fsync . 41
ftruncate . 111
ftruncate64 . 112
ftw . 83
ftw64 . 84
futimes . 110

G
get_avphys_pages 356
get_current_dir_name 72
get_nprocs . 357
get_nprocs_conf . 357
get_phys_pages . 356
getcontext . 371
getcwd . 71
getdomainnname . 286
getegid . 256
geteuid . 255
getfsent . 291
getfsfile . 292
getfsspec . 292
getgid . 255
getgrent . 279
getgrent_r . 279
getgrgid . 277
getgrgid_r . 278
getgrnam . 278
getgrnam_r . 278

getgrouplist . 259
getgroups . 256
gethostbyaddr . 142
gethostbyaddr_r . 144
gethostbyname . 142
gethostbyname_r . 143
gethostbyname2 . 142
gethostbyname2_r 143
gethostent . 144
gethostid . 286
gethostname . 286
getloadavg . 357
getlogin . 264
getmntent . 294
getmntent_r . 295
getnetbyaddr . 177
getnetbyname . 176
getnetent . 177
getnetgrent . 282
getnetgrent_r . 282
getpagesize . 356
getpass . 328
getpeername . 157
getpgid . 240
getpgrp . 240
getpid . 211
getppid . 211
getpriority . 351
getprotobyname . 148
getprotobynumber 148
getprotoent . 149
getpt . 205
getpwent . 276
getpwent_r . 276
getpwnam . 275
getpwnam_r . 275
getpwuid . 274
getpwuid_r . 275
getrlimit . 338
getrlimit64 . 338
getrusage . 335
getservbyname . 146
getservbyport . 146
getservent . 146
getsid . 239
getsockname . 130
getsockopt . 173
getuid . 255
getumask . 105
getutent . 267
getutent_r . 269
getutid . 268

Function and Macro Index 593

getutid_r . 269
getutline . 268
getutline_r . 269
getutmp . 272
getutmpx . 273
getutxent . 272
getutxid . 272
getutxline . 272
getwd . 72
grantpt . 205
gsignal . 409
gtty . 201

H
hasmntopt . 296
htonl . 147
htons . 147

I
if_freenameindex 131
if_indextoname . 131
if_nameindex . 131
if_nametoindex . 131
IFTODT . 74
inet_addr . 139
inet_aton . 139
inet_lnaof . 140
inet_makeaddr . 140
inet_netof . 140
inet_network . 139
inet_ntoa . 140
inet_ntop . 140
inet_pton . 140
initgroups . 259
innetgr . 283
ioctl . 69
isatty . 179

K
kill . 411
killpg . 411

L
link . 86
lio_listio . 47
lio_listio64 . 49
listen . 155
login . 273

login_tty . 273
logout . 273
logwtmp . 273
longjmp . 369
lseek . 25
lseek64 . 26
lstat . 98
lstat64 . 99
lutimes . 110

M
madvise . 36
makecontext . 371
mkdir . 92
mkdtemp . 116
mkfifo . 123
mknod . 113
mkstemp . 116
mktemp . 116
mmap . 32
mmap64 . 34
mount . 296
mremap . 35
msync . 34
munmap . 34

N
nftw . 84
nftw64 . 85
nice . 352
notfound . 245
ntohl . 147
ntohs . 147

O
offsetof . 472
open . 17
open64 . 18
opendir . 75
openlog . 361
openpty . 207

594 The GNU C Library: System & Network Applications

P
pathconf . 321
pause . 421
pclose . 122
pipe . 119
popen . 121
pread . 22
pread64 . 22
psignal . 388
pthread_atfork . 449
pthread_attr_destroy 431
pthread_attr_getattr 431
pthread_attr_getdetachstate . . . 431
pthread_attr_getguardsize 431
pthread_attr_getinheritsched

. 431
pthread_attr_getschedparam 431
pthread_attr_getschedpolicy . . . 431
pthread_attr_getscope 431
pthread_attr_getstack 431
pthread_attr_getstackaddr 431
pthread_attr_getstacksize 431
pthread_attr_init 431
pthread_attr_setattr 431
pthread_attr_setdetachstate . . . 431
pthread_attr_setguardsize 431
pthread_attr_setinheritsched

. 431
pthread_attr_setschedparam 431
pthread_attr_setschedpolicy . . . 431
pthread_attr_setscope 431
pthread_attr_setstack 431
pthread_attr_setstackaddr 431
pthread_attr_setstacksize 431
pthread_cancel . 430
pthread_cleanup_pop 436
pthread_cleanup_pop_restore_np

. 436
pthread_cleanup_push 436
pthread_cleanup_push_defer_np

. 436
pthread_cond_broadcast 441
pthread_cond_destroy 442
pthread_cond_init 441
pthread_cond_signal 441
pthread_cond_timedwait 442
pthread_cond_wait 441
pthread_condattr_destroy 443
pthread_condattr_init 443
pthread_create . 429
pthread_detach . 451
pthread_equal . 451

pthread_exit . 429
pthread_getconcurrency 453
pthread_getschedparam 453
pthread_getspecific 446
pthread_join . 430
pthread_key_create 445
pthread_key_delete 446
pthread_kill . 447
pthread_kill_other_threads_np

. 451
pthread_mutex_destroy 439
pthread_mutex_init 437
pthread_mutex_lock 438
pthread_mutex_timedlock 438
pthread_mutex_trylock 438
pthread_mutex_unlock 438
pthread_mutexattr_destroy 439
pthread_mutexattr_gettype 440
pthread_mutexattr_init 439
pthread_mutexattr_settype 440
pthread_once . 452
pthread_self . 451
pthread_setcancelstate 434
pthread_setcanceltype 434
pthread_setconcurrency 453
pthread_setschedparam 452
pthread_setspecific 446
pthread_sigmask . 447
pthread_testcancel 434
ptsname . 206
ptsname_r . 206
putpwent . 276
pututline . 268
pututxline . 272
pwrite . 24
pwrite64 . 24

R
raise . 409
read . 20
readdir . 76
readdir_r . 76
readdir64 . 77
readdir64_r . 77
readlink . 88
readv . 31
realpath . 89
recv . 159
recvfrom . 168
remove . 91
rename . 91

Function and Macro Index 595

rewinddir . 78
rmdir . 90

S
S_ISBLK . 99
S_ISCHR . 99
S_ISDIR . 99
S_ISFIFO . 99
S_ISLNK . 100
S_ISREG . 99
S_ISSOCK . 100
S_TYPEISMQ . 100
S_TYPEISSEM . 100
S_TYPEISSHM . 101
scandir . 79
scandir64 . 80
sched_get_priority_max 348
sched_get_priority_min 348
sched_getaffinity 354
sched_getparam . 348
sched_getscheduler 347
sched_rr_get_interval 348
sched_setaffinity 354
sched_setparam . 347
sched_setscheduler 346
sched_yield . 348
seekdir . 79
select . 38
sem_destroy . 444
sem_getvalue . 445
sem_init . 444
sem_post . 445
sem_trywait . 445
sem_wait . 444
send . 157
sendto . 167
setcontext . 372
setdomainname . 286
setegid . 257
seteuid . 256
setfsent . 291
setgid . 258
setgrent . 279
setgroups . 258
sethostent . 144
sethostid . 287
sethostname . 286
setjmp . 369
setkey . 332
setkey_r . 332
setlogmask . 365

setmntent . 294
setnetent . 177
setnetgrent . 282
setpgid . 240
setpgrp . 241
setpriority . 351
setprotoent . 149
setpwent . 276
setregid . 258
setreuid . 257
setrlimit . 339
setrlimit64 . 339
setservent . 146
setsid . 239
setsockopt . 174
setuid . 257
setutent . 267
setutxent . 272
shutdown . 152
sigaction . 392
sigaddset . 415
sigaltstack . 425
sigblock . 428
sigdelset . 415
sigemptyset . 415
sigfillset . 415
siginterrupt . 427
sigismember . 415
siglongjmp . 370
sigmask . 427
signal . 389
sigpause . 428
sigpending . 419
sigprocmask . 416
sigsetjmp . 370
sigsetmask . 428
sigstack . 426
sigsuspend . 423
sigvec . 427
sigwait . 448
socket . 151
socketpair . 152
ssignal . 391
stat . 97
stat64 . 98
strsignal . 388
stty . 201
success . 245
SUN_LEN . 133
swapcontext . 373
symlink . 87
sync . 40

596 The GNU C Library: System & Network Applications

sysconf . 307
sysctl . 300
syslog . 362
system . 209
sysv_signal . 391

T
tcdrain . 201
tcflow . 202
tcflush . 202
tcgetattr . 182
tcgetpgrp . 241
tcgetsid . 242
tcsendbreak . 201
tcsetattr . 182
tcsetpgrp . 241
telldir . 78
TEMP_FAILURE_RETRY 408
tempnam . 115
tmpfile . 114
tmpfile64 . 114
tmpnam . 114
tmpnam_r . 115
truncate . 111
truncate64 . 111
tryagain . 245
ttyname . 179
ttyname_r . 179

U
ulimit . 341
umask . 105
umount . 300
umount2 . 299
uname . 288

unavail . 245
unlink . 90
unlockpt . 206
updwtmp . 270
utime . 109
utimes . 109
utmpname . 270
utmpxname . 272

V
va_alist . 463
va_arg . 461
va_dcl . 463
va_end . 461
va_start . 460, 463
versionsort . 80
versionsort64 . 80
vfork . 212
vlimit . 342
vsyslog . 365
vtimes . 337

W
wait . 216
wait3 . 219
wait4 . 217
waitpid . 215
WCOREDUMP . 218
WEXITSTATUS . 218
WIFEXITED . 218
WIFSIGNALED . 218
WIFSTOPPED . 218
write . 22
writev . 32
WSTOPSIG . 218
WTERMSIG . 218

Variable and Constant Macro Index 597

Variable and Constant Macro Index

_BSD_SOURCE . 9
_FILE_OFFSET_BITS 10
_GNU_SOURCE . 11
_ISOC99_SOURCE . 11
_LARGEFILE_SOURCE 10
_LARGEFILE64_SOURCE 10
_PATH_FSTAB . 289
_PATH_MNTTAB . 289
_PATH_MOUNTED . 289
_PATH_UTMP . 270
_PATH_WTMP . 270
_POSIX_C_SOURCE . 8
_POSIX_CHOWN_RESTRICTED 319
_POSIX_JOB_CONTROL 305
_POSIX_NO_TRUNC . 320
_POSIX_SAVED_IDS 305
_POSIX_SOURCE . 8
_POSIX_VDISABLE 194, 320
_POSIX_VERSION . 306
_POSIX2_C_DEV . 305
_POSIX2_C_VERSION 306
_POSIX2_FORT_DEV 305
_POSIX2_FORT_RUN 305
_POSIX2_LOCALEDEF 306
_POSIX2_SW_DEV . 306
_REENTRANT . 11
_SC_2_C_DEV . 312
_SC_2_FORT_DEV . 312
_SC_2_FORT_RUN . 312
_SC_2_LOCALEDEF . 312
_SC_2_SW_DEV . 312
_SC_2_VERSION . 313
_SC_AIO_LISTIO_MAX 309
_SC_AIO_MAX . 309
_SC_AIO_PRIO_DELTA_MAX 309
_SC_ARG_MAX . 307
_SC_ASYNCHRONOUS_IO 308
_SC_ATEXIT_MAX . 313
_SC_AVPHYS_PAGES 313, 356
_SC_BC_BASE_MAX . 312
_SC_BC_DIM_MAX . 312
_SC_BC_SCALE_MAX 312
_SC_BC_STRING_MAX 312
_SC_CHAR_BIT . 314
_SC_CHAR_MAX . 314
_SC_CHAR_MIN . 314
_SC_CHARCLASS_NAME_MAX 308

_SC_CHILD_MAX . 307
_SC_CLK_TCK . 307
_SC_COLL_WEIGHTS_MAX 312
_SC_DELAYTIMER_MAX 309
_SC_EQUIV_CLASS_MAX 313
_SC_EXPR_NEST_MAX 312
_SC_FSYNC . 308
_SC_GETGR_R_SIZE_MAX 311
_SC_GETPW_R_SIZE_MAX 311
_SC_INT_MAX . 314
_SC_INT_MIN . 314
_SC_JOB_CONTROL . 307
_SC_LINE_MAX . 312
_SC_LOGIN_NAME_MAX 311
_SC_LONG_BIT . 314
_SC_MAPPED_FILES 308
_SC_MB_LEN_MAX . 315
_SC_MEMLOCK . 308
_SC_MEMLOCK_RANGE 308
_SC_MEMORY_PROTECTION 308
_SC_MESSAGE_PASSING 308
_SC_MQ_OPEN_MAX . 309
_SC_MQ_PRIO_MAX . 309
_SC_NGROUPS_MAX . 307
_SC_NL_ARGMAX . 315
_SC_NL_LANGMAX . 315
_SC_NL_MSGMAX . 316
_SC_NL_NMAX . 316
_SC_NL_SETMAX . 316
_SC_NL_TEXTMAX . 316
_SC_NPROCESSORS_CONF 313, 357
_SC_NPROCESSORS_ONLN 313, 357
_SC_NZERO . 315
_SC_OPEN_MAX . 307
_SC_PAGESIZE 32, 313, 356
_SC_PHYS_PAGES 313, 356
_SC_PII . 310
_SC_PII_INTERNET 310
_SC_PII_INTERNET_DGRAM 310
_SC_PII_INTERNET_STREAM 310
_SC_PII_OSI . 310
_SC_PII_OSI_CLTS 310
_SC_PII_OSI_COTS 310
_SC_PII_OSI_M . 310
_SC_PII_SOCKET . 310
_SC_PII_XTI . 310
_SC_PRIORITIZED_IO 308
_SC_PRIORITY_SCHEDULING 308
_SC_REALTIME_SIGNALS 308

598 The GNU C Library: System & Network Applications

_SC_RTSIG_MAX . 309
_SC_SAVED_IDS . 307
_SC_SCHAR_MAX . 315
_SC_SCHAR_MIN . 315
_SC_SELECT . 310
_SC_SEM_NSEMS_MAX 309
_SC_SEM_VALUE_MAX 309
_SC_SEMAPHORES . 309
_SC_SHARED_MEMORY_OBJECTS 309
_SC_SHRT_MAX . 315
_SC_SHRT_MIN . 315
_SC_SIGQUEUE_MAX 309
_SC_STREAM_MAX . 307
_SC_SYNCHRONIZED_IO 308
_SC_T_IOV_MAX . 310
_SC_THREAD_ATTR_STACKADDR 311
_SC_THREAD_ATTR_STACKSIZE 311
_SC_THREAD_DESTRUCTOR_ITERATIONS

. 311
_SC_THREAD_KEYS_MAX 311
_SC_THREAD_PRIO_INHERIT 311
_SC_THREAD_PRIO_PROTECT 312
_SC_THREAD_PRIORITY_SCHEDULING

. 311
_SC_THREAD_PROCESS_SHARED 312
_SC_THREAD_SAFE_FUNCTIONS 311
_SC_THREAD_STACK_MIN 311
_SC_THREAD_THREADS_MAX 311
_SC_THREADS . 310
_SC_TIMER_MAX . 309
_SC_TIMERS . 308
_SC_TTY_NAME_MAX 311
_SC_TZNAME_MAX . 307
_SC_UCHAR_MAX . 315
_SC_UINT_MAX . 315
_SC_UIO_MAXIOV . 310
_SC_ULONG_MAX . 315
_SC_USHRT_MAX . 315
_SC_VERSION . 307, 313
_SC_WORD_BIT . 314
_SC_XOPEN_CRYPT . 314
_SC_XOPEN_ENH_I18N 314
_SC_XOPEN_LEGACY 314
_SC_XOPEN_REALTIME 313
_SC_XOPEN_REALTIME_THREADS 314
_SC_XOPEN_SHM . 314
_SC_XOPEN_UNIX . 313
_SC_XOPEN_VERSION 313
_SC_XOPEN_XCU_VERSION 313
_SC_XOPEN_XPG2 . 314
_SC_XOPEN_XPG3 . 314
_SC_XOPEN_XPG4 . 314

_SVID_SOURCE . 9
_THREAD_SAFE . 11
_XOPEN_SOURCE . 9
_XOPEN_SOURCE_EXTENDED 9

A
ACCOUNTING . 267
AF_FILE . 129
AF_INET . 129
AF_LOCAL . 128
AF_UNIX . 128
AF_UNSPEC . 129
aliases . 243
ALTWERASE . 191
ARG_MAX . 303

B
B0 . 193
B110 . 193
B115200 . 193
B1200 . 193
B134 . 193
B150 . 193
B1800 . 193
B19200 . 193
B200 . 193
B230400 . 193
B2400 . 193
B300 . 193
B38400 . 193
B460800 . 193
B4800 . 193
B50 . 193
B57600 . 193
B600 . 193
B75 . 193
B9600 . 193
BC_BASE_MAX . 323
BC_DIM_MAX . 323
BC_SCALE_MAX . 323
BC_STRING_MAX . 323
BOOT_TIME . 266, 271
BRKINT . 186

Variable and Constant Macro Index 599

C
CCTS_OFLOW . 189
CHAR_MAX . 466
CHAR_MIN . 465
CHILD_MAX . 303
CIGNORE . 189
CLOCAL . 188
COLL_WEIGHTS_MAX 323
COREFILE . 380
CPU_SETSIZE . 353
CREAD . 188
CRTS_IFLOW . 189
CS5 . 188
CS6 . 188
CS7 . 189
CS8 . 189
CSIZE . 188
CSTOPB . 188

D
DBL_DIG . 470
DBL_EPSILON . 471
DBL_MANT_DIG . 469
DBL_MAX . 471
DBL_MAX_10_EXP . 471
DBL_MAX_EXP . 470
DBL_MIN . 471
DBL_MIN_10_EXP . 470
DBL_MIN_EXP . 470
DEAD_PROCESS 267, 271
DES_DECRYPT . 333
DES_ENCRYPT . 333
DES_HW . 333
DES_SW . 333
DESERR_BADPARAM . 333
DESERR_HWERROR . 333
DESERR_NOHWDEVICE 333
DESERR_NONE . 333
DT_BLK . 74
DT_CHR . 74
DT_DIR . 74
DT_FIFO . 74
DT_REG . 74
DT_SOCK . 74
DT_UNKNOWN . 74

E
EBADF . 203
ECHO . 190
ECHOCTL . 190
ECHOE . 190
ECHOK . 190
ECHOKE . 190
ECHONL . 190
ECHOPRT . 190
EINVAL . 203
EMPTY . 266, 271
ENOTTY . 203
EQUIV_CLASS_MAX . 324
ethers . 243
EXPR_NEST_MAX . 323
EXTA . 193
EXTB . 193

F
F_DUPFD . 56
F_GETFD . 57
F_GETFL . 63
F_GETLK . 65
F_GETOWN . 68
F_OK . 108
F_RDLCK . 67
F_SETFD . 58
F_SETFL . 64
F_SETLK . 66
F_SETLKW . 67
F_SETOWN . 68
F_UNLCK . 67
F_WRLCK . 67
FD_CLOEXEC . 58
FD_SETSIZE . 37
FILENAME_MAX . 319
FLT_DIG . 470
FLT_EPSILON . 471
FLT_MANT_DIG . 469
FLT_MAX . 471
FLT_MAX_10_EXP . 471
FLT_MAX_EXP . 470
FLT_MIN . 471
FLT_MIN_10_EXP . 470
FLT_MIN_EXP . 470
FLT_RADIX . 469
FLT_ROUNDS . 469
FLUSHO . 192
FPE_DECOVF_TRAP . 381
FPE_FLTDIV_TRAP . 381
FPE_FLTOVF_TRAP . 381

600 The GNU C Library: System & Network Applications

FPE_FLTUND_TRAP . 381
FPE_INTDIV_TRAP . 381
FPE_INTOVF_TRAP . 381
FPE_SUBRNG_TRAP . 381
FSTAB . 289
FSTAB_RO . 291
FSTAB_RQ . 291
FSTAB_RW . 290
FSTAB_SW . 291
FSTAB_XX . 291
FTW_CHDIR . 85
FTW_D . 82
FTW_DEPTH . 85
FTW_DNR . 82
FTW_DP . 82
FTW_F . 82
FTW_MOUNT . 85
FTW_NS . 82
FTW_PHYS . 85
FTW_SL . 82
FTW_SLN . 82

G
group . 243

H
h_errno . 142
HOST_NOT_FOUND . 142
hosts . 243
HUPCL . 188

I
ICANON . 189
ICRNL . 186
IEXTEN . 191
IFNAMSIZ . 131
IGNBRK . 186
IGNCR . 186
IGNPAR . 185
IMAXBEL . 187
in6addr_any . 139
in6addr_loopback 139
INADDR_ANY . 138
INADDR_BROADCAST 138
INADDR_LOOPBACK . 138
INADDR_NONE . 139
INIT_PROCESS 267, 271
INLCR . 186
INPCK . 185

INT_MAX . 466
INT_MIN . 466
IPPORT_RESERVED . 145
IPPORT_USERRESERVED 145
ISIG . 191
ISTRIP . 185
IXANY . 186
IXOFF . 186
IXON . 186

L
L_ctermid . 239
L_cuserid . 264
L_tmpnam . 115
LDBL_DIG . 470
LDBL_EPSILON . 471
LDBL_MANT_DIG . 469
LDBL_MAX . 471
LDBL_MAX_10_EXP . 471
LDBL_MAX_EXP . 470
LDBL_MIN . 471
LDBL_MIN_10_EXP . 470
LDBL_MIN_EXP . 470
LINE_MAX . 323
LINK_MAX . 318
LIO_NOP . 43
LIO_READ . 43
LIO_WRITE . 43
LOG_ALERT . 364
LOG_AUTH . 363
LOG_AUTHPRIV . 363
LOG_CRIT . 364
LOG_CRON . 363
LOG_DAEMON . 363
LOG_DEBUG . 364
LOG_EMERG . 364
LOG_ERR . 364
LOG_FTP . 363
LOG_INFO . 364
LOG_LOCAL0 . 363
LOG_LOCAL1 . 363
LOG_LOCAL2 . 363
LOG_LOCAL3 . 363
LOG_LOCAL4 . 363
LOG_LOCAL5 . 364
LOG_LOCAL6 . 364
LOG_LOCAL7 . 364
LOG_LPR . 363
LOG_MAIL . 363
LOG_NEWS . 363
LOG_NOTICE . 364

Variable and Constant Macro Index 601

LOG_SYSLOG . 363
LOG_USER . 363
LOG_UUCP . 363
LOG_WARNING . 364
LOGIN_PROCESS 267, 271
LONG_LONG_MAX . 466
LONG_LONG_MIN . 466
LONG_MAX . 466
LONG_MIN . 466

M
MAP_ANON . 33
MAP_ANONYMOUS . 33
MAP_FIXED . 33
MAP_PRIVATE . 33
MAP_SHARED . 33
MAX_CANON . 318
MAX_INPUT . 318
MAXNAMLEN . 319
MAXSYMLINKS . 87
MDMBUF . 189
MINSIGSTKSZ . 424
MNTOPT_DEFAULTS . 293
MNTOPT_NOAUTO . 294
MNTOPT_NOSUID . 294
MNTOPT_RO . 293
MNTOPT_RW . 293
MNTOPT_SUID . 293
MNTTAB . 289
MNTTYPE_IGNORE . 293
MNTTYPE_NFS . 293
MNTTYPE_SWAP . 293
MOUNTED . 289
MS_ASYNC . 35
MS_SYNC . 35
MSG_DONTROUTE . 159
MSG_OOB . 159
MSG_PEEK . 159

N
NAME_MAX . 318
NCCS . 182
NDEBUG . 455
netgroup . 243
networks . 244
NEW_TIME . 267, 271
NGROUPS_MAX . 304
NO_ADDRESS . 142
NO_RECOVERY . 142
NOFLSH . 191

NOKERNINFO . 192
NSIG . 379
NSS_STATUS_NOTFOUND 248
NSS_STATUS_SUCCESS 248
NSS_STATUS_TRYAGAIN 248
NSS_STATUS_UNAVAIL 248
NULL . 463

O
O_ACCMODE . 60
O_APPEND . 62
O_ASYNC . 63
O_CREAT . 60
O_EXCL . 61
O_EXEC . 60
O_EXLOCK . 62
O_FSYNC . 63
O_IGNORE_CTTY . 61
O_NDELAY . 63
O_NOATIME . 63
O_NOCTTY . 61
O_NOLINK . 61
O_NONBLOCK . 61, 62
O_NOTRANS . 61
O_RDONLY . 59
O_RDWR . 59
O_READ . 60
O_SHLOCK . 62
O_SYNC . 63
O_TRUNC . 62
O_WRITE . 60
O_WRONLY . 59
OLD_TIME . 266, 271
ONLCR . 187
ONOEOT . 187
OPEN_MAX . 303
OPOST . 187
OXTABS . 187

P
P_tmpdir . 116
PARENB . 188
PARMRK . 185
PARODD . 188
passwd . 244
PATH_MAX . 318
PENDIN . 192
PF_CCITT . 150
PF_FILE . 132
PF_IMPLINK . 150

602 The GNU C Library: System & Network Applications

PF_INET . 134
PF_INET6 . 135
PF_ISO . 150
PF_LOCAL . 132
PF_NS . 150
PF_ROUTE . 150
PF_UNIX . 132
PIPE_BUF . 319
PRIO_MAX . 350
PRIO_MIN . 350
PRIO_PGRP . 351
PRIO_PROCESS . 351
PRIO_USER . 351
PROT_EXEC . 32
PROT_READ . 32
PROT_WRITE . 32
protocols . 244
PWD . 72

R
R_OK . 108
RE_DUP_MAX . 304
RLIM_INFINITY . 341
RLIM_NLIMITS . 341
RLIMIT_AS . 341
RLIMIT_CORE . 340
RLIMIT_CPU . 340
RLIMIT_DATA . 340
RLIMIT_FSIZE . 340
RLIMIT_NOFILE . 341
RLIMIT_OFILE . 341
RLIMIT_RSS . 340
RLIMIT_STACK . 340
rpc . 244
RUN_LVL . 266, 271

S
S_IEXEC . 102
S_IFBLK . 100
S_IFCHR . 100
S_IFDIR . 100
S_IFIFO . 100
S_IFLNK . 100
S_IFMT . 100
S_IFREG . 100
S_IFSOCK . 100
S_IREAD . 102
S_IRGRP . 103
S_IROTH . 103
S_IRUSR . 102

S_IRWXG . 103
S_IRWXO . 103
S_IRWXU . 103
S_ISGID . 103
S_ISUID . 103
S_ISVTX . 103
S_IWGRP . 103
S_IWOTH . 103
S_IWRITE . 102
S_IWUSR . 102
S_IXGRP . 103
S_IXOTH . 103
S_IXUSR . 102
SA_NOCLDSTOP . 395
SA_ONSTACK . 395
SA_RESTART . 395
SC_SSIZE_MAX . 315
SCHAR_MAX . 465
SCHAR_MIN . 465
SEM_VALUE_MAX . 444
services . 244
shadow . 244
SHRT_MAX . 466
SHRT_MIN . 466
SIG_BLOCK . 416
SIG_DFL . 390
SIG_ERR . 392
SIG_IGN . 390
SIG_SETMASK . 416
SIG_UNBLOCK . 416
SIGABRT . 382
SIGALRM . 384
SIGBUS . 382
SIGCHLD . 385
SIGCLD . 385
SIGCONT . 385
SIGEMT . 382
SIGFPE . 380
SIGHUP . 384
SIGILL . 381
SIGINFO . 388
SIGINT . 383
SIGIO . 384
SIGIOT . 382
SIGKILL . 383
SIGLOST . 387
SIGPIPE . 387
SIGPOLL . 385
SIGPROF . 384
SIGQUIT . 383
SIGSEGV . 381
SIGSTKSZ . 424

Variable and Constant Macro Index 603

SIGSTOP . 386
SIGSYS . 382
SIGTERM . 383
SIGTRAP . 382
SIGTSTP . 386
SIGTTIN . 386
SIGTTOU . 386
SIGURG . 385
SIGUSR1 . 388
SIGUSR2 . 388
SIGVTALRM . 384
SIGWINCH . 388
SIGXCPU . 387
SIGXFSZ . 387
SOCK_DGRAM . 127
SOCK_RAW . 127
SOCK_STREAM . 126
SOL_SOCKET . 174
SS_DISABLE . 425
SS_ONSTACK . 425
SSIZE_MAX . 304
STDERR_FILENO . 29
STDIN_FILENO . 29
STDOUT_FILENO . 29
STREAM_MAX . 304
SV_INTERRUPT . 427
SV_ONSTACK . 427
SV_RESETHAND . 427
sys_siglist . 389

T
TCIFLUSH . 202
TCIOFF . 203
TCIOFLUSH . 202
TCION . 203
TCOFLUSH . 202
TCOOFF . 203
TCOON . 203
TCSADRAIN . 182
TCSAFLUSH . 183
TCSANOW . 182
TCSASOFT . 183

TMP_MAX . 115
TOSTOP . 191
TRY_AGAIN . 142
TZNAME_MAX . 304

U
UCHAR_MAX . 465
UINT_MAX . 466
ULONG_LONG_MAX . 466
ULONG_MAX . 466
USER_PROCESS 267, 271
USHRT_MAX . 466

V
VDISCARD . 198
VDSUSP . 197
VEOF . 194
VEOL . 194
VEOL2 . 194
VERASE . 195
VINTR . 196
VKILL . 195
VLNEXT . 198
VMIN . 199
VQUIT . 196
VREPRINT . 196
VSTART . 197
VSTATUS . 198
VSTOP . 197
VSUSP . 196
VTIME . 199
VWERASE . 195

W
W_OK . 108
WCHAR_MAX . 466

X
X_OK . 108

604 The GNU C Library: System & Network Applications

Program and File Index 605

Program and File Index

-
-lbsd-compat . 9, 240

/
/etc/group . 277
/etc/hosts . 141
/etc/networks . 176
/etc/passwd . 274
/etc/protocols . 148
/etc/services . 145

A
arpa/inet.h . 139
assert.h . 455

B
bsd-compat . 9, 240

C
cd . 71
chgrp . 101
chown . 101

D
dirent.h 7, 73, 75, 76, 78

F
fcntl.h 7, 17, 54, 56, 57, 59, 65, 68
float.h . 468

G
gcc . 2
grp.h . 7, 258, 259, 277

H
hostid . 285
hostname . 285

K
kill . 383

L
limits.h 7, 303, 318, 465
ls . 93

M
mkdir . 92

N
netdb.h 141, 145, 148, 176
netinet/in.h 135, 138, 145, 147

P
pwd.h . 8, 274

S
setjmp.h . 369, 370
sh . 209
signal.h . . . 8, 379, 389, 392, 395, 409, 410,

414, 416, 419, 426
stdarg.h . 458, 460
stddef.h . 464
stdio.h 28, 91, 114, 239, 264, 389
stdlib.h . 116, 205, 209
string.h . 388
sys/param.h . 286
sys/resource.h 335, 338, 350
sys/socket.h 126, 128, 129, 130, 132,

134, 151, 152, 157, 158, 159, 167, 173,
174

sys/stat.h . . . 8, 93, 99, 102, 105, 113, 123
sys/time.h . 109
sys/times.h . 8
sys/types.h . . 37, 210, 239, 241, 255, 256,

257
sys/un.h . 133
sys/utsname.h . 287
sys/vlimit.h . 342
sys/vtimes.h . 336
sys/wait.h . 215, 218

606 The GNU C Library: System & Network Applications

T
termios.h . 8, 181
time.h . 108

U
ulimit.h . 341
umask . 105
unistd.h 17, 20, 29, 56, 71, 86, 87, 90,

101, 107, 119, 179, 210, 211, 212, 239,

241, 255, 256, 257, 264, 285, 305, 319,
320

utime.h . 108
utmp.h . 265, 273
utmpx.h . 270

V
varargs.h . 462

	Introduction
	Getting Started
	Standards and Portability
	iso C
	posix (The Portable Operating System Interface)
	Berkeley Unix
	svid (The System V Interface Description)
	xpg (The X/Open Portability Guide)

	Using the Library
	Header Files
	Macro Definitions of Functions
	Reserved Names
	Feature-Test Macros

	Road Map to the Manual

	Low-Level Input/Output
	Opening and Closing Files
	Input and Output Primitives
	Setting the File Position of a Descriptor
	Descriptors and Streams
	Dangers of Mixing Streams and Descriptors
	Linked Channels
	Independent Channels
	Cleaning Streams

	Fast Scatter-Gather I/O
	Memory-Mapped I/O
	Waiting for Input or Output
	Synchronizing I/O Operations
	Perform I/O Operations in Parallel
	Asynchronous Read and Write Operations
	Getting the Status of AIO Operations
	Getting into a Consistent State
	Cancellation of AIO Operations
	How to Optimize the AIO Implementation

	Control Operations on Files
	Duplicating Descriptors
	File-Descriptor Flags
	File Status Flags
	File-Access Modes
	Open-Time Flags
	I/O Operating Modes
	Getting and Setting File Status Flags

	File Locks
	Interrupt-Driven Input
	Generic I/O Control Operations

	File-System Interface
	Working Directory
	Accessing Directories
	Format of a Directory Entry
	Opening a Directory Stream
	Reading and Closing a Directory Stream
	Simple Program to List a Directory
	Random Access in a Directory Stream
	Scanning the Content of a Directory
	Simple Program to List a Directory, Mark II

	Working with Directory Trees
	Hard Links
	Symbolic Links
	Deleting Files
	Renaming Files
	Creating Directories
	File Attributes
	The Meaning of the File Attributes
	Reading the Attributes of a File
	Testing the Type of a File
	File Owner
	The Mode Bits for Access Permission
	How Your Access to a File is Decided
	Assigning File Permissions
	Testing Permission to Access a File
	File Times
	File Size

	Making Special Files
	Temporary Files

	Pipes and FIFOs
	Creating a Pipe
	Pipe to a Subprocess
	FIFO Special Files
	Atomicity of Pipe I/O

	Sockets
	Socket Concepts
	Communication Styles
	Socket Addresses
	Address Formats
	Setting the Address of a Socket
	Reading the Address of a Socket

	Interface Naming
	The Local Namespace
	Local-Namespace Concepts
	Details of Local Namespace
	Example of Local-Namespace Sockets

	The Internet Namespace
	Internet Socket Address Formats
	Host Addresses
	Internet Host-Addresses
	Host-Address Data Type
	Host-Address Functions
	Host Names

	Internet Ports
	The Services Database
	Byte-Order Conversion
	Protocols Database
	Internet Socket Example

	Other Namespaces
	Opening and Closing Sockets
	Creating a Socket
	Closing a Socket
	Socket Pairs

	Using Sockets with Connections
	Making a Connection
	Listening for Connections
	Accepting Connections
	Who Is Connected to Me?
	Transferring Data
	Sending Data
	Receiving Data
	Socket Data Options

	Byte-Stream Socket Example
	Byte-Stream Connection Server Example
	Out-of-Band Data

	Datagram Socket Operations
	Sending Datagrams
	Receiving Datagrams
	Datagram Socket Example
	Example of Reading Datagrams

	The inetd Daemon
	inetd Servers
	Configuring inetd

	Socket Options
	Socket Option Functions
	Socket-Level Options

	Networks Database

	Low-Level Terminal Interface
	Identifying Terminals
	I/O Queues
	Two Styles of Input: Canonical or Not
	Terminal Modes
	Terminal Mode Data Types
	Terminal Mode Functions
	Setting Terminal Modes Properly
	Input Modes
	Output Modes
	Control Modes
	Local Modes
	Line Speed
	Special Characters
	Characters for Input Editing
	Characters that Cause Signals
	Special Characters for Flow Control
	Other Special Characters

	Noncanonical Input

	BSD Terminal Modes
	Line Control Functions
	Noncanonical-Mode Example
	Pseudoterminals
	Allocating Pseudoterminals
	Opening a Pseudoterminal Pair

	Processes
	Running a Command
	Process-Creation Concepts
	Process Identification
	Creating a Process
	Executing a File
	Process Completion
	Process-Completion Status
	BSD Process Wait Functions
	Process-Creation Example

	Job Control
	Concepts of Job Control
	Job Control Is Optional
	Controlling Terminal of a Process
	Access to the Controlling Terminal
	Orphaned Process-Groups
	Implementing a Job-Control Shell
	Data Structures for the Shell
	Initializing the Shell
	Launching Jobs
	Foreground and Background
	Stopped and Terminated Jobs
	Continuing Stopped Jobs
	The Missing Pieces

	Functions for Job Control
	Identifying the Controlling Terminal
	Process-Group Functions
	Functions for Controlling-Terminal Access

	System Databases and Name-Service Switch
	NSS Basics
	The NSS Configuration File
	Services in the NSS Configuration File
	Actions in the NSS Configuration
	Notes on the NSS Configuration File

	NSS Module Internals
	The Naming Scheme of the NSS Modules
	The Interface of the Function in NSS Modules

	Extending NSS
	Adding Another Service to NSS
	Internals of the NSS Module Functions

	Users and Groups
	User- and Group-IDs
	The Persona of a Process
	Why Change the Persona of a Process?
	How an Application Can Change Persona
	Reading the Persona of a Process
	Setting the User ID
	Setting the Group IDs
	Enabling and Disabling Setuid Access
	Setuid Program Example
	Tips for Writing Setuid Programs
	Identifying Who Is Logged In
	The User-Accounting Database
	Manipulating the User-Accounting Database
	XPG User-Accounting Database Functions
	Logging In and Out

	User Database
	The Data Structure That Describes a User
	Looking Up One User
	Scanning the List of All Users
	Writing a User Entry

	Group Database
	The Data Structure for a Group
	Looking Up One Group
	Scanning the List of All Groups

	User- and Group- Database Example
	Netgroup Database
	Netgroup Data
	Looking Up One Netgroup
	Testing for Netgroup Membership

	System Management
	Host Identification
	Platform-Type Identification
	Controlling and Querying Mounts
	Mount Information
	The fstab File
	The mtab File
	Other (Non-libc) Sources of Mount Information

	Mount, Unmount, Remount

	System Parameters

	System-Configuration Parameters
	General Capacity-Limits
	Overall System Options
	Which Version of POSIX is Supported
	Using sysconf
	Definition of sysconf
	Constants for sysconf Parameters
	Examples of sysconf

	Minimum Values for General Capacity-Limits
	Limits on File-System Capacity
	Optional Features in File Support
	Minimum Values for File-System Limits
	Using pathconf
	Utility Program Capacity-Limits
	Minimum Values for Utility Limits
	String-Valued Parameters

	DES Encryption and Password Handling
	Legal Problems
	Reading Passwords
	Encrypting Passwords
	DES Encryption

	Resource Usage and Limitation
	Resource Usage
	Limiting Resource Usage
	Process CPU Priority and Scheduling
	Absolute Priority
	Using Absolute Priority

	Real-Time Scheduling
	Basic Scheduling Functions
	Traditional Scheduling
	Introduction to Traditional Scheduling
	Functions for Traditional Scheduling

	Limiting Execution to Certain CPUs

	Querying Memory-Available Resources
	Overview of Traditional Unix Memory-Handling
	How to Get Information About the Memory Subsystem?

	Learn About the Processors Available

	Syslog
	Overview of Syslog
	Submitting Syslog Messages
	openlog
	syslog, vsyslog
	closelog
	setlogmask
	Syslog Example

	Nonlocal Exits
	Introduction to Nonlocal Exits
	Details of Nonlocal Exits
	Nonlocal Exits and Signals
	Complete Context Control

	Signal Handling
	Basic Concepts of Signals
	Some Kinds of Signals
	Concepts of Signal Generation
	How Signals Are Delivered

	Standard Signals
	Program-Error Signals
	Termination Signals
	Alarm Signals
	Asynchronous-I/O Signals
	Job Control Signals
	Operation-Error Signals
	Miscellaneous Signals
	Signal Messages

	Specifying Signal Actions
	Basic Signal-Handling
	Advanced Signal-Handling
	Interaction of signal and sigaction
	sigaction Function Example
	Flags for sigaction
	Initial Signal Actions

	Defining Signal-Handlers
	Signal Handlers That Return
	Handlers That Terminate the Process
	Nonlocal Control-Transfer in Handlers
	Signals Arriving While a Handler Runs
	Signals Close Together Merge into One
	Signal Handling and Nonreentrant Functions
	Atomic Data-Access and Signal-Handling
	Problems with Nonatomic Access
	Atomic Types
	Atomic Usage-Patterns

	Primitives Interrupted by Signals
	Generating Signals
	Signaling Yourself
	Signaling Another Process
	Permission for Using kill
	Using kill for Communication

	Blocking Signals
	Why Blocking Signals Is Useful
	Signal Sets
	Process Signal-Mask
	Blocking to Test for Delivery of a Signal
	Blocking Signals for a Handler
	Checking for Pending Signals
	Remembering a Signal to Act on Later

	Waiting for a Signal
	Using pause
	Problems with pause
	Using sigsuspend

	Using a Separate Signal-Stack
	BSD Signal-Handling
	BSD Function to Establish a Handler
	BSD Functions for Blocking Signals

	POSIX Threads
	Basic Thread Operations
	Thread Attributessection Thread Attributes
	Cancellation
	Clean-Up Handlers
	Mutexes
	Condition Variables
	POSIX Semaphores
	Thread-Specific Data
	Threads and Signal-Handling
	Threads and Fork
	Streams and Fork
	Miscellaneous Thread Functions

	C Language Facilities in the Library
	Explicitly Checking Internal Consistency
	Variadic Functions
	Why Variadic Functions Are Used
	How Variadic Functions Are Defined and Used
	Syntax for Variable Arguments
	Receiving the Argument Values
	How Many Arguments Were Supplied
	Calling Variadic Functions
	Argument-Access Macros

	Example of a Variadic Function
	Old-Style Variadic Functions

	Null-Pointer Constant
	Important Data-Types
	Data-Type Measurements
	Computing the Width of an Integer Data Type
	Range of an Integer Type
	Floating-Type Macros
	Floating-Point Representation Concepts
	Floating-Point Parameters
	IEEE Floating-Point

	Structure Field Offset Measurement

	Summary of Library Facilities
	Installing the GNU C Library
	Configuring and Compiling GNU libc
	Installing the C Library
	Recommended Tools for Compilation
	Supported Configurations
	Specific Advice for GNU/Linux Systems
	Reporting Bugs

	Library Maintenance
	Adding New Functions
	Porting the GNU C Library
	Layout of the sysdeps Directory Hierarchy
	Porting the GNU C Library to Unix Systems

	Contributors to the GNU C Library
	Free Software Needs Free Documentation
	GNU Lesser General Public License
	Preamble
	TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
	How to Apply These Terms to Your New Libraries
	GNU Free Documentation License
	ADDENDUM: How to Use This License for Your Documents
	Concept Index
	Type Index
	Function and Macro Index
	Variable and Constant Macro Index
	Program and File Index

