Adapter Pattern

ELSYS 2014/2015
Vasil Kostov
Georgi Yosifov

Adapters all around us

European Wall Qutlet

AC Power Adapter
Standard AC Plug

=,

The US laptop expects
another interfate.

/

The adap{xr tonverts one
infcr‘cau into another.

Object oriented adapters

Your Vendor
Existing Class
System

)
wVe

1L mateh Lhe one ° W
C Theiv intevkace d“s": & This isnt 99" Yo wer
36 1\ :

wv'\{:‘\'x“ \10‘“ tode

Object oriented adapters

Your Adapter Vendor
Existing Class
System

endov nterkate

The adap{:cr '"‘PIC"\CY\{',S the P(d {:A“(S ‘o the v
chcJa.'.c \/our Classcs C*PCC{ {:o sevvite \{ouv Yc¢\uCS

It’s time to see an adapter in action

public interface Duck {
public void quack():
public void fly():

public class MallardDuck implements Duck {
public void quack() {
System.out.println(“Quack”);
WS mn
public void fly() { &(’—\ J L
System.out.println(“I'm flying”);
}

Now it’s time to meet the newest fowl on the
block

't t\uac\(, they 9)0\)‘0\6-

Turkeys don

public interface Turkey ({ E//ﬁ
public void gobble():

public void fly();
} \\—« kac\/s tan ‘Fly, al{:hough ﬂ\c\/
tan on|\/ ‘("ly short distantes.

. on
public class WildTurkey implements Turkey { Heve's 3 contrete "“\’“_"“f‘{_’ibo
public void gobble() { 7 of Turkey; like Duek, it jus

System.out.pri n(“Gobble gobble : 1ons.
} System.out.println(“Gobble gobble”) Yr\n{;s out its attion

public void fly()
System.out.println(“I’'m flying a short distance”);

}

Future problems...

e Now, let's say you're short on Duck objects and you'd like to use some
Turkey objects in their place. Obviously we can'’t use the turkeys outright
because they have a different interface.

e Solution: Adapter Pattern

Fiest, you need to implement the intevface

of the type you've adapting to. This is the

interface your client expects to see.
public class TurkeyAdapter implements Duck {

Turkey turkey;
Next, we need to get a vefevente to

public . TurkeyAdapter (Turkey turkey) { / the ob)c6£ that we ave aday{ins.‘ heve
} this.turkey = turkey; we do that through the tonstructor.

public void quack() { f Now we need o implement all the methods in
turkey.gobble () ; the interface; the quack() translation between

y tlasses is easy: ")us{: eall the gobbk() method.

public void fly() {
for(int i=0; 1 < 5; i++) {

) <
turkey.fly () Even though both interfaces have a £|\/0

method, Turkeys “y in short spurts — they
tan't do long—distance flying like dueks. To
map between a Duck’s £iy() method and a
Turkey'’s, we need to call the Turkey's £Iy()
method five times to make uwp for it

}

The Adapter Pattern explained

The Client is implemented
against the target interface.

Adapter
ce lnterfa
raet ntert? ce
g The Adapter implements the Turkey was the
target interface and holds an J {Crga“
instance of the Adaptee. adaptee in

aented

T‘N\Lijf‘:c e ! Qacc, DUC’
the

Adapter Pattern defined

The Adapter Pattern converts the interface of a class
into another interface the clients expect. Adapter lets

classes work together that couldn’t otherwise because of
incompatble interfaces.

Object adapter

Client > <<""T‘§Z:Cte» F~ The Ada?&‘f imlean{',s
the Target interface.

request()

The ¢tlient sees onl\/ the
Target interface.

Adapter L__» Adaptee h

request() specificRequest()

t/ Al vequests get
A'daP‘EC\" is Co"‘POSCd dC\C53£Cd 'Eo {)\C
with the Adaptee. Adaptee.

Class adapter

Client > Target Adaptee
request() specificRequest()

Adapter
request()

lnS{',cad 0‘(: USIY\S tom—
Posd’,uon to ada\>£ H‘\C
Adaptee, the Adapter now
cwbtlasses the Adaptee
and the Target ¢lasses-

Facade Pattern

o H

ome Sweet

A

T DvdPlayer

>
S Amplifier
funer
dvaPlayer
| coPlayer
onf)
A offf)
Tuner (
ampiifier sevil
_ setStereoSound)
on() setSurroundSoud()
off) o
sefTuner()
setAm())
! sefVolume)
setFm()
setFrequencyl)
> CdPlayer
amplifier
Screen
wp()
down) ,
pause()
play0)
play0)
stop()
PopcornPopper
onl)
off() TheaterLights
popl)
onf)
off()

dim()

ampifier

Projector

L avaPlayer

on)

off()

tvhode()
wideScreenhMode()

Home Theater

That's a lot of

classes, a lot

of interattions,
and a3 515 set of
interfaces to

learn and use

Watching a movie (the hard way)

Turn on the popcorn popper
Start the popper popping

Dim the lights

Put the screen down

Turn the projector on

Set the projector input to DVD
and so on...

Lights, Camera, Facade!

A Facade is just what you need: with the
Facade Pattern you can take a complex

subsystem and make it easier to use by
Implementing a Facade class that

provides one, more reasonable interface.

HomeTheaterFacade
watchMovie()
endMovie()
listenToCd()
endCd()
listenToRadio()
endRadio()

e Your client code now calls methods on the home theater Facade, not on
the subsystem. So now to watch a movie we just call one method,
watchMovie(), and it communicates with the lights, DVD player, projector,
amplifier, screen, and popcorn maker for us.

public class HomeTheaterFacade {

Amplifier amp; Heve's the myosi{:ioni these
Tuner tuner; ave all the con?onen{‘s of the
DvdPlayer dvd; subsy*ch we ave 9oing to use.

CdPlayer cd;
Projector projector;
TheaterLights lights;
Screen screen;
POpCcOrnPOpper pPOPPREr;

public HomeTheaterFacade (Amplifier amp,
Tuner tuner,
DvdPlayer dvd,
CdPlayer cd,
Projector projector,

Screen screen, ETN The £acade is YM 2
TheaterLights lights, vekevente to mh. “.::m{
PopcornPopper popper) { of the SW"‘ n
tonstruttor The fatade
this.amp = amp; &cnassignsead\{:o‘u\c
this.tuner = tuner; ¢orvesponding instante variable.

this.dvd = dvd;

this.cd = cd;
this.projector = projector;
this.screen = screen;
this.lights lights;
this.popper = popper;

// other methods here

We'rcjus{: about {o £ill these in...

public void watchMovie (String movie) {
System.out.println(“Get ready to watch a movie...”);
popper.on();
popper.pop () ;

lights.dim(10); watehMovieQ) £ollows the same sequente
screen.down() ; p we had to do by hand bc(:orc, but wraps
projector.on(); £ up in @ handy method that does al
projector.wideScreenMode () ; the work. Notice that Lov eath task we
amp-on () are dclcﬁa{:’ms the VCS?""S.'b.'l"{"\/ to the
amp .setDvd (dvd) ;) onent in the subs‘{s{',CM-
amp.setSurroundSound () ; tor "Cs?o"d"‘S Comp
amp.setVolume (5);

dvd.on() -

dvd.play (movie);

Time to watch a movie (the easy way)

Heve we've treating the components
public class HomeTheaterTestDrive righ{ in the test drive. Norman\/ Ehe

public static void main(String[] args) { k/ tlient is given @ facadc, it doesn't have

// instantiate components here Lo consbruet one tself.

HomeTheaterFacade homeTheater =
new HomeTheaterFacade (amp, tuner, dvd, cd, < F'rs’c ou inskantiate
. . \
projector, screen, lights, popper); the Facade with all Ehe
homeTheater.watchMovie ("Raiders of the Lost Ark”):; tomponents in the subsys{:tm-
homeTheater.endMovie () ;

} &/ Use the sim?lipicd in‘{:cr‘(:at‘,c to
fivst stavt the movie wp, and
then shut it down.

Facade Pattern defined

The Facade Pattern provides a unified interface to a
set of Interfaces in a subsytem. Facade defines a higher-
level interface that makes the subsystem easier to use.

Facede UML
. l/—-—\ Unified intevLace

Wappy tlient whose Client o that is easier 4o use.
)ob \')usk bccamco£

easiexr betause
the facade:

subsystem classes

Movre COm\?\C‘ﬁ subs\fs{',cm.

The Principle of Least Knowledge

4 Design Principle
\ Principle of Least Knowledge -
. @ talk only to your immediate friends.

...

But what does this mean in real terms? It means when you are designing a
system, for any object, be careful of the number of classes it interacts with and
also how it comes to interact with those classes.

public float getTemp () {

Without the Thermometer thermometer = station.getThermometer() ;
Printiple return thermometer.getTemperature() ; ,
) ' 3

Here we get the thermometer ob)cc{:
from the station and then call the
S&Tcmvcra{:wc() method ourselves:

With the public float getTemp () {

Printiple return station.getTemperature() ;
\ ; ﬁ

When we apply the printiple, we add a
method o the Station tlass that makes
Lhe vequest to the thermometer for us.
This vedutes the number of elasses we've
dependent on.

