Encapsulating
Algorithms

ELSYS 2014/2015
Vasil Kostov
Georgi Yosifov

Yeah, he's a great boss until

it comes to getting down in this
hole, then it ALL becomes MY job.
See what I mean? He's nowhere

in sight!

SiarburZ Coffee Borist® Training
Baristas‘ please fol se recipe
precisely hen prepar ng gtarbuzz beverages
StarbuzZ Coffee RecipE
1) Bpoi wateTr
(2) Brevw coffee in poilind water
(3) Pour coffee i1 cup N
a milk The vetipe for
CO‘F £ ee looks a lot
‘Ikc {:\\C rec"?c ‘(:O\'
%ea, doesnt it?

1) poil w

2) SteeP in boil ng water
(3) PpPour tea 10 cup

(4) add 1emon

Let’s play “coding barista” and write some code for
creating coffee and tea.

public class Coffee {

void prepareRecipe() {
boilwater():;
brewCoffeeGrinds ().
pourInCup();
addsugarAndMilk();

public void boilWater() {
System.out.println(“Boiling water”);

public void brewCoffeeGrinds() {
System.out.println (“Dripping Coffee through filter”);

public void pourInCup() {

System.out.println (“Pouring into cup”):

public void addSugarAndMilk() {
System.out.println (“Adding Sugar and Milk”);

and now the Tea...

public class Tea {

w
w

void prepareRecipe() {
boilWater ()
steepTeaBag() -
pourInCup ()’
addLemon() ;

public void boilWater() {

System.out.println(“Boiling water”);

public void steepTeaBag() {
System.out.println(“Steeping the te

public void addLemon() {
System.out.println(“Adding Lemon”);

public void pourInCup() {

’

a

u) -
’

System.out.println(“Pouring into cup”):;

gh filter”

) ;

When we've got code
duplication, that's a good sign
we need to clean up the design. It
seems like here we should abstract
the commonality into a base class
since coffee and tea are so
similar?

Sir, may | abstract your Coffee, Tea?

The boilWa{',er() and Yow|nCu\>()

mebhods are shaved b

so they are defined

J

Tea

J

CaffeineBeverage
) prepareRecipe()
I}}WCP%CR“'P‘O method 0 boilWater(
IT¥ers in each subelass, so it is pourlnCup()
defined as abstract.
Eath subelass /\ Coffee
implements its prepareRecipe() prepareRecipe()
own rcciyo brewCoffeeGrinds() steepTeaBag()
addSugarAndMilk() addLemon()
. (4
(‘,'\glc to C°‘c£c

The methods spe
and Tea stay ™

fhe subelasses:

Y both subtlasses,
in the supertlass.

Eath subelass overvides
the prepareRectipe()
method and implemcn{:s
its own vetipe.

Taking the design further...

e So what else do Coffee and Tea have In
common? Let’'s start with the recipes.

Starbuzz Tea Recipe

k
S
/ (1) Boil some water
(2) Steep tea in boiling water

(3) Pour tea in cup
(4) Add lemon

Abstracting prepareRecipe()

Coffee Tea
void prepareRecipe() { void prepareRecipe() {
boilwater():; boilWater();

br eeGrinds () ; E———> steepTeaBag () ;

pourInCup(); pourInCup () ;

:acidSugar}-.nd_V_i;}: (): <—-"—*-—x) addLemon () ;
}

}

e The first problem we have is that Coffee uses brewCoffeeGrinds() and
addSugarAndMilk() methods while Tea uses steepTeaBag() and
addLemon() methods.

void prepareRecipe() {
boilWater():
brew() ;
pourInCup ()
addCondiments () ;

public abstract class CaffeineBeverage {

boilwWater ()

pourInCup();

‘

void boilWater() {
System.out.println(“Boiling water”);

}

void pourInCup() {
System.out.println(“Pouring into cup”):

}

VR

As in our design, Tea and Coffee
public class Tea extends CaffeineBeverage {

row extend CaffeineBeverage.
public void brew() {
System.out.println(“Steeping the tea”);
}
publ;;SZZ;C.iozgc.igi?g‘trfir(lsls-\c(iélir{lg Lemon”) ; <‘—\ Tea needs +o define brew() and
} &—— addCondiments() — the two abstract
} methods from Beverage.

Same for Coffee, extept Coffee deals

with coﬁcc, and sugavr and milk instead
' - of £ea bags and lemon.
public class Coffee extends CaffeineBeverage ({

public void brew() {

System.out.println (“Dripping Coffee through filter”):;
}

public void addCondiments() {

System.out.println (“*Adding Sugar and Milk”);
}

Meet the Template Method
T Caffeinesym/e (

The Template Method defines

the steps of an algorithm and allows
subclasses to provide the
implementation for one or more steps.

wcy&r:RcLiP:O is our template method

Wh\/?

Betause:

void final prepareRecipe() {

’boilWater(); ‘

brew();

‘pourlncup ()7

addCondiments () ; ‘

=

&

x

e

L (1) [+ is a method, after all

™ (2) [t sevves as a template for an
algor}{hm, in this tase, an algo\r'\{hm for
making caffeinated beverages.

Y

5: In the template, each step of
— the algorithm is vepresented
L b\/ a method.

- Some methods ave handled
™ b‘/ this ¢lass..

ot

-and some are handled

abstract void brew() ;
abstract void addCondiments() ;

void boilWater() {
// implementation

}

void pourInCup() {
// implementation

}

A\

b‘/ the subtlass

The methods that need to
~~ be supplied by a subtlass are
detlared abstvact

Template Method Pattern defined

The Template Method Pattern defines the skeleton
of an algorithm in a method, deferring some steps to
subclasses. Template Method lets subclasses redefine

certain steps of an algorithm without changing the
algorithm’s structure.

The template method makes use of the
primitiveOperations to implement an
algorithm. [t is decoupled from the actual

implementation of these operations.
The AbstractClass /\/ 2
tontains the template
o AbstractClass

..and abstratt versions

of the operations used —2 E
in the {;cmyla’ce method.

templateMethod() ++-veereereeee et
primitiveOperation1()
primitiveOperation2()

primitiveOperation1();

primitiveOperation2();

ConcreteClass

Cont

exad
ﬁm?\au mc{;\\od

primitiveOperation()
primitiveOperation2()

£

The ContreteClass implements
4he abstract operations,

which are ¢alled when the
templa(:cMc{)wd() needs them.

The Hollywood Principle and Template
Method

The connection between the Hollywood
Principle and the Template Method Pattern is
probably somewhat apparent: when we design
with the Template Method Pattern, we're telling
subclasses, “don’t call us, we’ll call you.”

