YTBbLpAUN:
pou. ap. nHx. C. CtedaHoBa
Oupektop TYEC kbm TY-Codoms

[lonpaBuTeneH M3nUT nNo TexHoN0ornA Ha

NporpaMmMpaHeTo - NpakTHKa
(05 centemBpun 2018)

TpuTte nmeHa:

Knac:

Howmep B knac:

Sha256 CTOMHOCT Ha NpedaneHnst apXxmB:
Nme Ha poguTen:

Moannc Ha poanTen/HacTOMHNK:

(uenTa Ha UMETO M Nnognuca Ha PoANTENS € Aa CbM CUTYPEH, Ye poauTenuTe ca 3ano3HaTt ¢
TOBa KaK ca u3rpageHun 3agadnte NocTaBeHM Ha U3nuTa. HaumHbT, NO KOWTO ca NOCTaBEHM
3agaynTe e onucaH no-gosny M Ha4YMHbLT Ha NpoBEX4aHe CbLLO)

N3nuTHUTE 3aga4ym ce CbCTOAT OT TpW enemMeHTa

1. Bauma ce 3agaya fageHa Ha MmHanaTa nonpaeka npes tfickata cecud. Ta camaTta e
n3rpageHa Ha 6asa Ha 3agayn gaBaHM MMHUMYM 8 MbTU B NepuoAa OT MapT A0 tOHU
2018. bykBanHo ca KonvpaHu 3agaynTe oT MvHanua nbT. [NpegnonoxeHneTo e, Ye ako
Te ca peLueHun ycnewHo 3a nocnegnnte 40 gHu we 6baaT peLleHn ycnewHo u cera.

2. KbM Hest ce 0o6aBAT AONBAHUTENHN YCNOBUA OT AOMALUHX JaBaHW B nepuoga ot
centemBpu 2017 go toHM 2018. Banma ce gomawHo u ce gobaes kbM 3agavaTa 3a
nanuta. 3agauynTe oT JOMAaLLHUTE ca peLleHn npes yyebHaTa roguHa, uMa TEXHU
PeLLUEHNs] B XPaHUIULLIETO Ha npeameTa. AKO YOBEK Ce € 3ano3Har C pelleHmnsTa Ha
3agaynTe OT 4OMALLHOTO 3a NocrnegHuTe Meceumn MoXe AUPEKTHO Aa M N3nonsBea.

3. TlpaBsaT ce gonbnHeHnsa Ha 6a3a NpeaocTaBeHNsa KOHCNEKT. EgHa nnu aBe ToYKM BbpXy
equals n hashCode.

4. YdyeHnunUTeE He MoraT ga nonseaT UHTEPHET Mo BpeMe Ha paboTta. Bb3MoXHO e
3agavaTta UM ga 6bae pelleHa oT Apyr y4eHuk u ga um 6bae nsnpareHa n ToBa HaAMa
Kak ga 6bae KOHTpOnMpaHo.



5. Bb3moxHOo e obaye ga nonsesaT maTepuanu, KOMTO Aa AoHecaT Ha usanuTa. Toea e
Bb3MOXHO Oa 6baaT pelleHns Ha 3agavmTte oT AoOMaLlHUTE paboTu, 3agadnte oT
NOCTaBEHUTE KOHTPOSIHM U 3a4avnTe OT NONpaBUTENHUTE CECUN, LUANOTO XpaHunumLLe oT
3apa4m oT rogmHaTa. Bb3MoXHO € aa B3eMaT AONbITHUTENHU BUbnuoTeku,
AOKYMEHTaLMn 1 BCUYKN HEOOXOANMO.

6. B Tasu Bpb3ka 3agaunTe ako YOBEK He € MOAroTBeH ca 06EKTMBHO TPYAHWU, HO ako ca
peLLeHn BCUYKN OOMALLHO OT rofMHa, ako ca peLleHne npeaguwHnTe 3agaym ot
nonpaekaTa U ako y4eHUKBLT ce € ceTun fa B3eMe Te3n Mmatepmanu 3a nonpaskaTta,
3agaynTe ce npeBpbLUaT B OOEKTUBHO NMOCTUXKMMMU.

7. Ha kpas Ha uanuta TpabBa Aa ce cb3gade apxuB Cbabpall, paboTaTa Ha yYyeHuka u
BCUYKO BBbPXY KOETO € paboTEeHO 1 TO3M apXmB Aa ce npenage.

3ajaHue

BapuaHT 1

Tasks Objects

1. Create Task on url /tasks/new with the following field

- name

- description

- solution_required - true/false value if a solution should be provided for the task to me
marked as completed. A check box in the form

Implement the TasksController to have a show, update, create, edit, destroy, index
methods that follow the rails conversion for behaviour of these methods

2. Create TaskSolution /task _solutions/new with
- picture solution - field for providing a picture solution with an upload button in he form
- status - enum of values {:not_started, :started, :completed}. A drop down in the form
- confirmed - true/false value if the task is confirmed

Implement the TaskSolutionsControler to have a show, update, create, edit, destory,
index methods that follow the rails conversion for behaviour of these methods

3. One task could have many task solutions. One task solution is for a specific task

4. Validate that the number of tasks solutions created for a given task that have a blank text
solution is not more than 3

5. Validate that no more than 3 tasks requiring a solution could be created



6. Validate that for a task to be marked as completed when a solution is required than there
should be a picture solution provided and that after a task is marked as confirmed the picture
and status could not be changed.
7. Show a list of tasks completions and for which task they are

- this is available at /#{my_index}tasks/ where my_index is your
class_number _firstname_lastname

- show a table with the first column the task name, the second column the specialty
description, the third column whether a solution is required, the fourth column the text task
solution, the fifth column the status of the solution and the six column whether the task is
confirmed

User Objects

8. Allow a user to be registered on the platform by providing a user name and password. Users
should not be valid unless confirmed. Confirmation is done by setting the value of a field
“confirmed” in the user model to ‘true’.

9. Each TaskSolution could be completed by a many users. Each user could have many task
completions

10. Show all the TaskSolution for a given user on the /users/:id/task_completions url

11. Make sure that each user could have only one TaskSolution for a given task.

11.1 Provide a correct implementation of methods myEquals and myHashCode for TaskSolution
following the principles for correct behaviour of equals and hasCode. The TaskSolution should
be compared based on the size of its picture in bytes.

JSON/XML/RSA

12. Allow a user to generate a new RSA key with a POST request on /users/:id/rsas. The private
key of the user should be returned. Just the n and e. Each time a request is made a new key
should be generated.

13. Store the generated RSA public key for the given user on the server.

14. Show all the rsa public keys for all users on /rsas

15. Allow a user to have more than one RSA key. It could be created with POST at
/users/:id/rsas. They could all be shown with GET /users/:id/rsas. Specific RSA public keys
could be shown with GET on /uses/:id/rsas/:rsa_id

14. When the user completes a task by submitting a POST request on /task_solutions the user
should send an additional param with the form that is the digit 123 encrypted with one of the
private keys of the user previously returned by the server. The server should check if at least
one of the public keys of this user could decrypt the encrypted message and if the result is 123
than the TaskSolution could be created.

15. Implement a validation logic in the TaskSolution that would not allow for the creation of the
TaskSolution and would mark the record as invalid if the passed encrypted value of 123 can not
be decrypted successfully with at least one of the public keys of the user to gain 123. Add a



column for what is the encrypted value passed to the TaskSolution and with which keys was the
value decrypted.

The validation logic should happen when calling record.valid?. Proper error message should be
displayed in the form.

16. Allow for all controllers to accept requests that return the information as JSON.

17. Allow for all controllers to accept requests that return the information as XML.

Categorization

18. Add a Model Categorization

19. Each TaskSolution that was created with a valid RSA encrypted value of 123 with a user
key, could be in a Category

20. When visiting a Category with a GET on /categories/:id show all the TaskSolution that are in
this category

21. When creating a TaskSolution allow for choosing many categories in which the solution is.
22. Add a validation that a TaskSolution could not be in more than 4 categories

Wzrorswi:
/ ac. Kupun Muros /




